Dieldrin
- Formula: C12H8Cl6O
- Molecular weight: 380.909
- IUPAC Standard InChIKey: DFBKLUNHFCTMDC-NLUYNBKHSA-N
- CAS Registry Number: 60-57-1
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Stereoisomers:
- Other names: 2,7:3,6-Dimethanonaphth[2,3-b]oxirene, 3,4,5,6,9,9-hexachloro-1a,2,2a,3,6,6a,7,7a-octahydro-, (1aα,2β,2aα,3β,6β,6aα,7β,7aα)-; 1,4:5,8-Dimethanonaphthalene, 1,2,3,4,10,10-hexachloro-6,7-epoxy-1,4,4a,5,6,7,8,8a-octahydro-, endo,exo-; exo-Dieldrin; Aldrin epoxide; Alvit 55; Dieldrex; Dielmoth; Dildrin; Dorytox; ENT-16225; HEOD; Illoxol; Insectlack; Kombi-Albertan; Moth Snub D; Octalox; Red Shield; SD 3417; Termitox; (1R,4S,4aS,5R,6R,7S,8S,8aR)-1,2,3,4,10,10-hexachloro-6,7-epoxy-1,4,4a,5,6,7,8,8a-octahydro-1,4:5,8-dimethanonaphthalene; Alvit; Compd. 497; Compound 497; Dieldrite; ENT 16,225; Hexachloroepoxyoctahydro-endo,exo-dimethanonaphthalene; NCI-C00124; Panoram D-31; Shelltox; 1,2,3,4,10,10-Hexachloro-6,7-epoxy-1,4,4a,5,6,7,8,8a-octahydro-endo,exo-1,4:5,8-dimethanonaphthalene; 1,2,3,4,10,10-Hexachloro-6,7-epoxy-1,4,4a,5,6,7,8,8a-octahydro-1,4-endo,exo-5,8-dimethanonaphthalene; Mixture containing 85 percent of 1,2,3,4,10,10-hexachloro-6,7-epoxy-1,4,4a,5,6,7,8,8a-octahydro-1,4-exo-5,8-endo-dimethanonaphthalene; Dieldrine; Deildrin; 2,7:3,6-Dimethanonaphth(2,3-b)oxirene, 3,4,5,6,9,9-hexachloro-1a,2,2a,3,6,6a,7,7a-octahydro-, (1aR,2R,2aS,3S,6R,6aR,7S,7aS)-rel-; 1,2,3,4,10,10-Hexachloro-6,7-epoxy-1,4,4a,5,6,7,8,8a-octahydro-1,4-endo-exo-5,8-dimethanonaphthalene (dieldrin)
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Phase change data
Go To: Top, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tfus | 448. | K | N/A | Plato, 1972 | Crystal phase 1 phase; Uncertainty assigned by TRC = 1. K; TRC |
Tfus | 453. | K | N/A | Plato, 1972 | Crystal phase 1 phase; Uncertainty assigned by TRC = 1. K; TRC |
Tfus | 452.0 | K | N/A | Plato and Glasgow, 1969 | Uncertainty assigned by TRC = 0.2 K; TRC |
Enthalpy of vaporization
ΔvapH (kcal/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
19.7 | 398. | GC | Hinckley, Bidleman, et al., 1990 | Based on data from 343. to 453. K.; AC |
Enthalpy of sublimation
ΔsubH (kcal/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
22.4 | 328. | GS | Grayson and Fosbraey, 2006 | Based on data from 308. to 348. K.; AC |
23.6 | 303. | GS | Spencer and Cliath, 1969 | Based on data from 293. to 313. K.; AC |
Enthalpy of fusion
ΔfusH (kcal/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
0.727 | 452.9 | DSC | Ksia«807»azczak and Nagata, 1995 | AC |
References
Go To: Top, Phase change data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Plato, 1972
Plato, C.,
DSC as a general method for determining purity and heat of fusion of high-purity organic chemicals,
Anal. Chem., 1972, 44, 1531. [all data]
Plato and Glasgow, 1969
Plato, C.; Glasgow, A.R., Jr.,
Differential scanning calorimetry as a general method for determining the purity and heat of fusion of high-purity organic chemicals. Application to 95 compounds,
Anal. Chem., 1969, 41, 2, 330, https://doi.org/10.1021/ac60271a041
. [all data]
Hinckley, Bidleman, et al., 1990
Hinckley, Daniel A.; Bidleman, Terry F.; Foreman, William T.; Tuschall, Jack R.,
Determination of vapor pressures for nonpolar and semipolar organic compounds from gas chromatograhic retention data,
J. Chem. Eng. Data, 1990, 35, 3, 232-237, https://doi.org/10.1021/je00061a003
. [all data]
Grayson and Fosbraey, 2006
Grayson, B. Terence; Fosbraey, Lynda A.,
Determination of the vapour pressure of pesticides,
Pestic. Sci., 2006, 13, 3, 269-278, https://doi.org/10.1002/ps.2780130308
. [all data]
Spencer and Cliath, 1969
Spencer, William F.; Cliath, M.M.,
Vapor density of dieldrin,
Environ. Sci. Technol., 1969, 3, 7, 670-674, https://doi.org/10.1021/es60030a006
. [all data]
Ksia«807»azczak and Nagata, 1995
Ksia«807»azczak, A.; Nagata, I.,
Crystal-plastic and plastic-liquid phase transitions, and purity determination,
Thermochimica Acta, 1995, 254, 31-39, https://doi.org/10.1016/0040-6031(94)02032-J
. [all data]
Notes
Go To: Top, Phase change data, References
- Symbols used in this document:
Tfus Fusion (melting) point ΔfusH Enthalpy of fusion ΔsubH Enthalpy of sublimation ΔvapH Enthalpy of vaporization - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.