Methyl Alcohol

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Reaction thermochemistry data, IR Spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas-49. ± 3.kcal/molAVGN/AAverage of 9 values; Individual data points
Quantity Value Units Method Reference Comment
Δcgas-182.52 ± 0.048kcal/molCmRossini, 1932Flame Calorimetry; Corresponding Δfgas = -48.157 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS

Constant pressure heat capacity of gas

Cp,gas (cal/mol*K) Temperature (K) Reference Comment
8.12650.Thermodynamics Research Center, 1997p=1 bar. Recommended entropies and heat capacities are in good agreement with other statistically calculated values [ Ivash E.V., 1955, Zhuravlev E.Z., 1959, Chen S.S., 1977, Chao J., 1986, Gurvich, Veyts, et al., 1989]. Please also see Chao J., 1986, 2.; GT
8.831100.
9.235150.
9.491200.
10.18273.15
10.53 ± 0.007298.15
10.56300.
12.34400.
14.27500.
16.06600.
17.65700.
19.06800.
20.30900.
21.401000.
22.361100.
23.211200.
23.9581300.
24.6131400.
25.1911500.
26.341750.
27.202000.
27.842250.
28.352500.
28.72750.
28.93000.

Constant pressure heat capacity of gas

Cp,gas (cal/mol*K) Temperature (K) Reference Comment
10.13 ± 0.30279.Stromsoe E., 1970Heat capacity at 279 K was obtained by thermal conductivity [ Halford J.O., 1957]. Vapor heat capacities from calorimetric measurements [ De Vries T., 1941] were converted to the ideal gas heat capacities by corrections for the gas imperfection effects [ Chen S.S., 1977, Chao J., 1986, 2]. Ideal gas heat capacities are given by [ Stromsoe E., 1970] as a linear function Cp=f1*(a+bT). This expression approximates the experimental values with the average deviation of 1.17 J/mol*K. The accuracy of the experimental heat capacities [ Stromsoe E., 1970] is estimated as less than 0.3%. Please also see De Vries T., 1941, Weltner W., 1951, Halford J.O., 1957.; GT
11.46 ± 0.30345.6
11.19 ± 0.28347.35
11.01 ± 0.30349.65
11.37 ± 0.28356.55
11.17 ± 0.30358.15
11.52 ± 0.30358.85
11.67 ± 0.30359.85
12.02 ± 0.30368.15
11.71 ± 0.28373.35
12.26 ± 0.30382.15
12.22 ± 0.28398.95
12.51 ± 0.30401.15
12.27 ± 0.28401.35
12.43 ± 0.10403.2
12.72 ± 0.30420.15
12.88 ± 0.28431.45
13.09 ± 0.28442.15
13.36 ± 0.30442.65
13.39 ± 0.28457.35
13.67 ± 0.10464.0
13.80 ± 0.28477.75
13.95 ± 0.28485.05
14.23 ± 0.28498.95
14.44 ± 0.30521.2
14.68 ± 0.28521.35
15.37 ± 0.28555.95
15.88 ± 0.28581.35
15.96 ± 0.28585.35

Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, IR Spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
RCD - Robert C. Dunbar
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Reactions 1 to 50

Chlorine anion + Methyl Alcohol = (Chlorine anion • Methyl Alcohol)

By formula: Cl- + CH4O = (Cl- • CH4O)

Quantity Value Units Method Reference Comment
Δr17. ± 3.kcal/molAVGN/AAverage of 8 values; Individual data points
Quantity Value Units Method Reference Comment
Δr22.6cal/mol*KHPMSEvans and Keesee, 1991gas phase; M
Δr24.1cal/mol*KPHPMSHiraoka and Mizuse, 1987gas phase; M
Δr22.0cal/mol*KPHPMSSieck, 1985gas phase; M
Δr22.9cal/mol*KN/ALarson and McMahon, 1984gas phase; switching reaction(Cl-)t-C4H9OH, Entropy change calculated or estimated; French, Ikuta, et al., 1982; M
Δr14.8cal/mol*KPHPMSYamdagni, Payzant, et al., 1973gas phase; Entropy change is questionable; M
Quantity Value Units Method Reference Comment
Δr10.1 ± 0.8kcal/molAVGN/AAverage of 10 values; Individual data points

