Formic acid
- Formula: CH2O2
- Molecular weight: 46.0254
- IUPAC Standard InChIKey: BDAGIHXWWSANSR-UHFFFAOYSA-N
- CAS Registry Number: 64-18-6
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: Methanoic acid; Aminic acid; Bilorin; Collo-Bueglatt; Collo-Didax; Formisoton; Formylic acid; Hydrogen carboxylic acid; Myrmicyl; HCOOH; Acide formique; Acido formico; Ameisensaeure; Kwas metaniowy; Kyselina mravenci; Mierenzuur; Rcra waste number U123; UN 1779; Formira; Add-F; Amasil
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Phase change data, Mass spectrum (electron ionization), Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | -378.6 | kJ/mol | Cm | Guthrie, 1974 | Heat of hydrolysis; ALS |
ΔfH°gas | -379.0 | kJ/mol | N/A | Lebedeva, 1964 | Value computed using ΔfHliquid° value of -425.5±0.3 kj/mol from Lebedeva, 1964 and ΔvapH° value of 46.5 kj/mol from Guthrie, 1974.; DRB |
ΔfH°gas | -379.2 ± 0.6 | kJ/mol | Ccb | Lebedeva, 1964 | Value computed using ΔfHliquid° from Lebedeva, 1964 and ΔvapH° value of 46.3 kJ/mol from Konicek and Wadso, 1970.; DRB |
ΔfH°gas | -378.3 | kJ/mol | N/A | Sinke, 1959 | Value computed using ΔfHliquid° value of -424.8±0.3 kj/mol from Sinke, 1959 and ΔvapH° value of 46.5 kj/mol from Guthrie, 1974.; DRB |
ΔfH°gas | -378.5 ± 0.6 | kJ/mol | Ccb | Sinke, 1959 | Value computed using ΔfHliquid° from Sinke, 1959 and ΔvapH° value of 46.3 kJ/mol from Konicek and Wadso, 1970.; DRB |
Quantity | Value | Units | Method | Reference | Comment |
S°gas | 248.70 ± 0.42 | J/mol*K | N/A | Millikan R.C., 1957 | Other third-law S(298.15 K) value is 248.11(1.26) J/mol*K [ Halford J.O., 1942, Millikan R.C., 1957]. Please also see Waring W., 1952.; GT |
Constant pressure heat capacity of gas
Cp,gas (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
33.26 | 50. | Chao J., 1986 | p=1 bar. Selected entropies and heat capacities are in close agreement with statistically calculated values [ Fukushima K., 1971] and value of S(298.15 K) calculated by ab initio method [ East A.L.L., 1997]. Maximum discrepancies with other statistical calculations [ Waring W., 1952, Green J.H.S., 1961, Gurvich, Veyts, et al., 1989] amount to 1.1-3.9 J/mol*K for S(T) and 3.0-5.9 J/mol*K for Cp(T). Please also see Chao J., 1978.; GT |
33.44 | 100. | ||
34.91 | 150. | ||
37.83 | 200. | ||
43.54 | 273.15 | ||
45.68 ± 0.07 | 298.15 | ||
45.84 | 300. | ||
54.52 | 400. | ||
62.63 | 500. | ||
69.81 | 600. | ||
76.04 | 700. | ||
81.34 | 800. | ||
85.77 | 900. | ||
89.40 | 1000. | ||
92.33 | 1100. | ||
94.65 | 1200. | ||
96.48 | 1300. | ||
97.91 | 1400. | ||
99.02 | 1500. |
Phase change data
Go To: Top, Gas phase thermochemistry data, Mass spectrum (electron ionization), Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 373.9 ± 0.5 | K | AVG | N/A | Average of 25 out of 30 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Tfus | 281.5 ± 0.6 | K | AVG | N/A | Average of 9 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Ttriple | 281.45 | K | N/A | Wilhoit, Chao, et al., 1985 | Uncertainty assigned by TRC = 0.1 K; TRC |
