Deuterium
- Formula: D2
- Molecular weight: 4.0282035556
- IUPAC Standard InChIKey: UFHFLCQGNIYNRP-VVKOMZTBSA-N
- CAS Registry Number: 7782-39-0
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Isotopologues:
- Other names: D2; UN 1957
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Phase change data, Reaction thermochemistry data, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
S°gas,1 bar | 144.96 | J/mol*K | Review | Chase, 1998 | Data last reviewed in March, 1982 |
Gas Phase Heat Capacity (Shomate Equation)
Cp° = A + B*t + C*t2 + D*t3 +
E/t2
H° − H°298.15= A*t + B*t2/2 +
C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 −
E/(2*t2) + G
Cp = heat capacity (J/mol*K)
H° = standard enthalpy (kJ/mol)
S° = standard entropy (J/mol*K)
t = temperature (K) / 1000.
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | 298. to 1000. | 1000. to 2500. | 2500. to 6000. |
---|---|---|---|
A | 32.684534 | 20.123015 | 46.787245 |
B | -14.841301 | 15.023850 | -5.552026 |
C | 21.064857 | -4.776967 | 1.451072 |
D | -7.204633 | 0.593203 | -0.106099 |
E | -0.066534 | 0.670912 | -19.521487 |
F | -9.480583 | -4.449853 | -40.496576 |
G | 187.691048 | 168.515874 | 178.087513 |
H | 0.0 | 0.0 | 0.0 |
Reference | Chase, 1998 | Chase, 1998 | Chase, 1998 |
Comment | Data last reviewed in March, 1977; New parameter fit October 2001 | Data last reviewed in March, 1977; New parameter fit October 2001 | Data last reviewed in March, 1977; New parameter fit October 2001 |
Phase change data
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Ttriple | 18.73 | K | N/A | McConville and Pavese, 1988 | Uncertainty assigned by TRC = 0.0005 K; for normal D2 Temp. on IPTS-678, reproducible to 0.0002 K |
Ttriple | 18.69 | K | N/A | McConville and Pavese, 1988 | Uncertainty assigned by TRC = 0.0005 K; for equilibrium D2 Temp. on IPTS-678, reproducible to 0.0002 K |
Ttriple | 18.65 | K | N/A | Clusius and Weigand, 1940 | Uncertainty assigned by TRC = 0.2 K; see property X for dP/dT for c-l equil. |
Reaction thermochemistry data
Go To: Top, Gas phase thermochemistry data, Phase change data, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1683.2 | kJ/mol | N/A | Shiell, Hu, et al., 2000 | gas phase; exact: 402.258±0.003 kcal/mol at 298K. Acid: D2; B |
ΔrH° | 1678.663 ± 0.042 | kJ/mol | D-EA | Lykke, Murray, et al., 1991 | gas phase; Reported: 6086.2±0.6 cm-1. Acid taken as HD -> H+ + D-; B |
ΔrH° | 1683.2 | kJ/mol | D-EA | Lykke, Murray, et al., 1991 | gas phase; Acid: D2 -> D- + D+. BDE: 105.98 Gurvich, Veyts, et al.. ΔSacid 22.9; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1652.5 ± 0.46 | kJ/mol | H-TS | Lykke, Murray, et al., 1991 | gas phase; Reported: 6086.2±0.6 cm-1. Acid taken as HD -> H+ + D-; B |
ΔrG° | 1654.8 ± 0.42 | kJ/mol | H-TS | Lykke, Murray, et al., 1991 | gas phase; Acid: D2 -> D- + D+. BDE: 105.98 Gurvich, Veyts, et al.. ΔSacid 22.9; B |
By formula: (D3+ • 9D2) + D2 = (D3+ • 10D2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 3. | kJ/mol | PHPMS | Hiraoka and Mori, 1989 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 84. | J/mol*K | N/A | Hiraoka and Mori, 1989 | gas phase; Entropy change calculated or estimated; M |
By formula: (D3+ • 2D2) + D2 = (D3+ • 3D2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 14.0 ± 0.8 | kJ/mol | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 83.7 | J/mol*K | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
By formula: (D3+ • 3D2) + D2 = (D3+ • 4D2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 7.7 ± 0.4 | kJ/mol | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 76.1 | J/mol*K | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
By formula: (D3+ • 4D2) + D2 = (D3+ • 5D2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 7.6 ± 0.4 | kJ/mol | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 79.9 | J/mol*K | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
