Ethylene

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Reaction thermochemistry data, IR Spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas52.47kJ/molReviewChase, 1998Data last reviewed in September, 1965
Δfgas52.4 ± 0.5kJ/molReviewManion, 2002adopted recommendation of Gurvich, Veyts, et al., 1991; DRB
Quantity Value Units Method Reference Comment
Δcgas-1411.20 ± 0.30kJ/molCmRossini and Knowlton, 1937Reanalyzed by Cox and Pilcher, 1970, Original value = -1410.97 ± 0.30 kJ/mol; Corresponding Δfgas = 52.52 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Quantity Value Units Method Reference Comment
gas,1 bar219.32J/mol*KReviewChase, 1998Data last reviewed in September, 1965

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
33.2650.Thermodynamics Research Center, 1997p=1 bar. Recommended entropies and heat capacities are in good agreement with those obtained from other statistical thermodynamics calculations [ Chao J., 1975, Gurvich, Veyts, et al., 1989] as well as with ab initio value of S(298.15 K)=219.14 J/mol*K [ East A.L.L., 1997].; GT
33.27100.
33.66150.
35.37200.
40.60273.15
42.90298.15
43.08300.
53.06400.
62.48500.
70.66600.
77.70700.
83.82800.
89.18900.
93.881000.
98.001100.
101.611200.
104.761300.
107.531400.
109.961500.
114.811750.
118.372000.
121.032250.
123.062500.
124.622750.
125.863000.

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
34.66 ± 0.26178.15Burcik E.J., 1941Other experimental values of heat capacity [ Haas M.E., 1932] are less accurate, see [ Chao J., 1975]. Please also see Eucken A., 1933.; GT
35.30 ± 0.26192.35
36.29 ± 0.27210.40
37.55 ± 0.28230.90
39.02 ± 0.29250.60
40.75 ± 0.02270.7
41.02 ± 0.31271.80
42.84 ± 0.32293.45
43.47 ± 0.17300.0
45.98 ± 0.04320.7
49.74 ± 0.37367.7
59.25 ± 0.44463.6

Gas Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
    Cp = heat capacity (J/mol*K)
    H° = standard enthalpy (kJ/mol)
    S° = standard entropy (J/mol*K)
    t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 298. to 1200.1200. to 6000.
A -6.387880106.5104
B 184.401913.73260
C -112.9718-2.628481
D 28.495930.174595
E 0.315540-26.14469
F 48.17332-35.36237
G 163.1568275.0424
H 52.4669452.46694
ReferenceChase, 1998Chase, 1998
Comment Data last reviewed in September, 1965 Data last reviewed in September, 1965

Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, IR Spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
MS - José A. Martinho Simões
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
RCD - Robert C. Dunbar
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Reactions 1 to 50

C2H3- + Hydrogen cation = Ethylene

By formula: C2H3- + H+ = C2H4

Quantity Value Units Method Reference Comment
Δr1704. ± 9.kJ/molAVGN/AAverage of 5 out of 6 values; Individual data points
Quantity Value Units Method Reference Comment
Δr1677.8 ± 2.1kJ/molIMREErvin, Gronert, et al., 1990gas phase; B
Δr1670. ± 8.8kJ/molH-TSDePuy, Gronert, et al., 1989gas phase; B
Δr1668. ± 21.kJ/molH-TSPeerboom, Rademaker, et al., 1992gas phase; B
Δr>1661.0kJ/molIMRBFroelicher, Freiser, et al., 1986gas phase; B

C7H4CrO5 (g) = C5CrO5 (g) + Ethylene (g)

By formula: C7H4CrO5 (g) = C5CrO5 (g) + C2H4 (g)

Quantity Value Units Method Reference Comment
Δr105. ± 4.kJ/molKinGMcNamara, Becher, et al., 1994The reaction enthalpy was identified with the activation energy.; MS
Δr103. ± 10.kJ/molKinGWells, House, et al., 1994The reaction enthalpy relies on the measured activation energy and on the assumption of a negligible barrier for product recombination Wells, House, et al., 1994.; MS

Silver ion (1+) + Ethylene = (Silver ion (1+) • Ethylene)

By formula: Ag+ + C2H4 = (Ag+ • C2H4)

Quantity Value Units Method Reference Comment
Δr141.kJ/molHPMSGuo and Castleman, 1991gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr92.5J/mol*KN/AGuo and Castleman, 1991gas phase; Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
71.5750.HPMSGuo and Castleman, 1991gas phase; Entropy change calculated or estimated; M

NH4+ + Ethylene = (NH4+ • Ethylene)

By formula: H4N+ + C2H4 = (H4N+ • C2H4)

Quantity Value Units Method Reference Comment
Δr42.kJ/molPHPMSDeakyne and Meot-Ner (Mautner), 1985gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr84.J/mol*KN/ADeakyne and Meot-Ner (Mautner), 1985gas phase; Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
15.294.PHPMSDeakyne and Meot-Ner (Mautner), 1985gas phase; Entropy change calculated or estimated; M

Cobalt ion (1+) + Ethylene = (Cobalt ion (1+) • Ethylene)

By formula: Co+ + C2H4 = (Co+ • C2H4)

Quantity Value Units Method Reference Comment
Δr186. ± 9.2kJ/molCIDTSievers, Jarvis, et al., 1998RCD

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
179. (+7.1,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M
27. (+13.,-0.) CIDHaynes and Armentrout, 1994gas phase; ΔrH>=, guided ion beam CID; M