Ttriple | 281.40 | K | N/A | Stout and Fisher, 1941 | Uncertainty assigned by TRC = 0.06 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Ptriple | 0.0236 | bar | N/A | Taylor and Bruton, 1952 | Uncertainty assigned by TRC = 0.000067 bar; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Tc | 577. | K | N/A | Anselme and Teja, 1990 | Uncertainty assigned by TRC = 30. K; Tc > 577 K, which was observed with decomposition; TRC |
Tc | 588. | K | N/A | Ambrose and Ghiassee, 1987 | Uncertainty assigned by TRC = 10. K; TRC |
Tc | 580. | K | N/A | Majer and Svoboda, 1985 | |
Quantity | Value | Units | Method | Reference | Comment |
ΔvapH° | 46.3 | kJ/mol | N/A | Majer and Svoboda, 1985 | |
ΔvapH° | 36.0 | kJ/mol | A | Stephenson and Malanowski, 1987 | Based on data from 283. to 384. K.; AC |
ΔvapH° | 46.3 ± 0.5 | kJ/mol | C | Konicek and Wadso, 1970 | ALS |
ΔvapH° | 46.3 ± 0.5 | kJ/mol | C | Konicek, Wadsö, et al., 1970 | AC |
ΔvapH° | 19.9 | kJ/mol | N/A | Stout and Fisher, 1941, 2 | AC |
Enthalpy of vaporization
ΔvapH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
22.69 | 373.8 | N/A | Majer and Svoboda, 1985 | |
35.2 | 315. | EB | Ambrose and Ghiassee, 1987, 2 | Based on data from 300. to 392. K.; AC |
35.2 | 325. | N/A | Dreisbach and Shrader, 1949 | Based on data from 310. to 374. K. See also Dreisbach and Martin, 1949.; AC |
29.6 | 303. | N/A | Campbell and Campbell, 1934 | AC |
20.3 | 315. | N/A | Coolidge, 1930 | Based on data from 273. to 373. K.; AC |
20.9 | 338. | N/A | Coolidge, 1930 | Based on data from 273. to 373. K.; AC |
20.4 | 315. | C | Coolidge, 1930 | AC |
21.1 | 338. | C | Coolidge, 1930 | AC |
36.8 | 288. | N/A | Kahlbaum, 1894 | Based on data from 273. to 307. K.; AC |
47.7 | 374. | N/A | Kahlbaum, 1883 | Based on data from 295. to 374. K.; AC |
Enthalpy of vaporization
ΔvapH = A exp(-αTr)
(1 − Tr)β
ΔvapH =
Enthalpy of vaporization (at saturation pressure)
(kJ/mol)
Tr = reduced temperature (T / Tc)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | 298. to 374. |
---|---|
A (kJ/mol) | 23.8 |
α | 2.1043 |
β | -1.2652 |
Tc (K) | 580. |
Reference | Majer and Svoboda, 1985 |
Antoine Equation Parameters
log10(P) = A − (B / (T + C))
P = vapor pressure (bar)
T = temperature (K)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A | B | C | Reference | Comment |
---|---|---|---|---|---|
273.7 to 307.4 | 2.00121 | 515. | -139.408 | Kahlbaum, 1894, 2 | Coefficents calculated by NIST from author's data. |
Enthalpy of sublimation
ΔsubH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
60.5 | 275. | N/A | Stephenson and Malanowski, 1987 | Based on data from 268. to 281. K.; AC |
62. ± 1. | 213. | TE,ME | Calis-Van Ginkel, Calis, et al., 1978 | Based on data from 203. to 218. K.; AC |
60.1 | 264. | A | Stull, 1947 | Based on data from 253. to 275. K.; AC |
60.7 | 266. | N/A | Coolidge, 1930 | Based on data from 265. to 268. K. See also Jones, 1960.; AC |
Enthalpy of fusion
ΔfusH (kJ/mol) | Temperature (K) | Reference | Comment |
---|---|---|---|
12.678 | 281.40 | Stout and Fisher, 1941, 3 | DH |
Entropy of fusion
ΔfusS (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
45.05 | 281.40 | Stout and Fisher, 1941, 3 | DH |
Mass spectrum (electron ionization)
Go To: Top, Gas phase thermochemistry data, Phase change data, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
Due to licensing restrictions, this spectrum cannot be downloaded.