By formula: (D3+ • 5D2) + D2 = (D3+ • 6D2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 7.3 ± 0.4 | kJ/mol | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 91.2 | J/mol*K | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
By formula: (D3+ • 6D2) + D2 = (D3+ • 7D2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 3.8 ± 0.4 | kJ/mol | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 53.6 | J/mol*K | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
By formula: (D3+ • 7D2) + D2 = (D3+ • 8D2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 3.4 ± 0.4 | kJ/mol | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 64.0 | J/mol*K | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
By formula: (D3+ • 8D2) + D2 = (D3+ • 9D2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 3.0 ± 0.4 | kJ/mol | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 81.2 | J/mol*K | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
By formula: (D3+ • D2) + D2 = (D3+ • 2D2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 14.6 ± 0.8 | kJ/mol | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 74.9 | J/mol*K | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
By formula: D3+ + D2 = (D3+ • D2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 30. ± 1. | kJ/mol | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 78.7 | J/mol*K | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
By formula: Co+ + D2 = (Co+ • D2)
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
71.5 (+6.7,-0.) | CID | Haynes and Armentrout, 1996 | gas phase; guided ion beam CID; M |
Mass spectrum (electron ionization)
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
Due to licensing restrictions, this spectrum cannot be downloaded.
Owner | NIST Mass Spectrometry Data Center Collection (C) 2014 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
---|---|
Origin | D.HENNEBERG, MAX-PLANCK INSTITUTE, MULHEIM, WEST GERMANY |
NIST MS number | 61316 |
References
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Mass spectrum (electron ionization), Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Chase, 1998
Chase, M.W., Jr.,
NIST-JANAF Themochemical Tables, Fourth Edition,
J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]
McConville and Pavese, 1988
McConville, G.T.; Pavese, F.,
Physicochemical problems involved in measuring thermodynamic properties of normal and equilibrium deuterium at the triple point,
J. Chem. Thermodyn., 1988, 20, 337. [all data]
Clusius and Weigand, 1940
Clusius, K.; Weigand, K.,
Melting Curves of the Gases A, Kr, Xe, CH4, CH3D, CD4, C2H4, C2H6, COS, and PH3 to 200 Atmospheres Pressure. The Chane of Volume on Melting,
Z. Phys. Chem., Abt. B, 1940, 46, 1-37. [all data]
Shiell, Hu, et al., 2000
Shiell, R.C.; Hu, X.K.; Hu, Q.C.J.; Hepburn, J.W.,
Threshold Ion-pair Production spectroscopy (TIPPS) of H2 and D2,
Faraday Disc. Chem. Soc., 2000, 115, 331, https://doi.org/10.1039/a909428h
. [all data]
Lykke, Murray, et al., 1991
Lykke, K.R.; Murray, K.K.; Lineberger, W.C.,
Threshold Photodetachment of H-,
Phys. Rev. A, 1991, 43, 11, 6104, https://doi.org/10.1103/PhysRevA.43.6104
. [all data]
Gurvich, Veyts, et al.
Gurvich, L.V.; Veyts, I.V.; Alcock, C.B.,
Hemisphere Publishing, NY, 1989, V. 1 2, Thermodynamic Properties of Individual Substances, 4th Ed. [all data]
Hiraoka and Mori, 1989
Hiraoka, K.; Mori, T.,
Thermochemical Stabilities of D3+(D2)n with n = 1 - 10,
Chem. Phys. Lett., 1989, 157, 5, 467, https://doi.org/10.1016/0009-2614(89)87282-3
. [all data]
Haynes and Armentrout, 1996
Haynes, C.L.; Armentrout, P.B.,
Guided Ion Beam Determination of the Co+ - H2 Bond Dissociation energy,
Chem Phys. Let., 1996, 249, 1-2, 64, https://doi.org/10.1016/0009-2614(95)01337-7
. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Mass spectrum (electron ionization), References
- Symbols used in this document:
S°gas,1 bar Entropy of gas at standard conditions (1 bar) T Temperature Ttriple Triple point temperature ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.