Ethyl Chloride = Ethylene + Hydrogen chloride

By formula: C2H5Cl = C2H4 + HCl

Quantity Value Units Method Reference Comment
Δr92.0kJ/molEqkLevanova, Bushneva, et al., 1979liquid phase; ALS
Δr71.5kJ/molEqkLevanova, Bushneva, et al., 1979gas phase; ALS
Δr72.6 ± 2.1kJ/molEqkHowlett, 1955gas phase; ALS
Δr71.5kJ/molEqkLane, Linnett, et al., 1953gas phase; ALS

Chromium ion (1+) + Ethylene = (Chromium ion (1+) • Ethylene)

By formula: Cr+ + C2H4 = (Cr+ • C2H4)

Quantity Value Units Method Reference Comment
Δr96. ± 11.kJ/molCIDTSievers, Jarvis, et al., 1998RCD

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
125. (+19.,-0.) CIDArmentrout and Kickel, 1994gas phase; ΔrH>=, guided ion beam CID; M

Nickel ion (1+) + Ethylene = (Nickel ion (1+) • Ethylene)

By formula: Ni+ + C2H4 = (Ni+ • C2H4)

Quantity Value Units Method Reference Comment
Δr182. ± 11.kJ/molCIDTSievers, Jarvis, et al., 1998RCD

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
138. (+19.,-0.) CIDArmentrout and Kickel, 1994gas phase; ΔrH>=, guided ion beam CID; M

Copper ion (1+) + Ethylene = (Copper ion (1+) • Ethylene)

By formula: Cu+ + C2H4 = (Cu+ • C2H4)

Quantity Value Units Method Reference Comment
Δr176. ± 14.kJ/molCIDTSievers, Jarvis, et al., 1998RCD

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
95. (+11.,-0.) CIDArmentrout and Kickel, 1994gas phase; ΔrH>=, guided ion beam CID; M

Scandium ion (1+) + Ethylene = (Scandium ion (1+) • Ethylene)

By formula: Sc+ + C2H4 = (Sc+ • C2H4)

Quantity Value Units Method Reference Comment
Δr220. ± 10.kJ/molPDissRanashinge and Freiser, 1992gas phase; M

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
131. CIDArmentrout and Kickel, 1994gas phase; ΔrH >=, guided ion beam CID; M

Lanthanum ion (1+) + Ethylene = (Lanthanum ion (1+) • Ethylene)

By formula: La+ + C2H4 = (La+ • C2H4)

Quantity Value Units Method Reference Comment
Δr220. ± 10.kJ/molPDissRanashinge and Freiser, 1992gas phase; M

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
90.0 CIDArmentrout and Kickel, 1994gas phase; ΔrH>=, guided ion beam CID; M

Yttrium ion (1+) + Ethylene = (Yttrium ion (1+) • Ethylene)

By formula: Y+ + C2H4 = (Y+ • C2H4)

Quantity Value Units Method Reference Comment
Δr220. ± 10.kJ/molPDissRanashinge and Freiser, 1992gas phase; M

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
109. CIDArmentrout and Kickel, 1994gas phase; ΔrH>=, guided ion beam CID; M

Titanium ion (1+) + Ethylene = (Titanium ion (1+) • Ethylene)

By formula: Ti+ + C2H4 = (Ti+ • C2H4)

Quantity Value Units Method Reference Comment
Δr146. ± 11.kJ/molCIDTSievers, Jarvis, et al., 1998RCD

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
119. CIDArmentrout and Kickel, 1994gas phase; ΔrH>=, guided ion beam CID; M

Vanadium ion (1+) + Ethylene = (Vanadium ion (1+) • Ethylene)

By formula: V+ + C2H4 = (V+ • C2H4)

Quantity Value Units Method Reference Comment
Δr125. ± 7.9kJ/molCIDTSievers, Jarvis, et al., 1998RCD

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
117. CIDArmentrout and Kickel, 1994gas phase; ΔrH>=, guided ion beam CID; M

Iron ion (1+) + Ethylene = (Iron ion (1+) • Ethylene)

By formula: Fe+ + C2H4 = (Fe+ • C2H4)

Quantity Value Units Method Reference Comment
Δr145. ± 11.kJ/molCIDTSievers, Jarvis, et al., 1998RCD

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
145. (+5.9,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

Ethylene + Bromine = Ethane, 1,2-dibromo-

By formula: C2H4 + Br2 = C2H4Br2

Quantity Value Units Method Reference Comment
Δr-120.9 ± 1.3kJ/molCmConn, Kistiakowsky, et al., 1938gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -121.6 ± 1.3 kJ/mol; At 355 °K; ALS

Ethylene + Iodine = Ethane, 1,2-diiodo-

By formula: C2H4 + I2 = C2H4I2

Quantity Value Units Method Reference Comment
Δr-48.1 ± 0.8kJ/molEqkAbrams and Davis, 1954gas phase; ALS
Δr-56. ± 2.kJ/molEqkCutherbertson and Kistiakowsky, 1935gas phase; Heat of dissociation; ALS

(Silver ion (1+) • Ethylene) + Ethylene = (Silver ion (1+) • 2Ethylene)

By formula: (Ag+ • C2H4) + C2H4 = (Ag+ • 2C2H4)

Quantity Value Units Method Reference Comment
Δr136.kJ/molHPMSGuo and Castleman, 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr126.J/mol*KHPMSGuo and Castleman, 1991gas phase; M

Hydrogen + Ethylene = Ethane

By formula: H2 + C2H4 = C2H6

Quantity Value Units Method Reference Comment
Δr-136. ± 2.kJ/molChydKistiakowsky and Nickle, 1951gas phase; ALS
Δr-136.3 ± 0.3kJ/molChydKistiakowsky, Romeyn, et al., 1935gas phase; ALS

