Tetrahydrofuran
- Formula: C4H8O
- Molecular weight: 72.1057
- IUPAC Standard InChIKey: WYURNTSHIVDZCO-UHFFFAOYSA-N
- CAS Registry Number: 109-99-9
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: Furan, tetrahydro-; Butane α,δ-oxide; Butane, 1,4-epoxy-; Cyclotetramethylene oxide; Furanidine; Oxacyclopentane; Oxolane; Tetramethylene oxide; THF; Hydrofuran; Tetrahydrofuraan; Tetrahydrofuranne; Tetraidrofurano; NCI-C60560; Rcra waste number U213; UN 2056; Diethylene oxide; Dynasolve 150; Tetrahydrofurane; THF (tetrahydrofuran); NSC 57858
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Reaction thermochemistry data, IR Spectrum, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | -44.03 ± 0.17 | kcal/mol | Cm | Pell and Pilcher, 1965 | ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°gas | -605.44 ± 0.16 | kcal/mol | Cm | Pell and Pilcher, 1965 | Corresponding ΔfHºgas = -44.02 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS |
Quantity | Value | Units | Method | Reference | Comment |
S°gas | 72.11 ± 0.41 | cal/mol*K | N/A | Clegg G.A., 1968 | Other third-law entropy values at 298.15 K evaluated from calorimetric data are 299.1 J/mol*K [ Chao J., 1986] and 288(1) J/mol*K [ Lebedev B.V., 1978].; GT |
Constant pressure heat capacity of gas
Cp,gas (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
9.159 | 50. | Dorofeeva O.V., 1992 | p=1 bar. Selected thermodynamic functions agree well with results of other statistical calculations [ Scott D.W., 1970, Chao J., 1986].; GT |
9.641 | 100. | ||
10.67 | 150. | ||
12.46 | 200. | ||
16.61 | 273.15 | ||
18.32 ± 0.24 | 298.15 | ||
18.45 | 300. | ||
25.590 | 400. | ||
32.130 | 500. | ||
37.639 | 600. | ||
42.225 | 700. | ||
46.071 | 800. | ||
49.321 | 900. | ||
52.084 | 1000. | ||
54.441 | 1100. | ||
56.458 | 1200. | ||
58.191 | 1300. | ||
59.682 | 1400. | ||
60.973 | 1500. |
Constant pressure heat capacity of gas
Cp,gas (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
20.35 ± 0.041 | 328.15 | Hossenlopp I.A., 1981 | GT |
21.84 ± 0.043 | 349.15 | ||
25.363 ± 0.050 | 399.15 | ||
28.774 ± 0.057 | 449.15 | ||
31.950 ± 0.065 | 500.15 |
Reaction thermochemistry data
Go To: Top, Gas phase thermochemistry data, IR Spectrum, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
B - John E. Bartmess
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
MS - José A. Martinho Simões
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
By formula: C4H9O+ + C4H8O = (C4H9O+ • C4H8O)
Bond type: Hydrogen bonds of the type OH-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 29.9 | kcal/mol | PHPMS | Hiraoka and Takimoto, 1986 | gas phase; M |
ΔrH° | 32.5 | kcal/mol | ICR | Larson and McMahon, 1982 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 29.1 | cal/mol*K | PHPMS | Hiraoka and Takimoto, 1986 | gas phase; M |
ΔrS° | 32.2 | cal/mol*K | N/A | Larson and McMahon, 1982 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 22.9 | kcal/mol | ICR | Larson and McMahon, 1982 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M |
By formula: C4H11O+ + C4H8O = (C4H11O+ • C4H8O)
Bond type: Hydrogen bonds of the type OH-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 30.4 | kcal/mol | ICR | Larson and McMahon, 1982 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 29.5 | cal/mol*K | N/A | Larson and McMahon, 1982 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 21.6 | kcal/mol | ICR | Larson and McMahon, 1982 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M |
By formula: C5H11O+ + C4H8O = (C5H11O+ • C4H8O)
Bond type: Hydrogen bonds of the type OH-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 30.1 | kcal/mol | ICR | Larson and McMahon, 1982 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, 86 KEE/CAS; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 29.4 | cal/mol*K | N/A | Larson and McMahon, 1982 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, 86 KEE/CAS; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 21.3 | kcal/mol | ICR | Larson and McMahon, 1982 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, 86 KEE/CAS; M |
By formula: (C4H9O+ • C4H8O) + C4H8O = (C4H9O+ • 2C4H8O)
Bond type: Hydrogen bonds of the type OH-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 7.6 | kcal/mol | PHPMS | Hiraoka, Takimoto, et al., 1987 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 18. | cal/mol*K | N/A | Hiraoka, Takimoto, et al., 1987 | gas phase; Entropy change calculated or estimated; M |