Owner | NIST Mass Spectrometry Data Center Collection (C) 2014 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
---|---|
NIST MS number | 81 |
Gas Chromatography
Go To: Top, Gas phase thermochemistry data, Phase change data, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Van Den Dool and Kratz RI, non-polar column, temperature ramp
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | DB-1 | 543. | Helmig, Pollock, et al., 1996 | 30. m/0.25 mm/1. μm, 6. K/min; Tstart: -50. C; Tend: 180. C |
Van Den Dool and Kratz RI, non-polar column, custom temperature program
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | Methyl Silicone | 512. | Peng, Yang, et al., 1991 | Program: not specified |
Packed | SE-30 | 512. | Peng, Ding, et al., 1988 | Supelcoport; Chromosorb; Column length: 3.05 m; Program: 40C(5min) => 10C/min => 200C or 250C (60min) |
Van Den Dool and Kratz RI, polar column, temperature ramp
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | DB-Wax | 1510. | Mahajan, Goddik, et al., 2004 | 30. m/0.25 mm/0.5 μm, He, 40. C @ 2. min, 5. K/min, 230. C @ 10. min |
Van Den Dool and Kratz RI, polar column, custom temperature program
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | Stabilwax | 1528. | Natali N., Chinnici F., et al., 2006 | 30. m/0.25 mm/0.25 μm, He; Program: 40C => 3C/min => 100C => 5C/min => 240C(10min) |
Capillary | DB-Wax | 1543.6 | Yang, Chyau, et al., 1998 | He; Column length: 50. m; Column diameter: 0.32 mm; Program: 50C => 2.5C/min => 150C => 1.5C/min => 210C |
Normal alkane RI, non-polar column, temperature ramp
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | HP-1 | 495. | Castel, Fernandez, et al., 2006 | 50. m/0.2 mm/0.33 μm, He, 60. C @ 4. min, 2. K/min, 250. C @ 30. min |
Normal alkane RI, non-polar column, custom temperature program
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | Methyl Silicone | 490. | Zenkevich, Korolenko, et al., 1995 | Program: not specified |
Normal alkane RI, polar column, temperature ramp
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | DB-Wax | 1470. | Guo, Wu, et al., 2008 | 30. m/0.25 mm/0.25 μm, Helium, 60. C @ 2. min, 10. K/min, 250. C @ 10. min |
Capillary | DB-Wax | 1470. | Guo, Wu, et al., 2008 | 30. m/0.25 mm/0.25 μm, Helium, 60. C @ 2. min, 10. K/min, 250. C @ 10. min |
Capillary | DB-Wax | 1470. | Guo, Wu, et al., 2008 | 30. m/0.25 mm/0.25 μm, Helium, 60. C @ 2. min, 10. K/min, 250. C @ 10. min |
Capillary | RTX-Wax | 1485. | Prososki, Etzel, et al., 2007 | 30. m/0.25 mm/0.5 μm, He, 40. C @ 5. min, 10. K/min, 220. C @ 10. min |
Capillary | Supelcowax-10 | 1521. | Vichi, Castellote, et al., 2003 | 30. m/0.25 mm/0.25 μm, He, 40. C @ 10. min, 3. K/min; Tend: 200. C |
Capillary | DB-Wax | 1492. | Sekiwa, Kubota, et al., 1997 | He, 2. K/min; Column length: 60. m; Column diameter: 0.25 mm; Tstart: 60. C; Tend: 180. C |
Capillary | DB-Wax | 1499. | Umano, Hagi, et al., 1995 | He, 40. C @ 2. min, 2. K/min; Column length: 60. m; Column diameter: 0.25 mm; Tend: 200. C |
Capillary | FFAP | 1505. | Vernin, Metzger, et al., 1988 | He, 60. C @ 5. min, 2. K/min; Column length: 50. m; Column diameter: 0.28 mm; Tend: 240. C |