Ethyl bromide = Hydrogen bromide + Ethylene

By formula: C2H5Br = HBr + C2H4

Quantity Value Units Method Reference Comment
Δr80.3 ± 2.1kJ/molEqkLane, Linnett, et al., 1953gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = 79.9 kJ/mol; ALS

C3H9Si+ + Ethylene = (C3H9Si+ • Ethylene)

By formula: C3H9Si+ + C2H4 = (C3H9Si+ • C2H4)

Quantity Value Units Method Reference Comment
Δr98.7kJ/molPHPMSLi and Stone, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr161.J/mol*KPHPMSLi and Stone, 1989gas phase; M

C2H4+ + Ethylene = (C2H4+ • Ethylene)

By formula: C2H4+ + C2H4 = (C2H4+ • C2H4)

Quantity Value Units Method Reference Comment
Δr66.1kJ/molPIOno, Linn, et al., 1984gas phase; M
Δr76.1kJ/molPICeyer, Tiedemann, et al., 1979gas phase; M

C6H4FeO4 (l) = 4Carbon monoxide (g) + iron (cr) + Ethylene (g)

By formula: C6H4FeO4 (l) = 4CO (g) + Fe (cr) + C2H4 (g)

Quantity Value Units Method Reference Comment
Δr192.5 ± 8.4kJ/molHAL-HFCBrown, Connor, et al., 1976MS
Δr185.4kJ/molTD-HFCBrown, Connor, et al., 1976MS

Bicyclo[2.2.2]oct-2-ene = 1,3-Cyclohexadiene + Ethylene

By formula: C8H12 = C6H8 + C2H4

Quantity Value Units Method Reference Comment
Δr136.kJ/molKinHuybrechts, Rigaux, et al., 1980gas phase; Diels-Alder addition at 560°K, see Van Mele, Boon, et al., 1986; ALS

Fluorine anion + Ethylene = (Fluorine anion • Ethylene)

By formula: F- + C2H4 = (F- • C2H4)

Quantity Value Units Method Reference Comment
Δr25. ± 13.kJ/molIMRBSullivan and Beauchamp, 1976gas phase; Structure: Roy and McMahon, 1985; B

Rh+ + Ethylene = (Rh+ • Ethylene)

By formula: Rh+ + C2H4 = (Rh+ • C2H4)

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
161. (+3.,-0.) CIDChen and Armetrout, 1995gas phase; guided ion beam CID; M

C7H9Cl2NPd (solution) + 1,3-Diazine (l) = (PdCl2(C5H5N)2) (solution) + Ethylene (solution)

By formula: C7H9Cl2NPd (solution) + C4H4N2 (l) = (PdCl2(C5H5N)2) (solution) + C2H4 (solution)

Quantity Value Units Method Reference Comment
Δr-57.7 ± 1.7kJ/molRSCPartenheimer and Durham, 1974solvent: Dichloromethane; MS

Rhodium, bis(η2-ethene)(2,4-pentanedionato-O,O')- (solution) + 1,5-Cyclooctadiene, (Z,Z)- (solution) = C13H19O2Rh (solution) + 2Ethylene (solution)

By formula: C9H15O2Rh (solution) + C8H12 (solution) = C13H19O2Rh (solution) + 2C2H4 (solution)

Quantity Value Units Method Reference Comment
Δr-9.0 ± 0.4kJ/molRSCJesse, Cordfunke, et al., 1979solvent: n-Heptane; MS

Hydrogen bromide (g) + C2H3BrMg (solution) = Ethylene (solution) + Br2Mg (solution)

By formula: HBr (g) + C2H3BrMg (solution) = C2H4 (solution) + Br2Mg (solution)

Quantity Value Units Method Reference Comment
Δr-294.1 ± 2.2kJ/molRSCHolm, 1981solvent: Tetrahydrofuran; MS

C6HCrO6+ + Ethylene = (C6HCrO6+ • Ethylene)

By formula: C6HCrO6+ + C2H4 = (C6HCrO6+ • C2H4)

Quantity Value Units Method Reference Comment
Δr59.8 ± 5.0kJ/molICRCDHop and McMahon, 1991gas phase; Ar collision gas; M

Aluminum ion (1+) + Ethylene = (Aluminum ion (1+) • Ethylene)

By formula: Al+ + C2H4 = (Al+ • C2H4)

Quantity Value Units Method Reference Comment
Δr54.4 ± 8.4kJ/molCIDC,EqGStockigt, Schwarz, et al., 1996Anchored to theory; RCD

(CAS Reg. No. 25013-41-6 • 4294967295Ethylene) + Ethylene = CAS Reg. No. 25013-41-6

By formula: (CAS Reg. No. 25013-41-6 • 4294967295C2H4) + C2H4 = CAS Reg. No. 25013-41-6

Quantity Value Units Method Reference Comment
Δr54.0 ± 8.8kJ/molN/ADePuy, Gronert, et al., 1989gas phase; B

Hydrogen + Ethene, chloro- = Ethylene + Hydrogen chloride

By formula: H2 + C2H3Cl = C2H4 + HCl

Quantity Value Units Method Reference Comment
Δr-76.94kJ/molChydLacher, Kianpour, et al., 1956gas phase; At 298 K; ALS

Ethylene + Chlorine = Ethane, 1,2-dichloro-

By formula: C2H4 + Cl2 = C2H4Cl2

Quantity Value Units Method Reference Comment
Δr-182.6 ± 0.63kJ/molCmConn, Kistiakowsky, et al., 1938gas phase; At 355 °K; ALS

Ethane, 1-chloro-2-iodo- = Iodine atom + Chlorine atom + Ethylene

By formula: C2H4ClI = I + Cl + C2H4

Quantity Value Units Method Reference Comment
Δr320. ± 4.2kJ/molKinMinton, Felder, et al., 1984gas phase; ALS