By formula: C6H5NO2- + C4H8O = (C6H5NO2- • C4H8O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 3.2 ± 1.6 | kcal/mol | IMRE | Chowdhury, Grimsrud, et al., 1987 | gas phase; Free energy affinity at 35°C.; B |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
3.2 | 308. | PHPMS | Chowdhury, 1987 | gas phase; M |
By formula: C7H4N2O2- + C4H8O = (C7H4N2O2- • C4H8O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 1.4 ± 1.6 | kcal/mol | IMRE | Chowdhury, Grimsrud, et al., 1987 | gas phase; Free energy affinity at 35°C.; B |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
1.4 | 308. | PHPMS | Chowdhury, 1987 | gas phase; M |
By formula: C6H4FNO2- + C4H8O = (C6H4FNO2- • C4H8O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 3.2 ± 1.6 | kcal/mol | IMRE | Chowdhury, Grimsrud, et al., 1987 | gas phase; Free energy affinity at 35°C.; B |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
3.2 | 308. | PHPMS | Chowdhury, 1987 | gas phase; M |
By formula: C6H4FNO2- + C4H8O = (C6H4FNO2- • C4H8O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 2.9 ± 1.6 | kcal/mol | IMRE | Chowdhury, Grimsrud, et al., 1987 | gas phase; Free energy affinity at 35°C.; B |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
2.9 | 308. | PHPMS | Chowdhury, 1987 | gas phase; M |
By formula: C6H4FNO2- + C4H8O = (C6H4FNO2- • C4H8O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 2.8 ± 1.6 | kcal/mol | IMRE | Chowdhury, Grimsrud, et al., 1987 | gas phase; Free energy affinity at 35°C.; B |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
2.8 | 308. | PHPMS | Chowdhury, 1987 | gas phase; M |
By formula: C7H7NO2- + C4H8O = (C7H7NO2- • C4H8O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 3.0 ± 1.6 | kcal/mol | IMRE | Chowdhury, Grimsrud, et al., 1987 | gas phase; Free energy affinity at 35°C.; B |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
3.0 | 308. | PHPMS | Chowdhury, 1987 | gas phase; M |
By formula: C7H7NO2- + C4H8O = (C7H7NO2- • C4H8O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 3.1 ± 1.6 | kcal/mol | IMRE | Chowdhury, Grimsrud, et al., 1987 | gas phase; Free energy affinity at 35°C.; B |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
3.1 | 308. | PHPMS | Chowdhury, 1987 | gas phase; M |
By formula: C7H7NO2- + C4H8O = (C7H7NO2- • C4H8O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 3.1 ± 1.6 | kcal/mol | IMRE | Chowdhury, Grimsrud, et al., 1987 | gas phase; Free energy affinity at 35°C.; B |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
3.1 | 308. | PHPMS | Chowdhury, 1987 | gas phase; M |
By formula: C7H4N2O2- + C4H8O = (C7H4N2O2- • C4H8O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 3.7 ± 1.6 | kcal/mol | IMRE | Chowdhury, Grimsrud, et al., 1987 | gas phase; Free energy affinity at 35°C.; B |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
3.7 | 308. | PHPMS | Chowdhury, 1987 | gas phase; M |
By formula: C7H4N2O2- + C4H8O = (C7H4N2O2- • C4H8O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 2.1 ± 1.6 | kcal/mol | IMRE | Chowdhury, Grimsrud, et al., 1987 | gas phase; Free energy affinity at 35°C.; B |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
2.1 | 308. | PHPMS | Chowdhury, 1987 | gas phase; M |
By formula: C4H4O + 2H2 = C4H8O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -36.12 ± 0.12 | kcal/mol | Chyd | Dolliver, Gresham, et al., 1938 | gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -36.63 ± 0.12 kcal/mol; At 355 °K; ALS |
By formula: Mg+ + C4H8O = (Mg+ • C4H8O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 66. ± 5. | kcal/mol | ICR | Operti, Tews, et al., 1988 | gas phase; switching reaction,Thermochemical ladder(Mg+)CH3OH; M |
(solution) + (solution) = C9H8O6W (solution) + (solution)
By formula: C4H8O (solution) + C6O6W (solution) = C9H8O6W (solution) + CO (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 14.5 ± 1.0 | kcal/mol | PC | Nakashima and Adamson, 1982 | solvent: Tetrahydrofuran; MS |
C14H21MnO2 (solution) + (solution) = C11H13MnO3 (solution) + (solution)
By formula: C14H21MnO2 (solution) + C4H8O (solution) = C11H13MnO3 (solution) + C7H16 (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -16.1 ± 1.4 | kcal/mol | PAC | Klassen, Selke, et al., 1990 | solvent: Heptane; MS |
C12H16CrO5 (solution) + (solution) = C9H8CrO6 (solution) + (solution)