CH3O- + Hydrogen cation = Methyl Alcohol

By formula: CH3O- + H+ = CH4O

Quantity Value Units Method Reference Comment
Δr382. ± 2.kcal/molAVGN/AAverage of 6 values; Individual data points
Quantity Value Units Method Reference Comment
Δr376.02 ± 0.62kcal/molH-TSNee, Osterwalder, et al., 2006gas phase; B
Δr376.04 ± 0.55kcal/molH-TSOsborn, Leahy, et al., 1998gas phase; B
Δr374.0 ± 2.0kcal/molIMREBartmess, Scott, et al., 1979gas phase; The acidity is 1.2 kcal/mol stronger than that from the D-EA cycle, due to the multi-compound fit for the acidity scale.; value altered from reference due to change in acidity scale; B
Δr374.6 ± 2.1kcal/molH-TSHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.; B
Δr375.10 ± 0.60kcal/molTDEqMeot-ner and Sieck, 1986gas phase; Experimental entropy: 21.5 eu, 0.6 less than H2O; B

CH5O+ + Methyl Alcohol = (CH5O+ • Methyl Alcohol)

By formula: CH5O+ + CH4O = (CH5O+ • CH4O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr32.6kcal/molPHPMSMeot-Ner (Mautner), 1992gas phase; M
Δr32.3kcal/molPHPMSSzulejko and McMahon, 1992gas phase; M
Δr32.1kcal/molPHPMSMeot-Ner(Mautner), 1986gas phase; M
Δr33.1kcal/molPHPMSGrimsrud and Kebarle, 1973gas phase; M
Δr33.7kcal/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O; Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr29.0cal/mol*KPHPMSMeot-Ner (Mautner), 1992gas phase; M
Δr29.2cal/mol*KPHPMSSzulejko and McMahon, 1992gas phase; M
Δr26.6cal/mol*KPHPMSMeot-Ner(Mautner), 1986gas phase; M
Δr30.5cal/mol*KPHPMSGrimsrud and Kebarle, 1973gas phase; M
Δr28.5cal/mol*KN/ALarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O; Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr25.2kcal/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O; Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M

CH3O- + Methyl Alcohol = (CH3O- • Methyl Alcohol)

By formula: CH3O- + CH4O = (CH3O- • CH4O)

Quantity Value Units Method Reference Comment
Δr29.3 ± 1.0kcal/molTDAsPaul and Kebarle, 1990gas phase; B,M
Δr28.80 ± 0.30kcal/molTDAsMeot-ner and Sieck, 1986gas phase; B,M
Δr29.4 ± 2.5kcal/molTDAsCaldwell, Rozeboom, et al., 1984gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B
Δr19.0 ± 2.0kcal/molN/AMoylan, Dodd, et al., 1985gas phase; B
Quantity Value Units Method Reference Comment
Δr31.8cal/mol*KPHPMSPaul and Kebarle, 1990gas phase; M
Δr26.7cal/mol*KPHPMSMeot-Ner(Mautner), 1986gas phase; n; M
Quantity Value Units Method Reference Comment
Δr20.30kcal/molIMREMustanir, Matsuoka, et al., 2006gas phase; B
Δr19.8 ± 1.0kcal/molTDAsPaul and Kebarle, 1990gas phase; B
Δr20.80 ± 0.50kcal/molTDAsMeot-ner and Sieck, 1986gas phase; B
Δr20.3 ± 1.6kcal/molTDAsCaldwell, Rozeboom, et al., 1984gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
19.1296.FAMacKay and Bohme, 1978gas phase; From thermochemical cycle,switching reaction(CH3O-)H2O; Meot-Ner(Mautner), 1986; M

C4H9O- + Methyl Alcohol = (C4H9O- • Methyl Alcohol)

By formula: C4H9O- + CH4O = (C4H9O- • CH4O)