(C2H4+ • Ethylene) + Ethylene = (C2H4+ • 2Ethylene)

By formula: (C2H4+ • C2H4) + C2H4 = (C2H4+ • 2C2H4)

Quantity Value Units Method Reference Comment
Δr18.kJ/molPICeyer, Tiedemann, et al., 1979gas phase; M

C12H14Mo (cr) + Iodine (cr) = C10H10I2Mo (cr) + Ethylene (g)

By formula: C12H14Mo (cr) + I2 (cr) = C10H10I2Mo (cr) + C2H4 (g)

Quantity Value Units Method Reference Comment
Δr-163.0 ± 2.1kJ/molRSCCalhorda, Carrondo, et al., 1991MS

Rhodium, bis(η2-ethene)(2,4-pentanedionato-O,O')- (cr) + 2Carbon monoxide (g) = Rhodium, dicarbonyl(2,4-pentanedionato-O,O')-, (SP-4-2)- (cr) + 2Ethylene (g)

By formula: C9H15O2Rh (cr) + 2CO (g) = C7H7O4Rh (cr) + 2C2H4 (g)

Quantity Value Units Method Reference Comment
Δr-53.6 ± 1.7kJ/molDSCJesse, Baks, et al., 1978MS

C9H15IrO2 (cr) + 2Carbon monoxide (g) = C7H7IrO4 (cr) + 2Ethylene (g)

By formula: C9H15IrO2 (cr) + 2CO (g) = C7H7IrO4 (cr) + 2C2H4 (g)

Quantity Value Units Method Reference Comment
Δr-74.1 ± 4.6kJ/molDSCJesse, Baks, et al., 1978MS

(Iron ion (1+) • Ethylene) + Ethylene = (Iron ion (1+) • 2Ethylene)

By formula: (Fe+ • C2H4) + C2H4 = (Fe+ • 2C2H4)

Quantity Value Units Method Reference Comment
Δr151. ± 15.kJ/molCIDTSievers, Jarvis, et al., 1998RCD

(Chromium ion (1+) • Ethylene) + Ethylene = (Chromium ion (1+) • 2Ethylene)

By formula: (Cr+ • C2H4) + C2H4 = (Cr+ • 2C2H4)

Quantity Value Units Method Reference Comment
Δr108. ± 11.kJ/molCIDTSievers, Jarvis, et al., 1998RCD

(Manganese ion (1+) • Ethylene) + Ethylene = (Manganese ion (1+) • 2Ethylene)

By formula: (Mn+ • C2H4) + C2H4 = (Mn+ • 2C2H4)

Quantity Value Units Method Reference Comment
Δr88. ± 14.kJ/molCIDTSievers, Jarvis, et al., 1998RCD

(Vanadium ion (1+) • Ethylene) + Ethylene = (Vanadium ion (1+) • 2Ethylene)

By formula: (V+ • C2H4) + C2H4 = (V+ • 2C2H4)

Quantity Value Units Method Reference Comment
Δr127. ± 14.kJ/molCIDTSievers, Jarvis, et al., 1998RCD

(Nickel ion (1+) • Ethylene) + Ethylene = (Nickel ion (1+) • 2Ethylene)

By formula: (Ni+ • C2H4) + C2H4 = (Ni+ • 2C2H4)

Quantity Value Units Method Reference Comment
Δr173. ± 14.kJ/molCIDTSievers, Jarvis, et al., 1998RCD

(Cobalt ion (1+) • Ethylene) + Ethylene = (Cobalt ion (1+) • 2Ethylene)

By formula: (Co+ • C2H4) + C2H4 = (Co+ • 2C2H4)

Quantity Value Units Method Reference Comment
Δr152. ± 14.kJ/molCIDTSievers, Jarvis, et al., 1998RCD

(Copper ion (1+) • Ethylene) + Ethylene = (Copper ion (1+) • 2Ethylene)

By formula: (Cu+ • C2H4) + C2H4 = (Cu+ • 2C2H4)

Quantity Value Units Method Reference Comment
Δr174. ± 13.kJ/molCIDTSievers, Jarvis, et al., 1998RCD

2-Norbornene = 1,3-Cyclopentadiene + Ethylene

By formula: C7H10 = C5H6 + C2H4

Quantity Value Units Method Reference Comment
Δr97.2 ± 2.5kJ/molEqkWalsh and Wells, 1976gas phase; ALS

2Ethylene = Cyclobutane

By formula: 2C2H4 = C4H8

Quantity Value Units Method Reference Comment
Δr-86.6 ± 4.2kJ/molEqkQuick, Knecht, et al., 1972gas phase; At 750 K; ALS

Ethane, 1,2-diiodo- = Ethylene + Iodine

By formula: C2H4I2 = C2H4 + I2

Quantity Value Units Method Reference Comment
Δr48.1 ± 0.8kJ/molEqkBenson and Amano, 1962gas phase; ALS

2-Butene, (E)- + Ethylene = cyclobutane, 1,2-dimethyl-, trans-

By formula: C4H8 + C2H4 = C6H12

Quantity Value Units Method Reference Comment
Δr-69.9kJ/molEqkScacchi and Back, 1977liquid phase; ALS

IR Spectrum

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas Chromatography, References, Notes

Data compiled by: Coblentz Society, Inc.