By formula: C12H16CrO5 (solution) + C4H8O (solution) = C9H8CrO6 (solution) + C7H16 (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -12.4 ± 1.2 | kcal/mol | PAC | Yang, Peters, et al., 1986 | solvent: Heptane; MS |
By formula: C4H6O + H2 = C4H8O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -25.57 ± 0.30 | kcal/mol | Chyd | Allinger, Glaser, et al., 1981 | liquid phase; solvent: Hexane; ALS |
By formula: H2 + C4H6O = C4H8O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -27.98 ± 0.31 | kcal/mol | Chyd | Allinger, Glaser, et al., 1981 | liquid phase; solvent: Hexane; ALS |
(solution) + C20H30Sm (solution) = C24H38OSm (solution)
By formula: C4H8O (solution) + C20H30Sm (solution) = C24H38OSm (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -7.29 ± 0.41 | kcal/mol | RSC | Nolan, Stern, et al., 1989 | solvent: Toluene; MS |
C24H38OSm (solution) + (solution) = C28H46O2Sm (solution)
By formula: C24H38OSm (solution) + C4H8O (solution) = C28H46O2Sm (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -4.9 ± 1.0 | kcal/mol | RSC | Nolan, Stern, et al., 1989 | solvent: Toluene; MS |
C24H39Si3U (solution) + (solution) = C28H47OSi3U (solution)
By formula: C24H39Si3U (solution) + C4H8O (solution) = C28H47OSi3U (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -9.8 ± 0.2 | kcal/mol | RSC | Schock, Seyam, et al., 1988 | solvent: Toluene; MS |
IR Spectrum
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas Chromatography, References, Notes
Data compiled by: Coblentz Society, Inc.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Gas Chromatography
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, IR Spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Kovats' RI, non-polar column, isothermal
Column type | Active phase | Temperature (C) | I | Reference | Comment |
---|---|---|---|---|---|
Packed | C78, Branched paraffin | 130. | 609.9 | Dallos, Sisak, et al., 2000 | He; Column length: 3.3 m |
Packed | C78, Branched paraffin | 130. | 609.8 | Reddy, Dutoit, et al., 1992 | Chromosorb G HP; Column length: 3.3 m |
Packed | Apolane | 130. | 611. | Dutoit, 1991 | Column length: 3.7 m |
Packed | SE-30 | 150. | 630. | Tiess, 1984 | Ar, Gas Chrom Q (80-100 mesh); Column length: 3. m |
Packed | SE-30 | 100. | 626. | Winskowski, 1983 | Gaschrom Q; Column length: 2. m |
Packed | Apiezon L | 120. | 620. | Bogoslovsky, Anvaer, et al., 1978 | Celite 545 |
Packed | Apiezon L | 160. | 631. | Bogoslovsky, Anvaer, et al., 1978 | Celite 545 |
Packed | Apiezon L | 70. | 618. | Bogoslovsky, Anvaer, et al., 1978 | |
Packed | Apolane | 130. | 612.9 | Riedo, Fritz, et al., 1976 | He, Chromosorb; Column length: 2.4 m |
Packed | Apolane | 190. | 623.2 | Riedo, Fritz, et al., 1976 | He, Chromosorb; Column length: 2.4 m |
Packed | Silicon High Vacuum Grease (obsolete) | 170. | 640. | Jonas, Janák, et al., 1966 | H2 |
Packed | Silicon High Vacuum Grease (obsolete) | 170. | 640. | Janák, Jonas, et al., 1965 | H2, Celite |
Packed | Apiezon L | 130. | 631. | Wehrli and Kováts, 1959 | Celite; Column length: 2.25 m |
Packed | Apiezon L | 70. | 618. | Wehrli and Kováts, 1959 | Celite; Column length: 2.25 m |
Kovats' RI, non-polar column, temperature ramp
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | CBP-1 | 617. | Shimadzu, 2003 | 25. m/0.2 mm/0.25 μm, He, 50. C @ 5. min, 4. K/min; Tend: 200. C |
Capillary | SE-54 | 621. | Rembold, Wallner, et al., 1989 | 30. m/0.25 mm/0.25 μm, He, 0. C @ 12. min, 12. K/min; Tend: 250. C |
Capillary | OV-101 | 609. | Yamaguchi and Shibamoto, 1979 | N2, 2. K/min; Column length: 70. m; Column diameter: 0.28 mm; Tstart: 80. C; Tend: 200. C |
Capillary | OV-101 | 610. | Yamaguchi and Shibamoto, 1979 | N2, 2. K/min; Column length: 70. m; Column diameter: 0.28 mm; Tstart: 80. C; Tend: 200. C |
Kovats' RI, polar column, isothermal
Column type | Active phase | Temperature (C) | I | Reference | Comment |
---|---|---|---|---|---|
Capillary | Carbowax 20M | 70. | 868. | Annino and Villalobos, 1999 | 31.3 m/0.53 mm/0.54 μm |
Packed | Carbowax 20M | 75. | 895. | Goebel, 1982 | N2, Kieselgur (60-100 mesh); Column length: 2. m |
Packed | PEG-2000 | 150. | 888. | Anderson, Jurel, et al., 1973 | He, Celite 545 (44-60 mesh); Column length: 3. m |
Packed | PEG-2000 | 152. | 907. | Anderson, Jurel, et al., 1973 | He, Celite 545 (44-60 mesh); Column length: 3. m |