Quantity Value Units Method Reference Comment
Δr25.5 ± 1.0kcal/molTDEqMeot-Ner and Sieck, 1986gas phase; B,M
Δr23.4 ± 2.2kcal/molCIDTDeTuri and Ervin, 1999gas phase; B
Δr26.0 ± 2.5kcal/molN/ACaldwell, Rozeboom, et al., 1984gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; B,M
Quantity Value Units Method Reference Comment
Δr27.9cal/mol*KN/AMeot-Ner and Sieck, 1986gas phase; Entropy change calculated or estimated; M
Δr29.3cal/mol*KN/ACaldwell, Rozeboom, et al., 1984gas phase; switching reaction(CH3O-)CH3OH, Entropy change calculated or estimated; re-evaluated using Meot-Ner(Mautner), 1986 and Paul and Kebarle, 1990; M
Quantity Value Units Method Reference Comment
Δr10.20kcal/molIMREMustanir, Matsuoka, et al., 2006gas phase; B
Δr17.1 ± 1.6kcal/molTDEqMeot-Ner and Sieck, 1986gas phase; B
Δr17.3 ± 1.6kcal/molIMRECaldwell, Rozeboom, et al., 1984gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; B,M

C2H5O- + Methyl Alcohol = (C2H5O- • Methyl Alcohol)

By formula: C2H5O- + CH4O = (C2H5O- • CH4O)

Quantity Value Units Method Reference Comment
Δr27.3 ± 2.9kcal/molIMRECaldwell, Rozeboom, et al., 1984gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B,M
Δr25.6 ± 1.9kcal/molCIDTDeTuri and Ervin, 1999gas phase; B
Quantity Value Units Method Reference Comment
Δr29.3cal/mol*KN/ACaldwell, Rozeboom, et al., 1984gas phase; switching reaction(CH3O-)CH3OH, Entropy change calculated or estimated; re-evaluated using Meot-Ner(Mautner), 1986 and Paul and Kebarle, 1990; M
Quantity Value Units Method Reference Comment
Δr18.6 ± 2.0kcal/molIMRECaldwell, Rozeboom, et al., 1984gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B,M

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
13.4296.FAMackay, Rakshit, et al., 1982gas phase; From thermochemical cycle,switching reaction(CH3O-)CH3OH; Caldwell and Kebarle, 1986, Taft, 1983; M

(Chlorine anion • Methyl Alcohol) + Methyl Alcohol = (Chlorine anion • 2Methyl Alcohol)

By formula: (Cl- • CH4O) + CH4O = (Cl- • 2CH4O)

Quantity Value Units Method Reference Comment
Δr14.10 ± 0.40kcal/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Δr13.70 ± 0.20kcal/molTDAsEvans and Keesee, 1991gas phase; B,M
Δr14.1 ± 1.0kcal/molTDAsHiraoka and Mizuse, 1987gas phase; B,M
Δr13.00 ± 0.70kcal/molTDAsYamdagni, Payzant, et al., 1973gas phase; B,M
Quantity Value Units Method Reference Comment
Δr24.2cal/mol*KPHPMSHiraoka and Mizuse, 1987gas phase; M
Δr22.0cal/mol*KHPMSEvans and Keesee, 1991gas phase; M
Δr19.4cal/mol*KPHPMSYamdagni, Payzant, et al., 1973gas phase; M
Quantity Value Units Method Reference Comment
Δr7.30kcal/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Δr7.10kcal/molTDAsEvans and Keesee, 1991gas phase; B
Δr6.8 ± 1.0kcal/molTDAsHiraoka and Mizuse, 1987gas phase; B
Δr7.20 ± 0.40kcal/molTDAsYamdagni, Payzant, et al., 1973gas phase; B

(Chlorine anion • 2Methyl Alcohol) + Methyl Alcohol = (Chlorine anion • 3Methyl Alcohol)

By formula: (Cl- • 2CH4O) + CH4O = (Cl- • 3CH4O)

Quantity Value Units Method Reference Comment
Δr11.50 ± 0.20kcal/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Δr10.80 ± 0.30kcal/molTDAsEvans and Keesee, 1991gas phase; B,M
Δr11.8 ± 1.0kcal/molTDAsHiraoka and Mizuse, 1987gas phase; B,M
Δr12.30 ± 0.60kcal/molN/AYamdagni, Payzant, et al., 1973gas phase; B,M
Quantity Value Units Method Reference Comment
Δr22.9cal/mol*KPHPMSHiraoka and Mizuse, 1987gas phase; M
Δr22.7cal/mol*KHPMSEvans and Keesee, 1991gas phase; M
Δr23.6cal/mol*KPHPMSYamdagni, Payzant, et al., 1973gas phase; M
Quantity Value Units Method Reference Comment
Δr5.06kcal/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Δr4.00kcal/molTDAsEvans and Keesee, 1991gas phase; B
Δr4.9 ± 1.0kcal/molTDAsHiraoka and Mizuse, 1987gas phase; B
Δr5.20 ± 0.30kcal/molTDAsYamdagni, Payzant, et al., 1973gas phase; B