Data compiled by: Pamela M. Chu, Franklin R. Guenther, George C. Rhoderick, and Walter J. Lafferty


Gas Chromatography

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, IR Spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Kovats' RI, non-polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
CapillaryOV-120.166.Nijs and Jacobs, 1981He; Column length: 150. m; Column diameter: 0.50 mm
CapillarySqualane40.175.Matukuma, 1969N2; Column length: 91.4 m; Column diameter: 0.25 mm
PackedSqualane27.177.Hively and Hinton, 1968He, Chromosorb P; Column length: 15. m; Column diameter: 0.25 mm
PackedSqualane49.177.Hively and Hinton, 1968He, Chromosorb P; Column length: 15. m; Column diameter: 0.25 mm
PackedSqualane67.178.Hively and Hinton, 1968He, Chromosorb P; Column length: 15. m; Column diameter: 0.25 mm
PackedSqualane86.178.Hively and Hinton, 1968He, Chromosorb P; Column length: 15. m; Column diameter: 0.25 mm

Kovats' RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryPetrocol DH-100178.1Haagen-Smit Laboratory, 1997He; Column length: 100. m; Column diameter: 0.2 mm; Program: 5C(10min) => 5C/min => 50C(48min) => 1.5C/min => 195C(91min)
CapillaryDB-1164.Hoekman, 199360. m/0.32 mm/1.0 μm, He; Program: -40 C for 12 min; -40 - 125 C at 3 deg.min; 125-185 C at 6 deg/min; 185 - 220 C at 20 deg/min; hold 220 C for 2 min

Van Den Dool and Kratz RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryChromosorb 101183.Voorhees, Hileman, et al., 197510. K/min; Tstart: 0. C; Tend: 220. C

Normal alkane RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryPetrocol DH158.Supelco, 2012100. m/0.25 mm/0.50 μm, Helium, 20. C @ 15. min, 15. K/min, 220. C @ 30. min
CapillaryOV-101166.Zenkevich, 200525. m/0.20 mm/0.10 μm, N2/He, 6. K/min; Tstart: 50. C; Tend: 250. C
CapillaryOV-101165.Chupalov and Zenkevich, 1996N2, 3. K/min; Column length: 52. m; Column diameter: 0.26 mm; Tstart: 50. C; Tend: 220. C

Normal alkane RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryMethyl Silicone178.Chen and Feng, 2007Program: not specified
CapillaryPorapack Q180.Zenkevich and Rodin, 2004Program: not specified
CapillaryMethyl Silicone166.Zenkevich, 2000Program: not specified
CapillarySPB-1165.Flanagan, Streete, et al., 199760. m/0.53 mm/5. μm, He; Program: 40C(6min) => 5C/min => 80C => 10C/min => 200C
CapillaryPolydimethyl siloxanes165.Zenkevich, 1997Program: not specified
CapillaryPolydimethyl siloxanes165.Zenkevich, Chupalov, et al., 1996Program: not specified
CapillarySPB-1165.Strete, Ruprah, et al., 199260. m/0.53 mm/5.0 μm, Helium; Program: 40 0C (6 min) 5 0C/min -> 80 0C 10 0C/min -> 200 0C
PackedSE-30188.Robinson and Odell, 1971N2, Chromosorb W; Column length: 6.1 m; Program: 50C910min) => 20C/min => 90(6min) => 10C/min => 150C(hold)
PackedSqualane180.Robinson and Odell, 1971N2, Embacel; Column length: 3.0 m; Program: 25C(5min) => 2C/min => 35 => 4C/min => 95C(hold)

References

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, IR Spectrum, Gas Chromatography, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Chase, 1998
Chase, M.W., Jr., NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]

Manion, 2002
Manion, J.A., Evaluated Enthalpies of Formation of the Stable Closed Shell C1 and C2 Chlorinated Hydrocarbons, J. Phys. Chem. Ref. Data, 2002, 31, 1, 123-172, https://doi.org/10.1063/1.1420703 . [all data]

Gurvich, Veyts, et al., 1991
Thermodynamic Properties of Individual Substances, 4th edition, Volume 2, Gurvich, L.V.; Veyts, I.V.; Alcock, C.B.;, ed(s)., Hemisphere, New York, 1991. [all data]

Rossini and Knowlton, 1937
Rossini, F.d.; Knowlton, J.W., Calorimetric determination of the heats of combustion of ethylene and propylene, J. Res. NBS, 1937, 19, 249-262. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Thermodynamics Research Center, 1997
Thermodynamics Research Center, Selected Values of Properties of Chemical Compounds., Thermodynamics Research Center, Texas A&M University, College Station, Texas, 1997. [all data]

Chao J., 1975
Chao J., Ideal gas thermodynamic properties of ethylene and propylene, J. Phys. Chem. Ref. Data, 1975, 4, 251-261. [all data]

Gurvich, Veyts, et al., 1989
Gurvich, L.V.; Veyts, I.V.; Alcock, C.B., Thermodynamic Properties of Individual Substances, 4th ed.; Vols. 1 and 2, Hemisphere, New York, 1989. [all data]

East A.L.L., 1997
East A.L.L., Ab initio statistical thermodynamical models for the computation of third-law entropies, J. Chem. Phys., 1997, 106, 6655-6674. [all data]

Burcik E.J., 1941
Burcik E.J., The vibrational energy levels and specific heat of ethylene, J. Chem. Phys., 1941, 9, 118-119. [all data]

Haas M.E., 1932
Haas M.E., The heat capacity and free energy of formation of ethylene gas, J. Phys. Chem., 1932, 36, 2127-2132. [all data]

Eucken A., 1933
Eucken A., Molar heats and normal frequencies of ethane and ethylene, Z. Phys. Chem., 1933, B20, 184-194. [all data]

Ervin, Gronert, et al., 1990
Ervin, K.M.; Gronert, S.; Barlow, S.E.; Gilles, M.K.; Harrison, A.G.; Bierbaum, V.M.; DePuy, C.H.; Lin, W.C., Bonds Strengths of Ethylene and Acetylene, J. Am. Chem. Soc., 1990, 112, 15, 5750, https://doi.org/10.1021/ja00171a013 . [all data]