Packed | PEG-2000 | 179. | 915. | Anderson, Jurel, et al., 1973 | He, Celite 545 (44-60 mesh); Column length: 3. m |
Packed | PEG-2000 | 180. | 900. | Anderson, Jurel, et al., 1973 | He, Celite 545 (44-60 mesh); Column length: 3. m |
Packed | PEG-2000 | 200. | 903. | Anderson, Jurel, et al., 1973 | He, Celite 545 (44-60 mesh); Column length: 3. m |
Kovats' RI, polar column, temperature ramp
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | CBP-20 | 868. | Shimadzu, 2003 | 25. m/0.2 mm/0.25 μm, He, 50. C @ 5. min, 4. K/min; Tend: 200. C |
Capillary | DB-Wax | 861. | Umano, Hagi, et al., 1994 | He, 40. C @ 2. min, 2. K/min; Column length: 60. m; Column diameter: 0.25 mm; Tend: 200. C |
Capillary | Carbowax 20M | 866. | Yamaguchi and Shibamoto, 1979 | N2, 2. K/min; Column length: 50. m; Column diameter: 0.28 mm; Tstart: 80. C; Tend: 200. C |
Capillary | Carbowax 20M | 867. | Yamaguchi and Shibamoto, 1979 | N2, 2. K/min; Column length: 50. m; Column diameter: 0.28 mm; Tstart: 80. C; Tend: 200. C |
Van Den Dool and Kratz RI, non-polar column, temperature ramp
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | CP Sil 8 CB | 632. | Elmore, Campo, et al., 2002 | 60. m/0.25 mm/0.25 μm, He, 40. C @ 2. min, 4. K/min; Tend: 280. C |
Capillary | CP Sil 8 CB | 629. | Elmore, Mottram, et al., 2000 | 60. m/0.25 mm/0.25 μm, He, 40. C @ 2. min, 4. K/min; Tend: 280. C |
Van Den Dool and Kratz RI, non-polar column, custom temperature program
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | HP-5 | 623. | Engel, Baty, et al., 2002 | 30. m/0.25 mm/0.25 μm, He; Program: 5C(5min) => 3C/min => 20C => 5C/min => 100C 15C/min => 150C (5min) |
Van Den Dool and Kratz RI, polar column, temperature ramp
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | CP-Wax 52CB | 854. | Alasalvar, Taylor, et al., 2005 | 60. m/0.25 mm/0.25 μm, 35. C @ 4. min, 3. K/min; Tend: 203. C |
Capillary | Supelcowax-10 | 857. | Elmore, Nisyrios, et al., 2005 | 60. m/0.25 mm/0.25 μm, He, 40. C @ 2. min, 4. K/min; Tend: 280. C |
Normal alkane RI, non-polar column, isothermal
Column type | Active phase | Temperature (C) | I | Reference | Comment |
---|---|---|---|---|---|
Capillary | Methyl Silicone | 100. | 622. | Lebrón-Aguilar, Quintanilla-López, et al., 2007 | |
Capillary | Methyl Silicone | 120. | 626. | Lebrón-Aguilar, Quintanilla-López, et al., 2007 | |
Capillary | Methyl Silicone | 140. | 629. | Lebrón-Aguilar, Quintanilla-López, et al., 2007 | |
Capillary | Methyl Silicone | 80. | 620. | Lebrón-Aguilar, Quintanilla-López, et al., 2007 | |
Capillary | DB-1 | 60. | 620. | Shimadzu, 2003, 2 | 60. m/0.32 mm/1. μm, He |
Packed | Apieson L | 120. | 624. | Kurdina, Markovich, et al., 1969 | not specified, not specified |
Packed | DC-400 | 150. | 630. | Anderson, 1968 | Helium, Gas-Pak (60-80 mesh); Column length: 3.0 m |
Normal alkane RI, non-polar column, temperature ramp
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | VF-5 MS | 614. | Leffingwell and Alford, 2011 | 60. m/0.32 mm/0.25 μm, Helium, 2. K/min, 260. C @ 28. min; Tstart: 30. C |
Capillary | VF-5 MS | 618. | Leffingwell and Alford, 2011 | 60. m/0.32 mm/0.25 μm, Helium, 2. K/min, 260. C @ 28. min; Tstart: 30. C |
Capillary | MDN-5 | 620. | van Loon, Linssen, et al., 2005 | 60. m/0.25 mm/0.25 μm, He, 40. C @ 4. min, 4. K/min, 270. C @ 5. min |
Capillary | HP-5 | 633. | Jung, Wichmann, et al., 1999 | 25. m/0.20 mm/0.33 μm, 50. C @ 3. min, 5. K/min; Tend: 180. C |
Capillary | DB-1 | 615. | Habu, Flath, et al., 1985 | 3. K/min; Column length: 50. m; Column diameter: 0.32 mm; Tstart: 0. C; Tend: 250. C |
Capillary | SF-96 | 618. | Donetzhuber, Johansson, et al., 1976 | Nitrogen, 3. K/min, 130. C @ 40. min; Column length: 111. m; Column diameter: 0.76 mm; Initial hold: 8. min |
Normal alkane RI, non-polar column, custom temperature program
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | Methyl Silicone | 619. | Farkas, Héberger, et al., 2004 | Program: not specified |
Capillary | SE-30 | 636. | Vinogradov, 2004 | Program: not specified |
Capillary | SPB-1 | 615. | Flanagan, Streete, et al., 1997 | 60. m/0.53 mm/5. μm, He; Program: 40C(6min) => 5C/min => 80C => 10C/min => 200C |
Capillary | DB-5 | 624. | Mateo and Zumalacárregui, 1996 | 50. m/0.32 mm/0.25 μm, He; Program: 40C (10min) => 3C/min => 95C => 10C/min => 270C (10min) |
Capillary | SPB-1 | 615. | Strete, Ruprah, et al., 1992 | 60. m/0.53 mm/5.0 μm, Helium; Program: 40 0C (6 min) 5 0C/min -> 80 0C 10 0C/min -> 200 0C |
