Fluoroform

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Phase change data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Quantity Value Units Method Reference Comment
Δfgas-697.05kJ/molReviewChase, 1998Data last reviewed in June, 1969
Δfgas-690.8kJ/molEqkGoy, Lord, et al., 1967ALS
Δfgas-695.4 ± 2.7kJ/molCcrNeugebauer and Margrave, 1957Reanalyzed by Cox and Pilcher, 1970, Original value = -680.3 ± 2.7 kJ/mol; ALS
Quantity Value Units Method Reference Comment
Δcgas-71.55 ± 0.71kJ/molEqkGoy, Lord, et al., 1967ALS
Δcgas-516.3kJ/molCcrNeugebauer and Margrave, 1957ALS
Quantity Value Units Method Reference Comment
gas,1 bar259.65J/mol*KReviewChase, 1998Data last reviewed in June, 1969

Gas Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
    Cp = heat capacity (J/mol*K)
    H° = standard enthalpy (kJ/mol)
    S° = standard entropy (J/mol*K)
    t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 298. to 1200.1200. to 6000.
A 6.463694100.5352
B 185.43323.936630
C -140.8870-0.757020
D 39.849210.050454
E 0.064514-13.51683
F -705.8450-759.4546
G 218.4579336.4170
H -697.0544-697.0544
ReferenceChase, 1998Chase, 1998
Comment Data last reviewed in June, 1969 Data last reviewed in June, 1969

Phase change data

Go To: Top, Gas phase thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
DH - Eugene S. Domalski and Elizabeth D. Hearing
AC - William E. Acree, Jr., James S. Chickos

Quantity Value Units Method Reference Comment
Tboil188.7KN/APCR Inc., 1990BS
Tboil191.0KN/AStreng, 1971Uncertainty assigned by TRC = 0.05 K; TRC
Tboil189.KN/ACroll and Scott, 1964Uncertainty assigned by TRC = 0.3 K; TRC
Tboil189.KN/AThorp and Scott, 1956Uncertainty assigned by TRC = 0.5 K; TRC
Quantity Value Units Method Reference Comment
Tfus110.2KN/AStreng, 1971Uncertainty assigned by TRC = 0.2 K; TRC
Tfus117.97KN/AValentine, Brodale, et al., 1962Uncertainty assigned by TRC = 0.05 K; TRC
Tfus113.KN/AThorp and Scott, 1956Uncertainty assigned by TRC = 0.5 K; TRC
Quantity Value Units Method Reference Comment
Ttriple117.97KN/AValentine, Brodale, et al., 1962Uncertainty assigned by TRC = 0.02 K; TRC
Quantity Value Units Method Reference Comment
Tc299.1 ± 0.3KAVGN/AAverage of 7 values; Individual data points
Quantity Value Units Method Reference Comment
Pc48.28barN/AOhgaki, Umezono, et al., 1990Uncertainty assigned by TRC = 0.25 bar; TRC
Pc48.162barN/AHori, Okazaki, et al., 1982Uncertainty assigned by TRC = 0.02 bar; TRC
Pc50.3585barN/AWagner, 1968Uncertainty assigned by TRC = 0.1013 bar; TRC
Pc48.3612barN/AHou and Martin, 1959Uncertainty assigned by TRC = 0.0689 bar; TRC
Quantity Value Units Method Reference Comment
ρc7.5 ± 0.1mol/lAVGN/AAverage of 6 values; Individual data points

Enthalpy of vaporization

ΔvapH (kJ/mol) Temperature (K) Method Reference Comment
16.711190.97N/AValentine, Brodale, et al., 1962, 2P = 101.325 kPa.; DH
18.1175.AStephenson and Malanowski, 1987Based on data from 138. to 190. K.; AC
16.8213.AStephenson and Malanowski, 1987Based on data from 198. to 298. K.; AC
18.0177.N/AValentine, Brodale, et al., 1962, 2Based on data from 146. to 192. K.; AC

Entropy of vaporization

ΔvapS (J/mol*K) Temperature (K) Reference Comment
87.50190.97Valentine, Brodale, et al., 1962, 2P; DH

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (bar)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
145.36 to 191.194.25548718.089-22.013Valentine, Brodale, et al., 1962, 2Coefficents calculated by NIST from author's data.

Enthalpy of sublimation

ΔsubH (kJ/mol) Temperature (K) Reference Comment
25.6103.Stephenson and Malanowski, 1987Based on data from 89. to 118. K.; AC

Enthalpy of fusion

ΔfusH (kJ/mol) Temperature (K) Reference Comment
4.058117.97Valentine, Brodale, et al., 1962, 2DH
4.06118.Domalski and Hearing, 1996AC

Entropy of fusion

ΔfusS (J/mol*K) Temperature (K) Reference Comment
34.40117.97Valentine, Brodale, et al., 1962, 2DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


IR Spectrum

Go To: Top, Gas phase thermochemistry data, Phase change data, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Gas Phase Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

IR spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Notice: Concentration information is not available for this spectrum and, therefore, molar absorptivity values cannot be derived.