DePuy, Gronert, et al., 1989
DePuy, C.H.; Gronert, S.; Barlow, S.E.; Bierbaum, V.M.; Damrauer, R., The Gas Phase Acidities of the Alkanes, J. Am. Chem. Soc., 1989, 111, 6, 1968, https://doi.org/10.1021/ja00188a003 . [all data]

Peerboom, Rademaker, et al., 1992
Peerboom, R.A.L.; Rademaker, G.J.; Dekoning, L.J.; Nibbering, N.M.M., Stabilization of Cycloalkyl Carbanions in the Gas Phase, Rapid Commun. Mass Spectrom., 1992, 6, 6, 394, https://doi.org/10.1002/rcm.1290060608 . [all data]

Froelicher, Freiser, et al., 1986
Froelicher, S.W.; Freiser, B.S.; Squires, R.R., The C3H5- isomers. Experimental and theoretical studies of the tautomeric propenyl ions and the cyclopropyl anion in the gas phase, J. Am. Chem. Soc., 1986, 108, 2853. [all data]

McNamara, Becher, et al., 1994
McNamara, B.; Becher, D.M.; Towns, M.H.; Grant, E.R., J. Phys. Chem., 1994, 98, 4622. [all data]

Wells, House, et al., 1994
Wells, J.R.; House, P.G.; Weitz, E., J. Phys. Chem., 1994, 98, 8343. [all data]

Guo and Castleman, 1991
Guo, B.C.; Castleman, A.W., The Bonding Strength of Ag+(C2H4) and Ag+(C2H4)2 Complexes, Chem. Phys. Lett., 1991, 181, 1, 16, https://doi.org/10.1016/0009-2614(91)90214-T . [all data]

Deakyne and Meot-Ner (Mautner), 1985
Deakyne, C.A.; Meot-Ner (Mautner), M., Unconventional Ionic Hydrogen Bonds. 2. NH+ pi. Complexes of Onium Ions with Olefins and Benzene Derivatives, J. Am. Chem. Soc., 1985, 107, 2, 474, https://doi.org/10.1021/ja00288a034 . [all data]

Sievers, Jarvis, et al., 1998
Sievers, M.R.; Jarvis, L.M.; Armentrout, P.B., Transition Metal Ethene Bonds: Thermochemistry of M+(C2H4)n (M=Ti-Cu, n=1 and 2) Complexes, J. Am. Chem. Soc., 1998, 120, 8, 1891, https://doi.org/10.1021/ja973834z . [all data]

Armentrout and Kickel, 1994
Armentrout, P.B.; Kickel, B.L., Gas Phase Thermochemistry of Transition Metal Ligand Systems: Reassessment of Values and Periodic Trends, in Organometallic Ion Chemistry, B. S. Freiser, ed, 1994. [all data]

Haynes and Armentrout, 1994
Haynes, C.L.; Armentrout, P.B., Thermochemistry and Structures of CoC3H6+: Metallacyclic and Metal-Alkene Isomers, Organomettalics, 1994, 13, 9, 3480, https://doi.org/10.1021/om00021a022 . [all data]

Levanova, Bushneva, et al., 1979
Levanova, s.V.; Bushneva, I.I.; Rodova, R.M.; Rozhnov, A.M.; Treger, Yu.A.; Aprelkin, A.S., Thermodynamic stability of chloroethanes in dehydrochlorination reactions, J. Appl. Chem. USSR, 1979, 52, 1439-1442. [all data]

Howlett, 1955
Howlett, K.E., The use of equilibrium constants to calculate thermodynamic quantities. Part II, J. Chem. Soc., 1955, 1784-17. [all data]

Lane, Linnett, et al., 1953
Lane, M.R.; Linnett, J.W.; Oswin, H.G., A study of the C2H4+HCl=C2H5Cl and C2H4+Hbr=C2H5Br equilibria, Proc. Roy. Soc. London A, 1953, 216, 361-374. [all data]

Ranashinge and Freiser, 1992
Ranashinge, Y.A.; Freiser, B.S., Gas-Phase Photodissociation of MC2H2+ (M = Sc, Y, La). Determination of D0(M+ - C2H2), Chem. Phys. Let., 1992, 200, 1-2, 135, https://doi.org/10.1016/0009-2614(92)87058-W . [all data]

Conn, Kistiakowsky, et al., 1938
Conn, J.B.; Kistiakowsky, G.B.; Smith, E.A., Heats of organic reactions. VII. Addition of halogens to olefins, J. Am. Chem. Soc., 1938, 60, 2764-2771. [all data]

Abrams and Davis, 1954
Abrams, A.; Davis, T.W., Use of radioactive iodine to determine equilibrium constants in ethylene-iodine-1,2-diiodoethane systems, J. Am. Chem. Soc., 1954, 76, 5993-59. [all data]

Cutherbertson and Kistiakowsky, 1935
Cutherbertson, G.R.; Kistiakowsky, G.B., The thermal equilibrium between ethylene iodide, ethylene and iodine, J. Chem. Phys., 1935, 3, 631-634. [all data]

Kistiakowsky and Nickle, 1951
Kistiakowsky, G.B.; Nickle, A.G., Ethane-ethylene and propane-propylene equilibria, Faraday Discuss. Chem. Soc., 1951, 10, 175-187. [all data]

Kistiakowsky, Romeyn, et al., 1935
Kistiakowsky, G.B.; Romeyn, H., Jr.; Ruhoff, J.R.; Smith, H.A.; Vaughan, W.E., Heats of organic reactions. I. The apparatus and the heat of hydrogenation of ethylene, J. Am. Chem. Soc., 1935, 57, 65-75. [all data]