Normal alkane RI, polar column, custom temperature program
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | DB-Wax | 1501. | Gonzalez-Rios, Suarez-Quiroz, et al., 2007 | 30. m/0.25 mm/0.25 μm, Hydrogen; Program: 44 0C 3 0C/min -> 170 0C 8 0C/min -> 250 0C |
Capillary | CP-Wax 52CB | 1532. | Muresan, Eillebrecht, et al., 2000 | 50. m/0.32 mm/1.2 μm; Program: 40C(10min) => 3C/min => 190C => 10C/min => 250C(5min) |
Capillary | Polyethylene Glycol | 1533. | Zenkevich, Korolenko, et al., 1995 | Program: not specified |
References
Go To: Top, Gas phase thermochemistry data, Phase change data, Mass spectrum (electron ionization), Gas Chromatography, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Guthrie, 1974
Guthrie, J.P.,
Hydration of carboxamides. Evaluation of the free energy change for addition of water to acetamide and formamide derivatives,
J. Am. Chem. Soc., 1974, 96, 3608-3615. [all data]
Lebedeva, 1964
Lebedeva, N.D.,
Heats of combustion of monocarboxylic acids,
Russ. J. Phys. Chem. (Engl. Transl.), 1964, 38, 1435-1437. [all data]
Konicek and Wadso, 1970
Konicek, J.; Wadso, I.,
Enthalpies of vaporization of organic compounds. VII. Some carboxylic acids,
Acta Chem. Scand., 1970, 24, 2612-26. [all data]
Sinke, 1959
Sinke, G.C.,
The heat of formation of formic acid,
J. Phys. Chem., 1959, 63, 2063. [all data]
Millikan R.C., 1957
Millikan R.C.,
Infrared spectra and vibrational assignment of monomeric formic acid,
J. Chem. Phys., 1957, 27, 1305-1308. [all data]
Halford J.O., 1942
Halford J.O.,
Entropy of the monomeric forms of formic acid and acetic acid,
J. Chem. Phys., 1942, 10, 582-584. [all data]
Waring W., 1952
Waring W.,
Some thermodynamic properties of formic acid,
Chem. Rev., 1952, 51, 171-183. [all data]
Chao J., 1986
Chao J.,
Thermodynamic properties of key organic oxygen compounds in the carbon range C1 to C4. Part 2. Ideal gas properties,
J. Phys. Chem. Ref. Data, 1986, 15, 1369-1436. [all data]
Fukushima K., 1971
Fukushima K.,
Normal coordinate treatment and thermodynamic properties of the cis-trans isomers of formic acid and its deutero-analog,
J. Chem. Thermodyn., 1971, 3, 553-562. [all data]
East A.L.L., 1997
East A.L.L.,
Ab initio statistical thermodynamical models for the computation of third-law entropies,
J. Chem. Phys., 1997, 106, 6655-6674. [all data]
Green J.H.S., 1961
Green J.H.S.,
Thermodynamic properties of organic oxygen compounds. Part III. Formic acid,
J. Chem. Soc., 1961, 2241-2242. [all data]
Gurvich, Veyts, et al., 1989
Gurvich, L.V.; Veyts, I.V.; Alcock, C.B.,
Thermodynamic Properties of Individual Substances, 4th ed.; Vols. 1 and 2, Hemisphere, New York, 1989. [all data]
Chao J., 1978
Chao J.,
Ideal gas thermodynamic properties of methanoic and ethanoic acids,
J. Phys. Chem. Ref. Data, 1978, 7, 363-377. [all data]
Wilhoit, Chao, et al., 1985
Wilhoit, R.C.; Chao, J.; Hall, K.R.,
Thermodynamic Properties of Key Organic Compounds in the Carbon Range C1 to C4. Part 1. Properties of Condensed Phases,
J. Phys. Chem. Ref. Data, 1985, 14, 1. [all data]
Stout and Fisher, 1941
Stout, J.W.; Fisher, L.H.,
The entropy of formic acid. The heat capacity from 15 to 300 K. Heats of fusion and vaporization,