Capillary | SPB-1 | 638. | Strete, Ruprah, et al., 1992 | 60. m/0.53 mm/5.0 μm, Helium; Program: not specified |
Capillary | DB-1 | 608. | Kawai, Ishida, et al., 1991 | 60. m/0.25 mm/0.25 μm; Program: not specified |
Capillary | DB-1 | 612. | Kawai, Ishida, et al., 1991 | 60. m/0.25 mm/0.25 μm; Program: not specified |
Capillary | CP Sil 8 CB | 629. | Weller and Wolf, 1989 | 40. m/0.25 mm/0.25 μm, He; Program: 30 0C (1 min) 15 0C/min -> 45 0C 3 0C/min -> 120 0C |
Capillary | SE-30 | 627. | P'yanova, Zvereva, et al., 1987 | Column length: 25. m; Column diameter: 0.25 mm; Program: not specified |
Capillary | OV-1 | 638. | Ramsey and Flanagan, 1982 | Program: not specified |
Normal alkane RI, polar column, isothermal
Column type | Active phase | Temperature (C) | I | Reference | Comment |
---|---|---|---|---|---|
Capillary | DB-Wax | 60. | 887. | Shimadzu, 2003, 2 | 50. m/0.32 mm/1. μm, He |
Normal alkane RI, polar column, custom temperature program
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | DB-Wax | 829. | Welke, Manfroi, et al., 2012 | 30. m/0.25 mm/0.25 μm, Helium; Program: not specified |
Capillary | SOLGel-Wax | 854. | Johanningsmeier and McFeeters, 2011 | 30. m/0.25 mm/0.25 μm, Helium; Program: 40 0C (2 min) 5 0C/min -> 140 0C 10 0C/min -> 250 0C (3 min) |
Capillary | Carbowax 20M | 898. | Vinogradov, 2004 | Program: not specified |
Capillary | Carbowax 20M | 872. | Ramsey and Flanagan, 1982 | Program: not specified |
References
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, IR Spectrum, Gas Chromatography, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Pell and Pilcher, 1965
Pell, A.S.; Pilcher, G.,
Measurements of heats of combustion by flame calorimetry. Part 3.-Ethylene oxide, trimethylene oxide, tetrahydrofuran and tetrahydropy,
Trans. Faraday Soc., 1965, 61, 71-77. [all data]
Clegg G.A., 1968
Clegg G.A.,
Thermodynamics of polymerization of heterocyclic compounds. II. The heat capacity, entropy, enthalpy and free energy of polytetrahydrofuran,
Polymer, 1968, 9, 501-511. [all data]
Chao J., 1986
Chao J.,
Thermodynamic properties of key organic oxygen compounds in the carbon range C1 to C4. Part 2. Ideal gas properties,
J. Phys. Chem. Ref. Data, 1986, 15, 1369-1436. [all data]
Lebedev B.V., 1978
Lebedev B.V.,
Thermodynamic properties of tetrahydrofuran from 8 to 322 K,
J. Chem. Thermodyn., 1978, 10, 321-329. [all data]
Dorofeeva O.V., 1992
Dorofeeva O.V.,
Ideal gas thermodynamic properties of oxygen heterocyclic compounds. Part 1. Three-membered, four-membered and five-membered rings,
Thermochim. Acta, 1992, 194, 9-46. [all data]
Scott D.W., 1970
Scott D.W.,
Tetrahydrofuran: vibrational assignment, chemical thermodynamic properties, and vapor pressure,
J. Chem. Thermodyn., 1970, 2, 833-837. [all data]
Hossenlopp I.A., 1981
Hossenlopp I.A.,
Vapor heat capacities and enthalpies of vaporization of six organic compounds,
J. Chem. Thermodyn., 1981, 13, 405-414. [all data]
Hiraoka and Takimoto, 1986
Hiraoka, K.; Takimoto, H.,
Gas-Phase Stabilities of Symmetric Proton-Held Dimer Cations,
J. Phys. Chem., 1986, 90, 22, 5910, https://doi.org/10.1021/j100280a090
. [all data]
Larson and McMahon, 1982
Larson, J.W.; McMahon, T.B.,
Formation, Thermochemistry, and Relative Stabilities of Proton - Bound dimers of Oxygen n - Donor Bases from Ion Cyclotron Resonance Solvent - Exchange Equilibria Measurements,
J. Am. Chem. Soc., 1982, 104, 23, 6255, https://doi.org/10.1021/ja00387a016
. [all data]
Grimsrud and Kebarle, 1973
Grimsrud, E.P.; Kebarle, P.,
Gas Phase Ion Equilibria Studies of the Solvation of the Hydrogen Ion by Methanol, Dimethyl Ether and Water. Effect of Hydrogen Bonding,
J. Am. Chem. Soc., 1973, 95, 24, 7939, https://doi.org/10.1021/ja00805a002
. [all data]
Lias, Liebman, et al., 1984
Lias, S.G.; Liebman, J.F.; Levin, R.D.,
Evaluated gas phase basicities and proton affinities of molecules heats of formation of protonated molecules,
J. Phys. Chem. Ref. Data, 1984, 13, 695. [all data]
Keesee and Castleman, 1986
Keesee, R.G.; Castleman, A.W., Jr.,
Thermochemical data on Ggs-phase ion-molecule association and clustering reactions,
J. Phys. Chem. Ref. Data, 1986, 15, 1011. [all data]
Hiraoka, Takimoto, et al., 1987
Hiraoka, K.; Takimoto, H.; Yamabe, S.,
Stabilities and Structures in Cluster Ions of Five-Membered Heterocyclic Compounds Containing O, N and S Atoms,