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

View spectrum image in SVG format.

Download spectrum in JCAMP-DX format.

Owner NIST Standard Reference Data Program
Collection (C) 2018 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin Sadtler Research Labs Under US-EPA Contract
State gas

This IR spectrum is from the NIST/EPA Gas-Phase Infrared Database .


Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Phase change data, IR Spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
NIST MS number 268

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


Gas Chromatography

Go To: Top, Gas phase thermochemistry data, Phase change data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Normal alkane RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryOV-101202.Zenkevich, 200525. m/0.20 mm/0.10 μm, N2/He, 6. K/min; Tstart: 50. C; Tend: 250. C

Normal alkane RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryMethyl Silicone202.Zenkevich, 1996Program: not specified

References

Go To: Top, Gas phase thermochemistry data, Phase change data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Chase, 1998
Chase, M.W., Jr., NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]

Goy, Lord, et al., 1967
Goy, C.A.; Lord, A.; Pritchard, H.O., Kinetics and thermodynamics of the reaction between iodine and fluoroform and the heat of formation of trifluoromethyl iodide, J. Phys. Chem., 1967, 71, 1086-1089. [all data]

Neugebauer and Margrave, 1957
Neugebauer, C.A.; Margrave, J.L., Heats of formation of the fluoromethanes and fluoroethylenes, Tech. Rept., 1957, 1-45. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

PCR Inc., 1990
PCR Inc., Research Chemicals Catalog 1990-1991, PCR Inc., Gainesville, FL, 1990, 1. [all data]

Streng, 1971
Streng, A.G., Miscibility and Compatibility of Some Liquid and Solidified Gases at Low Temperature, J. Chem. Eng. Data, 1971, 16, 357. [all data]

Croll and Scott, 1964
Croll, I.M.; Scott, R.L., Fluorocarbon Solutions at Low Termperatures IV. The Liquid Mixtures CH4 + CClF3, CH2F2 + CClF3, CHF3 + CClF3, CF4 + CClF3, C2H6 + CClF3, C2H6 + CF4, and CHF3 + CF4, J. Phys. Chem., 1964, 68, 3853. [all data]

Thorp and Scott, 1956
Thorp, N.; Scott, R.L., Fluorocarbon solutions at low termperatures. I. The liquid mixtures CF4-CHF3, CF4-CH4, CF4-Kr, CH4-Kr., J. Phys. Chem., 1956, 60, 670. [all data]

Valentine, Brodale, et al., 1962
Valentine, R.H.; Brodale, G.E.; Giauque, W.F., Trifluoromethane: entropy,low temp. heat capacity, heats of fusion and vaporization, and vapor pressure, J. Phys. Chem., 1962, 66, 392. [all data]

Ohgaki, Umezono, et al., 1990
Ohgaki, K.; Umezono, S.; Katayama, T., Pressure-density-temperature (p-ρ-T) relations of fluoroform, nitrous oxide, and propene in the critical region, J. Supercrit. Fluids, 1990, 3, 78-84. [all data]

Hori, Okazaki, et al., 1982
Hori, K.; Okazaki, S.; Uematsu, M.; Watanabe, K., An Experimental Study of Thermodynamic Properties of Trifluoromethane in Proc. Symp. Thermophys. Prop., 8th, 1981, Gaithersburg, Vol. II, Sengers, J. V., Ed., ASME: New York, p. 370-6, 1982. [all data]

Wagner, 1968
Wagner, W., Thermodynamic properties of trifluoromethane, Kaeltetech.-Klim., 1968, 20, 238-40. [all data]

Hou and Martin, 1959
Hou, Y.-C.; Martin, J.J., Physical and Thermodynamic properties of trifluoromethane, AIChE J., 1959, 5, 125. [all data]

Valentine, Brodale, et al., 1962, 2
Valentine, R.H.; Brodale, G.E.; Giauque, W.F., Trifluoromethane: entropy, low temperature heat capacity, heats of fusion and vaporization, and vapor pressure, J. Phys. Chem., 1962, 66, 392-395. [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D., Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III, J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985 . [all data]

Zenkevich, 2005
Zenkevich, I.G., Experimentally measured retention indices., 2005. [all data]

Zenkevich, 1996
Zenkevich, I.G., Informational Maitenance of Gas Chromatographic Identification of Organic Compounds in Ecoanalytical Investigations, Z. Anal. Chem., 1996, 51, 11, 1140-1148. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Phase change data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References