J. Chem. Phys., 1941, 9, 163-8. [all data]
Taylor and Bruton, 1952
Taylor, M.D.; Bruton, J.,
The vapour phase dissociation of some carboxylic acids. II. Formic and propionic acids.,
J. Am. Chem. Soc., 1952, 74, 4151. [all data]
Anselme and Teja, 1990
Anselme, M.J.; Teja, A.S.,
The critical properties of rapidly reacting substances,
AIChE Symp. Ser., 1990, 86, 279, 128-32. [all data]
Ambrose and Ghiassee, 1987
Ambrose, D.; Ghiassee, N.B.,
Vapor Pressures and Critical Temperatures and Critical Pressures of Some Alkanoic Acids: C1 to C10,
J. Chem. Thermodyn., 1987, 19, 505. [all data]
Majer and Svoboda, 1985
Majer, V.; Svoboda, V.,
Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]
Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw,
Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2
. [all data]
Konicek, Wadsö, et al., 1970
Konicek, Jiri; Wadsö, Ingemar; Munch-Petersen, J.; Ohlson, Ragnar; Shimizu, Akira,
Enthalpies of Vaporization of Organic Compounds. VII. Some Carboxylic Acids.,
Acta Chem. Scand., 1970, 24, 2612-2616, https://doi.org/10.3891/acta.chem.scand.24-2612
. [all data]
Stout and Fisher, 1941, 2
Stout, J.W.; Fisher, Leon H.,
The Entropy of Formic Acid. The Heat Capacity from 15 to 300°K. Heats of Fusion and Vaporization,
J. Chem. Phys., 1941, 9, 2, 163, https://doi.org/10.1063/1.1750869
. [all data]
Ambrose and Ghiassee, 1987, 2
Ambrose, D.; Ghiassee, N.B.,
Vapour pressures and critical temperatures and critical pressures of some alkanoic acids: C1 to C10,
The Journal of Chemical Thermodynamics, 1987, 19, 5, 505-519, https://doi.org/10.1016/0021-9614(87)90147-9
. [all data]
Dreisbach and Shrader, 1949
Dreisbach, R.R.; Shrader, S.A.,
Vapor Pressure--Temperature Data on Some Organic Compounds,
Ind. Eng. Chem., 1949, 41, 12, 2879-2880, https://doi.org/10.1021/ie50480a054
. [all data]
Dreisbach and Martin, 1949
Dreisbach, R.R.; Martin, R.A.,
Physical Data on Some Organic Compounds,
Ind. Eng. Chem., 1949, 41, 12, 2875-2878, https://doi.org/10.1021/ie50480a053
. [all data]
Campbell and Campbell, 1934
Campbell, Alan Newton; Campbell, Alexandra Jean Robson,
The thermodynamics of binary liquid mixtures : formic acid and water,
Trans. Faraday Soc., 1934, 30, 1109, https://doi.org/10.1039/tf9343001109
. [all data]
Coolidge, 1930
Coolidge, Albert Sprague,
THE VAPOR PRESSURE AND HEATS OF FUSION AND VAPORIZATION OF FORMIC ACID,
J. Am. Chem. Soc., 1930, 52, 5, 1874-1887, https://doi.org/10.1021/ja01368a018
. [all data]
Kahlbaum, 1894
Kahlbaum, G.W.A.,
Z. Phys. Chem., Stoechiom. Verwandtschaftsl., 1894, 13, 14. [all data]
Kahlbaum, 1883
Kahlbaum, Georg W.A.,
Ueber die Abhängigkeit der Siedetemperatur vom Luftdruck,
Ber. Dtsch. Chem. Ges., 1883, 16, 2, 2476-2484, https://doi.org/10.1002/cber.188301602178
. [all data]
Kahlbaum, 1894, 2
Kahlbaum, G.W.A.,
Studien uber Dampfspannkraftsmessungen,
Z. Phys. Chem. (Leipzig), 1894, 13, 14-55. [all data]
Calis-Van Ginkel, Calis, et al., 1978
Calis-Van Ginkel, C.H.D.; Calis, G.H.M.; Timmermans, C.W.M.; de Kruif, C.G.; Oonk, H.A.J.,
Enthalpies of sublimation and dimerization in the vapour phase of formic, acetic, propanoic, and butanoic acids,