J. Am. Chem. Soc., 1987, 109, 24, 7346, https://doi.org/10.1021/ja00258a018
. [all data]
Chowdhury, Grimsrud, et al., 1987
Chowdhury, S.; Grimsrud, E.P.; Kebarle, P.,
Bonding of Charged Delocalized Anions to Protic and Dipolar Aprotic Solvent Molecules,
J. Phys. Chem., 1987, 91, 10, 2551, https://doi.org/10.1021/j100294a021
. [all data]
Chowdhury, 1987
Chowdhury, S. Grimsrud,
Bonding of Charge Delocalized Anions to Protic and Dipolar Aprotic Solvents,
J. Phys. Chem., 1987, 91, 10, 2551, https://doi.org/10.1021/j100294a021
. [all data]
Dolliver, Gresham, et al., 1938
Dolliver, M.A.; Gresham, T.L.; Kistiakowsky, G.B.; Smith, E.A.; Vaughan, W.E.,
Heats of organic reactions. VI. Heats of hydrogenation of some oxygen-containing compounds,
J. Am. Chem. Soc., 1938, 60, 440-450. [all data]
Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G.,
Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]
Operti, Tews, et al., 1988
Operti, L.; Tews, E.C.; Freiser, B.S.,
Determination of Gas-Phase Ligand Binding Energies to Mg+ by FTMS Techniques,
J. Am. Chem. Soc., 1988, 110, 12, 3847, https://doi.org/10.1021/ja00220a020
. [all data]
Nakashima and Adamson, 1982
Nakashima, M.; Adamson, A.W.,
J. Phys. Chem., 1982, 86, 2905. [all data]
Klassen, Selke, et al., 1990
Klassen, J.K.; Selke, M.; Sorensen, A.A.; Yang, G.K.,
J. Am. Chem. Soc., 1990, 112, 1267. [all data]
Yang, Peters, et al., 1986
Yang, G.K.; Peters, K.S.; Vaida, V.,
Chem. Phys. Lett., 1986, 125, 566. [all data]
Allinger, Glaser, et al., 1981
Allinger, N.L.; Glaser, J.A.; Davis, H.E.,
Heats of hydrogenation of some vinyl ethers and related compounds,
J. Org. Chem., 1981, 46, 658-661. [all data]
Nolan, Stern, et al., 1989
Nolan, S.P.; Stern, D.; Marks, T.J.,
J. Am. Chem. Soc., 1989, 111, 7844. [all data]
Schock, Seyam, et al., 1988
Schock, L.E.; Seyam, A.M.; Sabat, M.; Marks, T.J.,
Polyhedron, 1988, 7, 1517. [all data]
Dallos, Sisak, et al., 2000
Dallos, A.; Sisak, A.; Kulcsár, Z.; Kováts, E.,
Pair-wise interactions by gas chromatography VII. Interaction free enthalpies of solutes with secondary alcohol groups,
J. Chromatogr. A, 2000, 904, 2, 211-242, https://doi.org/10.1016/S0021-9673(00)00908-0
. [all data]
Reddy, Dutoit, et al., 1992
Reddy, K.S.; Dutoit, J.-Cl.; Kovats, E. sz.,
Pair-wise interactions by gas chromatography. I. Interaction free enthalpies of solutes with non-associated primary alcohol groups,
J. Chromatogr., 1992, 609, 1-2, 229-259, https://doi.org/10.1016/0021-9673(92)80167-S
. [all data]
Dutoit, 1991
Dutoit, J.,
Gas chromatographic retention behaviour of some solutes on structurally similar polar and non-polar stationary phases,
J. Chromatogr., 1991, 555, 1-2, 191-204, https://doi.org/10.1016/S0021-9673(01)87179-X
. [all data]
Tiess, 1984
Tiess, D.,
Gaschromatographische Retentionsindices von 125 leicht- bis mittelflüchtigen organischen Substanzen toxikologisch-analytischer Relevanz auf SE-30,
Wiss. Z. Wilhelm-Pieck-Univ. Rostock Math. Naturwiss. Reihe, 1984, 33, 6-9. [all data]
Winskowski, 1983
Winskowski, J.,
Gaschromatographische Identifizierung von Stoffen anhand von Indexziffem und unterschiedlichen Detektoren,
Chromatographia, 1983, 17, 3, 160-165, https://doi.org/10.1007/BF02271041
. [all data]
Bogoslovsky, Anvaer, et al., 1978
Bogoslovsky, Yu.N.; Anvaer, B.I.; Vigdergauz, M.S.,
Chromatographic constants in gas chromatography (in Russian), Standards Publ. House, Moscow, 1978, 192. [all data]
Riedo, Fritz, et al., 1976
Riedo, F.; Fritz, D.; Tarján, G.; Kováts, E.Sz.,
A tailor-made C87 hydrocarbon as a possible non-polar standard stationary phase for gas chromatography,
J. Chromatogr., 1976, 126, 63-83, https://doi.org/10.1016/S0021-9673(01)84063-2
. [all data]
Jonas, Janák, et al., 1966
Jonas, J.; Janák, J.; Kratochvíl, M.,
Structural investigations with the aid of Kovats retention index system on one (nonpolar) stationary phase,
J. Gas Chromatogr., 1966, 4, 9, 332-335, https://doi.org/10.1093/chromsci/4.9.332
. [all data]
Janák, Jonas, et al., 1965
Janák, J.; Jonas, J.; Kratochvíl, M.,
Identification of some acetals of the tetrahydrofurane sereis by gas chromatography with the aid of the Kováts indices,
Collect. Czech. Chem. Commun., 1965, 30, 1, 265-276, https://doi.org/10.1135/cccc19650265
. [all data]
Wehrli and Kováts, 1959
Wehrli, A.; Kováts, E.,
Gas-chromatographische Charakterisierung ogranischer Verbindungen. Teil 3: Berechnung der Retentionsindices aliphatischer, alicyclischer und aromatischer Verbindungen,