Li and Stone, 1989
Li, X.; Stone, J.A., Determination of the beta silicon effect from a mass spectrometric study of the association of trimethylsilylium ion with alkenes, J. Am. Chem. Soc., 1989, 111, 15, 5586, https://doi.org/10.1021/ja00197a013 . [all data]

Ono, Linn, et al., 1984
Ono, Y.; Linn, S.H.; Tzeng, W.-B.; Ng, C.Y., A Study of the Unimolecular Decomposition of the (C2H4)2+ Complex, J. Chem. Phys., 1984, 80, 4, 1482, https://doi.org/10.1063/1.446897 . [all data]

Ceyer, Tiedemann, et al., 1979
Ceyer, S.T.; Tiedemann, P.W.; Ng, C.Y.; Mahan, B.H.; Lee, Y.T., Photoionization of Ethylene Clusters, J. Chem. Phys., 1979, 70, 5, 2138, https://doi.org/10.1063/1.437758 . [all data]

Brown, Connor, et al., 1976
Brown, D.L.S.; Connor, J.A.; Leung, M.L.; Paz-Andrade, M.I.; Skinner, H.A., J. Organometal. Chem., 1976, 110, 79. [all data]

Huybrechts, Rigaux, et al., 1980
Huybrechts, G.; Rigaux, D.; Vankeerberghen, J.; Van Mele, B., Kinetics of the Diels-Alder addition of ethene to cyclohexa-1,3-diene and its reverse reaction in the gas phase, Int. J. Chem. Kinet., 1980, 12, 253-259. [all data]

Van Mele, Boon, et al., 1986
Van Mele, B.; Boon, G.; Huybrechts, G., Gas-phase kinetic and thermochemical data for endo- and exo-5-monosubstituted bicyclo[2.2.2]oct-2-enes, Int. J. Chem. Kinet., 1986, 18, 537-545. [all data]

Sullivan and Beauchamp, 1976
Sullivan, S.A.; Beauchamp, J.L., Competition between proton transfer and elimination in the reactions of strong bases with fluoroethanes in the gas phase. Influence of base strength on reactivity, J. Am. Chem. Soc., 1976, 98, 1160. [all data]

Roy and McMahon, 1985
Roy, M.; McMahon, T.B., The Anomalous Gas Phase Acidity of Ethyl Fluoride. An ab initio Investigation of the Importance of Hydrogen Bonding between Fluoride and sp2 and sp C-H Bonds., Can. J. Chem., 1985, 63, 3, 708, https://doi.org/10.1139/v85-117 . [all data]

Chen and Armetrout, 1995
Chen, Y.M.; Armetrout, P.B., Activation of C2H6, C3H8, and c-C3H6 by Gas-Phase Rh+ and the Thermochemistry of Rh-Ligand Complexes, J. Am. Chem. Soc., 1995, 117, 36, 9291, https://doi.org/10.1021/ja00141a022 . [all data]

Partenheimer and Durham, 1974
Partenheimer, W.; Durham, B., J. Am. Chem. Soc., 1974, 96, 3800. [all data]

Jesse, Cordfunke, et al., 1979
Jesse, A.C.; Cordfunke, E.H.P.; Ouweltjes, W., Thermochim. Acta, 1979, 30, 293. [all data]

Holm, 1981
Holm, T., J. Chem. Soc., Perkin Trans. II, 1981, 464.. [all data]

Hop and McMahon, 1991
Hop, C.E.C.A.; McMahon, T.B., High Pressure Mass Spectrometric Observation of Metal Carbonyl Alkyl Adduct Ions of Novel Structure, Inorg. Chem., 1991, 30, 13, 2828, https://doi.org/10.1021/ic00013a025 . [all data]

Stockigt, Schwarz, et al., 1996
Stockigt, D.; Schwarz, J.; Schwarz, H., Theoretical and Experimental Studies on the Bond Dissociation Energies of Al(methane)+, Al(acetylene)+, Al(ethene)+, and Al(ethane)+, J. Phys. Chem., 1996, 100, 21, 8786, https://doi.org/10.1021/jp960060k . [all data]

Lacher, Kianpour, et al., 1956
Lacher, J.R.; Kianpour, A.; Oetting, F.; Park, J.D., Reaction calorimetry. The hydrogenation of organic fluorides and chlorides, Trans. Faraday Soc., 1956, 52, 1500-1508. [all data]

Minton, Felder, et al., 1984
Minton, T.K.; Felder, P.; Brudzynski, R.J.; Lee, Y.T., Photodissociation of 1,2-chloroiodoethane at 248 and 266 nm: The enthalpy of formation of CH2ClCH2I, J. Chem. Phys., 1984, 81, 1759-1769. [all data]

Calhorda, Carrondo, et al., 1991
Calhorda, M.J.; Carrondo, M.A.A.F.C.T.; Dias, A.R.; Galvão, A.M.; Garcia, M.H.; Martins, A.M.; Minas da Piedade, M.E.; Pinheiro, C.I.; Romão, C.C.; Martinho Simões, J.A.; Veiros, L.F., Organometallics, 1991, 10, 483. [all data]

Jesse, Baks, et al., 1978
Jesse, A.C.; Baks, A.; Stufkens, D.J.; Vrieze, K., Inorg. Chim. Acta, 1978, 29, 177. [all data]

Walsh and Wells, 1976
Walsh, R.; Wells, J.M., The enthalpy of formation and thermodynamic functions of bicyclo[2,2,1]hept-2-ene, J. Chem. Thermodyn., 1976, 8, 55-60. [all data]