The Journal of Chemical Thermodynamics, 1978, 10, 11, 1083-1088, https://doi.org/10.1016/0021-9614(78)90082-4
. [all data]
Stull, 1947
Stull, Daniel R.,
Vapor Pressure of Pure Substances. Organic and Inorganic Compounds,
Ind. Eng. Chem., 1947, 39, 4, 517-540, https://doi.org/10.1021/ie50448a022
. [all data]
Jones, 1960
Jones, A.H.,
Sublimation Pressure Data for Organic Compounds.,
J. Chem. Eng. Data, 1960, 5, 2, 196-200, https://doi.org/10.1021/je60006a019
. [all data]
Stout and Fisher, 1941, 3
Stout, J.W.; Fisher, L.H.,
The entropy of formic acid. The heat capacity from 15 to 300K. Heats of fusion and vaporization,
J. Chem. Phys., 1941, 9, 163-168. [all data]
Helmig, Pollock, et al., 1996
Helmig, D.; Pollock, W.; Greenberg, J.; Zimmerman, P.,
Gas chromatography mass spectrometry analysis of volatile organic trace gases at Mauna Loa Observatory, Hawaii,
J. Geophys. Res., 1996, 101, D9, 14697-14710, https://doi.org/10.1029/96JD00212
. [all data]
Peng, Yang, et al., 1991
Peng, C.T.; Yang, Z.C.; Maltby, D.,
Prediction of retention indexes. III. Silylated derivatives of polar compounds,
J. Chromatogr., 1991, 586, 1, 113-129, https://doi.org/10.1016/0021-9673(91)80029-G
. [all data]
Peng, Ding, et al., 1988
Peng, C.T.; Ding, S.F.; Hua, R.L.; Yang, Z.C.,
Prediction of Retention Indexes I. Structure-Retention Index Relationship on Apolar Columns,
J. Chromatogr., 1988, 436, 137-172, https://doi.org/10.1016/S0021-9673(00)94575-8
. [all data]
Mahajan, Goddik, et al., 2004
Mahajan, S.S.; Goddik, L.; Qian, M.C.,
Aroma Compounds in Sweet Whey Powder,
J. Dairy Sci., 2004, 87, 12, 4057-4063, https://doi.org/10.3168/jds.S0022-0302(04)73547-X
. [all data]
Natali N., Chinnici F., et al., 2006
Natali N.; Chinnici F.; Riponi C.,
Characterization of volatiles in extracts from oak chips obtained by accelerated solvent extraction (ASE),
J. Agric. Food Chem., 2006, 54, 21, 8190-8198, https://doi.org/10.1021/jf0614387
. [all data]
Yang, Chyau, et al., 1998
Yang, M.-S.; Chyau, C.-C.; Horng, D.-T.; Yang, J.-S.,
Effects of Irradiation and Drying on Volatile Components of Fresh Shiitake edodes (Lentinus Sing),
J. Sci. Food Agric., 1998, 76, 1, 72-76, https://doi.org/10.1002/(SICI)1097-0010(199801)76:1<72::AID-JSFA921>3.0.CO;2-0
. [all data]
Castel, Fernandez, et al., 2006
Castel, C.; Fernandez, X.; Lizzani-Cuvelier, L.; Loiseau, A.-M.; Perichet, C.; Delbecque, C.; Arnaudo, J.-F.,
Volatile constituents of benzoin gums: Siam and Sumatra, part 2. Study of headspace sampling methods,
Flavour Fragr. J., 2006, 21, 1, 59-67, https://doi.org/10.1002/ffj.1502
. [all data]
Zenkevich, Korolenko, et al., 1995
Zenkevich, I.G.; Korolenko, L.I.; Khralenkova, N.B.,
Desorption with solvent vapor as a method of sample preparation in the sorption preconcentration of organic-compounds from the air of a working area and from industrial-waste gases,
J. Appl. Chem. USSR (Engl. Transl.), 1995, 50, 10, 937-944. [all data]
Guo, Wu, et al., 2008
Guo, L.; Wu, J.-Z.; Han, T.; Cao, T.; Rahman, K.; Qin, L.-P.,
Chemical composition, antifungal and antitumor properties of ether extracts of Scapania verrucosa Heeg. and its endophytic fungus Chaetomium fusiforme,