Helv. Chim. Acta, 1959, 7, 7, 2709-2736, https://doi.org/10.1002/hlca.19590420745
. [all data]
Shimadzu, 2003
Shimadzu,
Gas chromatography analysis of organic solvents using capillary columns (No. 2), 2003, retrieved from http://www.shimadzu.com/apps/form.cfm. [all data]
Rembold, Wallner, et al., 1989
Rembold, H.; Wallner, P.; Nitz, S.; Kollmannsberger, H.; Drawert, F.,
Volatile components of chickpea (Cicer arietinum L.) seed,
J. Agric. Food Chem., 1989, 37, 3, 659-662, https://doi.org/10.1021/jf00087a018
. [all data]
Yamaguchi and Shibamoto, 1979
Yamaguchi, K.; Shibamoto, T.,
Volatile constituents of Castanopsis flower,
J. Agric. Food Chem., 1979, 27, 4, 847-850, https://doi.org/10.1021/jf60224a025
. [all data]
Annino and Villalobos, 1999
Annino, R.; Villalobos, R.,
A strategy for the simplification and solution of complex chromatographic analysis problems utilizing two-dimensional mapping of retention indexes followed by computer modeling of heart cuts from serially coupled columns containing different stationary phases,
J. Hi. Res. Chromatogr., 1999, 22, 10, 589-593. [all data]
Goebel, 1982
Goebel, K.-J.,
Gaschromatographische Identifizierung Niedrig Siedender Substanzen Mittels Retentionsindices und Rechnerhilfe,
J. Chromatogr., 1982, 235, 1, 119-127, https://doi.org/10.1016/S0021-9673(00)95793-5
. [all data]
Anderson, Jurel, et al., 1973
Anderson, A.; Jurel, S.; Shymanska, M.; Golender, L.,
Gas-liquid chromatography of some aliphatic and heterocyclic mono- and pollyfunctional amines. VII. Retention indices of amines in some polar and unpolar stationary phases,
Latv. PSR Zinat. Akad. Vestis Kim. Ser., 1973, 1, 51-63. [all data]
Umano, Hagi, et al., 1994
Umano, K.; Hagi, Y.; Tamura, T.; Shoji, A.; Shibamoto, T.,
Identification of volatile compounds isolated from round kumquat (Fortunella japonica Swingle),
J. Agric. Food Chem., 1994, 42, 9, 1888-1890, https://doi.org/10.1021/jf00045a011
. [all data]
Elmore, Campo, et al., 2002
Elmore, J.S.; Campo, M.M.; Enser, M.; Mottram, D.S.,
Effect of lipid composition on meat-like model systems containing cysteine, ribose, and polyunsaturated fatty acids,
J. Agric. Food Chem., 2002, 50, 5, 1126-1132, https://doi.org/10.1021/jf0108718
. [all data]
Elmore, Mottram, et al., 2000
Elmore, J.S.; Mottram, D.S.; Hierro, E.,
Two-fibre solid-phase microextraction combined with gas chromatography-mass spectrometry for the analysis of volatile aroma compounds in cooked pork,
J. Chromatogr. A, 2000, 905, 1-2, 233-240, https://doi.org/10.1016/S0021-9673(00)00990-0
. [all data]
Engel, Baty, et al., 2002
Engel, E.; Baty, C.; le Corre, D.; Souchon, I.; Martin, N.,
Flavor-active compounds potentially implicated in cooked cauliflower acceptance,
J. Agric. Food Chem., 2002, 50, 22, 6459-6467, https://doi.org/10.1021/jf025579u
. [all data]
Alasalvar, Taylor, et al., 2005
Alasalvar, C.; Taylor, K.D.A.; Shahidi, F.,
Comparison of volatiles of cultured and wild sea bream (Sparus aurata) during storage in ice by dynamic headspace analysis/gas chromatography-mass spectrometry,
J. Agric. Food Chem., 2005, 53, 7, 2616-2622, https://doi.org/10.1021/jf0483826
. [all data]
Elmore, Nisyrios, et al., 2005
Elmore, J.S.; Nisyrios, I.; Mottram, D.S.,
Analysis of the headspace aroma compounds of walnuts (Juglans regia L.),
Flavour Fragr. J., 2005, 20, 5, 501-506, https://doi.org/10.1002/ffj.1477
. [all data]
Lebrón-Aguilar, Quintanilla-López, et al., 2007
Lebrón-Aguilar, R.; Quintanilla-López, J.E.; Tello, A.M.; Santiuste, J.M.,
Isothermal retention indices on poly (3,3,3-trifluoropropylmethylsiloxane) stationary phases,
J. Chromatogr. A, 2007, 1160, 1-2, 276-288, https://doi.org/10.1016/j.chroma.2007.05.025
. [all data]
Shimadzu, 2003, 2
Shimadzu,
Gas chromatography analysis of organic solvents using capillary columns (No. 3), 2003, retrieved from http://www.shimadzu.com/apps/form.cfm. [all data]
Kurdina, Markovich, et al., 1969
Kurdina, Z.G.; Markovich, V.E.; Sakharov, V.M.,
Gas chromatography of cyclic O-containing compounds
in Gas chromatography, Issue # 10, NIITEKhim, Moscow, 1969, 128-133. [all data]
Anderson, 1968
Anderson, D.G.,
USe of Kovats retention indices and response factors for the qualitative and quantitative analysis of coating solvents,
J. Paint Technol., 1968, 40, 527, 549-557. [all data]
Leffingwell and Alford, 2011
Leffingwell, J.; Alford, E.D.,