Quick, Knecht, et al., 1972
Quick, L.M.; Knecht, D.A.; Back, M.H., Kinetics of the formation of cyclobutane from ethylene, Int. J. Chem. Kinet., 1972, 4, 61-68. [all data]

Benson and Amano, 1962
Benson, S.W.; Amano, A., Thermodynamics of iodine addition to ethylene, propylene, and cyclopropane, J. Chem. Phys., 1962, 36, 3464-3471. [all data]

Scacchi and Back, 1977
Scacchi, G.; Back, M.H., The cycloaddition of ethylene to butene-2. II. Energy relations, Int. J. Chem. Kinet., 1977, 9, 525-534. [all data]

Nijs and Jacobs, 1981
Nijs, H.H.; Jacobs, P.A., On-Line Single Run Analysis of Effluents from a Fischer-Tropsch Reactor, J. Chromatogr. Sci., 1981, 19, 1, 40-45, https://doi.org/10.1093/chromsci/19.1.40 . [all data]

Matukuma, 1969
Matukuma, A., Retention indices of alkanes through C10 and alkenes through C8 and relation between boiling points and retention data, Gas Chromatogr., Int. Symp. Anal. Instrum. Div Instrum Soc. Amer., 1969, 7, 55-75. [all data]

Hively and Hinton, 1968
Hively, R.A.; Hinton, R.E., Variation of the retention index with temperature on squalane substrates, J. Gas Chromatogr., 1968, 6, 4, 203-217, https://doi.org/10.1093/chromsci/6.4.203 . [all data]

Haagen-Smit Laboratory, 1997
Haagen-Smit Laboratory, Procedure for the detailed hydrocarbon analysis of gasolines by single column high efficiency (capillary) column gas chromatography, SOP NO. MLD 118, Revision No. 1.1, California Environmental Protection Agency, Air Resources Board, El Monte, California, 1997, 22. [all data]

Hoekman, 1993
Hoekman, S.K., Improved gas chromatography procedure for speciated hydrocarbon measurements of vehicle emissions, J. Chromatogr., 1993, 639, 2, 239-253, https://doi.org/10.1016/0021-9673(93)80260-F . [all data]

Voorhees, Hileman, et al., 1975
Voorhees, K.J.; Hileman, F.D.; Einhorn, I.N., Generation of retention index standards by pyrolysis of hydrocarbons, Anal. Chem., 1975, 47, 14, 2385-2389, https://doi.org/10.1021/ac60364a035 . [all data]

Supelco, 2012
Supelco, CatalogNo. 24160-U, Petrocol DH Columns. Catalog No. 24160-U, 2012, retrieved from http://www.sigmaaldrich.com/etc/medialib/docs/Supelco/Datasheet/1/w97949.Par.0001.File.tmp/w97949.pdf. [all data]

Zenkevich, 2005
Zenkevich, I.G., Experimentally measured retention indices., 2005. [all data]

Chupalov and Zenkevich, 1996
Chupalov, A.A.; Zenkevich, I.G., Chromatographic Characterization of Structural Transformations of Organic Compounds in Diels-Alder Reaction. Aliphatic Dienes and Dienophyls, Zh. Org. Khim., 1996, 32, 6, 675-684. [all data]

Chen and Feng, 2007
Chen, Y.; Feng, C., QSPR study on gas chromatography retention index of some organic pollutants, Comput. Appl. Chem. (China), 2007, 24, 10, 1404-1408. [all data]

Zenkevich and Rodin, 2004
Zenkevich, I.G.; Rodin, A.A., Gas chromatographic identification of some volatile toxic fluorine containing compounds by precalculated retention indices, J. Ecol. Chem. (Rus.), 2004, 13, 1, 22-28. [all data]

Zenkevich, 2000
Zenkevich, I.G., Mutual Correlation between Gas Chromatographic Retention Indices of Unsaturated and Saturated Hydrocarbons found by Molecular Dynamics, Z. Anal. Chem., 2000, 55, 10, 1091-1097. [all data]

Flanagan, Streete, et al., 1997
Flanagan, R.J.; Streete, P.J.; Ramsey, J.D., Volatile Substance Abuse, UNODC Technical Series, No 5, United Nations, Office on Drugs and Crime, Vienna International Centre, PO Box 500, A-1400 Vienna, Austria, 1997, 56, retrieved from http://www.odccp.org/pdf/technicalseries1997-01-011.pdf. [all data]

Zenkevich, 1997
Zenkevich, I.G., Influence of the Variations of Dynamics Molecular Parameterts on the Additivity of Chromatigraphic Retention Indices of Products of Organic Reactions Relative to Initial Reagents, Dokl. Akad. Nauk (Rus.), 1997, 353, 5, 625-627. [all data]

Zenkevich, Chupalov, et al., 1996
Zenkevich, I.G.; Chupalov, A.A.; Herzschuh, R., Correlation of the Increments of Gas Chromatographic Retention Indices with the Differences of Innermolecular Energies of Reagents and Products of Chemical Reactions, Zh. Org. Khim. (Rus.), 1996, 32, 11, 1685-1691. [all data]

Strete, Ruprah, et al., 1992
Strete, P.J.; Ruprah, M.; Ramsey, J.D.; Flanagan, R.J., Detection and identification of volatile substances by headspace capillary gas chromatography to aid the diagnosis of acute poisoning, Analyst, 1992, 117, 7, 1111-1127, https://doi.org/10.1039/an9921701111 . [all data]

Robinson and Odell, 1971
Robinson, P.G.; Odell, A.L., A system of standard retention indices and its uses. The characterisation of stationary phases and the prediction of retention indices, J. Chromatogr., 1971, 57, 1-10, https://doi.org/10.1016/0021-9673(71)80001-8 . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, IR Spectrum, Gas Chromatography, References