Molecules, 2008, 13, 9, 2114-2125, https://doi.org/10.3390/molecules13092114
. [all data]
Prososki, Etzel, et al., 2007
Prososki, R.A.; Etzel, M.R.; Rankin, S.A.,
Solvent type affects the number, distribution, and relative quantities of volatile compounds found in sweet whey powder,
J. Dairy Sci., 2007, 90, 2, 523-531, https://doi.org/10.3168/jds.S0022-0302(07)71535-7
. [all data]
Vichi, Castellote, et al., 2003
Vichi, S.; Castellote, A.I.; Pizzale, L.; Conte, L.S.; Buxaderas, S.; López-Tamames, E.,
Analysis of virgin olive oil volatile compounds by headspace solid-phase microextraction coupled to gas chromatography with mass spectrometric and flame ionization detection,
J. Chromatogr. A, 2003, 983, 1-2, 19-33, https://doi.org/10.1016/S0021-9673(02)01691-6
. [all data]
Sekiwa, Kubota, et al., 1997
Sekiwa, Y.; Kubota, K.; Kobayashi, A.,
Characteristic flavor components in the brew of cooked clam (Meretrix lusoria) and the effect of storage on flavor formation,
J. Agric. Food Chem., 1997, 45, 3, 826-830, https://doi.org/10.1021/jf960433e
. [all data]
Umano, Hagi, et al., 1995
Umano, K.; Hagi, Y.; Nakahara, K.; Shyoji, A.; Shibamoto, T.,
Volatile chemicals formed in the headspace of a heated D-glucose/L-cysteine Maillard model system,
J. Agric. Food Chem., 1995, 43, 8, 2212-2218, https://doi.org/10.1021/jf00056a046
. [all data]
Vernin, Metzger, et al., 1988
Vernin, G.; Metzger, J.; Obretenov, T.; Suon, K.-N.; Fraisse, D.,
GC/MS (EI,PCI,SIM)-data bank analysis of volatile compounds arising from thermal degradation of glucose-valine amadori intermediates
in Flavors and Fragrances: A World Perspective. Proceedings of the 10th International Congress of Essential Oils, Fragrances and Flavors, Lawrence,B.M.; Mookherjee,B.D.; Willis,B.J., ed(s)., Elsevier, New York, 1988, 999-1028. [all data]
Gonzalez-Rios, Suarez-Quiroz, et al., 2007
Gonzalez-Rios, O.; Suarez-Quiroz, M.L.; Boulanger, R.; Barel, M.; Guyot, B.; Guiraud, J.-P.; Schorr-Galindo, S.,
Impact of ecological post-harvest processing of coffee aroma: II Roasted coffee.,
J. Food Composition Analysis, 2007, 20, 3-4, 297-307, https://doi.org/10.1016/j.jfca.2006.12.004
. [all data]
Muresan, Eillebrecht, et al., 2000
Muresan, S.; Eillebrecht, M.A.J.L.; de Rijk, T.C.; de Jonge, H.G.; Leguijt, T.; Nijhuis, H.H.,
Aroma profile development of intermediate chocolate products. I. Volatile constituents of block-milk,
Food Chem., 2000, 68, 2, 167-174, https://doi.org/10.1016/S0308-8146(99)00171-5
. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Phase change data, Mass spectrum (electron ionization), Gas Chromatography, References
- Symbols used in this document:
Cp,gas Constant pressure heat capacity of gas Ptriple Triple point pressure S°gas Entropy of gas at standard conditions Tboil Boiling point Tc Critical temperature Tfus Fusion (melting) point Ttriple Triple point temperature ΔfH°gas Enthalpy of formation of gas at standard conditions ΔfusH Enthalpy of fusion ΔfusS Entropy of fusion ΔsubH Enthalpy of sublimation ΔvapH Enthalpy of vaporization ΔvapH° Enthalpy of vaporization at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.