Volatile constituents of the giant pufball mushroom (Calvatia gigantea),
Leffingwell Rep., 2011, 4, 1-17. [all data]
van Loon, Linssen, et al., 2005
van Loon, W.A.M.; Linssen, J.P.H.; Legger, A.; Posthumus, M.A.; Voragen, A.G.J.,
Identification and olfactometry of French fries flavour extracted at mouth conditions,
Food Chem., 2005, 90, 3, 417-425, https://doi.org/10.1016/j.foodchem.2004.05.005
. [all data]
Jung, Wichmann, et al., 1999
Jung, A.; Wichmann, K.-H.; Kolb, M.,
VOC emission of polymeric packaging materials,
LaborPraxis, 1999, 23, 9, 20-22. [all data]
Habu, Flath, et al., 1985
Habu, T.; Flath, R.A.; Mon, T.R.; Morton, J.F.,
Volatile components of Rooibos tea (Aspalathus linearis),
J. Agric. Food Chem., 1985, 33, 2, 249-254, https://doi.org/10.1021/jf00062a024
. [all data]
Donetzhuber, Johansson, et al., 1976
Donetzhuber, A.; Johansson, K.; Sandstroem, C.,
Gas phase characterization of wood, pulp, and paper,
Appl. Polymer Symp., 1976, 28, 889-901. [all data]
Farkas, Héberger, et al., 2004
Farkas, O.; Héberger, K.; Zenkevich, I.G.,
Quantitative structure-retention relationships. XIV. Prediction of gas chromatographic retention indices for saturated O-, N-, and S-heterocyclic compounds,
Chemom. Intell. Lab. Syst., 2004, 72, 2, 173-184, https://doi.org/10.1016/j.chemolab.2004.01.012
. [all data]
Vinogradov, 2004
Vinogradov, B.A.,
Production, composition, properties and application of essential oils, 2004, retrieved from http://viness.narod.ru. [all data]
Flanagan, Streete, et al., 1997
Flanagan, R.J.; Streete, P.J.; Ramsey, J.D.,
Volatile Substance Abuse, UNODC Technical Series, No 5, United Nations, Office on Drugs and Crime, Vienna International Centre, PO Box 500, A-1400 Vienna, Austria, 1997, 56, retrieved from http://www.odccp.org/pdf/technicalseries1997-01-011.pdf. [all data]
Mateo and Zumalacárregui, 1996
Mateo, J.; Zumalacárregui, J.M.,
Volatile compounds in chorizo and their changes during ripening,
Meat Sci., 1996, 44, 4, 255-273, https://doi.org/10.1016/S0309-1740(96)00028-9
. [all data]
Strete, Ruprah, et al., 1992
Strete, P.J.; Ruprah, M.; Ramsey, J.D.; Flanagan, R.J.,
Detection and identification of volatile substances by headspace capillary gas chromatography to aid the diagnosis of acute poisoning,
Analyst, 1992, 117, 7, 1111-1127, https://doi.org/10.1039/an9921701111
. [all data]
Kawai, Ishida, et al., 1991
Kawai, T.; Ishida, Y.; Kakiuchi, H.; Ikeda, N.; Higashida, T.; Nakamura, S.,
Flavor components of dried squid,
J. Agric. Food Chem., 1991, 39, 4, 770-777, https://doi.org/10.1021/jf00004a031
. [all data]
Weller and Wolf, 1989
Weller, J.-P.; Wolf, M.,
Massenspektroskopie und Headspace-GC,
Beitr. Gerichtl. Med., 1989, 47, 525-532. [all data]
P'yanova, Zvereva, et al., 1987
P'yanova, V.P.; Zvereva, M.N.; Tsypysheva, LG.; Portnova, T.V.; Kruglov, E.A.,
Investigating the products of thiophane synthesis, Abstr. IX All-Union Conference on Gas Chromatography, Kuibyshev State University, Kuibyshev, 1987, 308. [all data]
Ramsey and Flanagan, 1982
Ramsey, J.D.; Flanagan, R.J.,
Detection and Identification of Volatile Organic Compounds in Blood by Headspace Gas Chromatography as an Aid to the Diagnosis of Solvent Abuse,
J. Chromatogr., 1982, 240, 2, 423-444, https://doi.org/10.1016/S0021-9673(00)99622-5
. [all data]
Welke, Manfroi, et al., 2012
Welke, J.E.; Manfroi, V.; Zanus, M.; Lazarotto, M.; Zini, C.A.,
Characterization of the volatile profile of Brazilian merlot wines through comprehensive two dimensional gas chromatography time-of-flight mass spectrometric detection,
J. Chromatogr. A, 2012, 1226, 124-139, https://doi.org/10.1016/j.chroma.2012.01.002
. [all data]
Johanningsmeier and McFeeters, 2011
Johanningsmeier, S.D.; McFeeters, R.F.,
Detection of volatile spoilage metabolites in fermented cucumbers using nontargeted, comprehensive 2-dimensional gas chromatography-time-of-flight mass spectrometry (GCxGCxTOFMS),
J. Food Sci., 2011, 76, 1, c168-c177, https://doi.org/10.1111/j.1750-3841.2010.01918.x
. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, IR Spectrum, Gas Chromatography, References
- Symbols used in this document:
Cp,gas Constant pressure heat capacity of gas S°gas Entropy of gas at standard conditions T Temperature ΔcH°gas Enthalpy of combustion of gas at standard conditions ΔfH°gas Enthalpy of formation of gas at standard conditions ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.