C8H5- + Methyl Alcohol = (C8H5- • Methyl Alcohol)

By formula: C8H5- + CH4O = (C8H5- • CH4O)

Quantity Value Units Method Reference Comment
Δr21.5 ± 2.0kcal/molIMREChabinyc and Brauman, 1999gas phase; B
Δr21.4 ± 2.9kcal/molN/ACaldwell, Rozeboom, et al., 1984gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B,M
Quantity Value Units Method Reference Comment
Δr29.3cal/mol*KN/ACaldwell, Rozeboom, et al., 1984gas phase; switching reaction(CH3O-)CH3OH, Entropy change calculated or estimated; re-evaluated using Meot-Ner(Mautner), 1986 and Paul and Kebarle, 1990; M
Quantity Value Units Method Reference Comment
Δr11.0 ± 2.0kcal/molIMREChabinyc and Brauman, 1999gas phase; B
Δr12.7 ± 2.0kcal/molIMRECaldwell, Rozeboom, et al., 1984gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B,M

CN- + Methyl Alcohol = (CN- • Methyl Alcohol)

By formula: CN- + CH4O = (CN- • CH4O)

Quantity Value Units Method Reference Comment
Δr15.70 ± 0.80kcal/molTDAsLarson, Szulejko, et al., 1988gas phase; B,M
Δr16.6 ± 1.0kcal/molTDAsMeot-ner, 1988gas phase; B
Δr16.5 ± 3.5kcal/molIMRELarson and McMahon, 1987gas phase; B,M
Quantity Value Units Method Reference Comment
Δr23.cal/mol*KPHPMSLarson, Szulejko, et al., 1988gas phase; M
Δr24.3cal/mol*KN/ALarson and McMahon, 1987gas phase; switching reaction,Thermochemical ladder(CN-)H2O, Entropy change calculated or estimated; Payzant, Yamdagni, et al., 1971; M
Quantity Value Units Method Reference Comment
Δr8.80 ± 0.20kcal/molTDAsLarson, Szulejko, et al., 1988gas phase; B
Δr10.4 ± 1.0kcal/molTDAsMeot-ner, 1988gas phase; B
Δr9.2 ± 2.3kcal/molIMRELarson and McMahon, 1987gas phase; B,M

Lithium ion (1+) + Methyl Alcohol = (Lithium ion (1+) • Methyl Alcohol)

By formula: Li+ + CH4O = (Li+ • CH4O)

Quantity Value Units Method Reference Comment
Δr36.8 ± 1.9kcal/molCIDTRodgers and Armentrout, 2000RCD
Δr38.1kcal/molICRWoodin and Beauchamp, 1978gas phase; switching reaction(Li+)H20, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 interpolated; M
Δr38.kcal/molICRStaley and Beauchamp, 1975gas phase; switching reaction(Li+)H2O, from graph; Dzidic and Kebarle, 1970 extrapolated; M
Quantity Value Units Method Reference Comment
Δr26.cal/mol*KN/AWoodin and Beauchamp, 1978gas phase; switching reaction(Li+)H20, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 interpolated; M
Quantity Value Units Method Reference Comment
Δr30.3kcal/molICRWoodin and Beauchamp, 1978gas phase; switching reaction(Li+)H20, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 interpolated; M

Iodide + Methyl Alcohol = (Iodide • Methyl Alcohol)

By formula: I- + CH4O = (I- • CH4O)

Quantity Value Units Method Reference Comment
Δr11.90 ± 0.20kcal/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Δr11.3 ± 1.0kcal/molTDAsCaldwell and Kebarle, 1984gas phase; B,M
Δr11.2kcal/molPHPMSHiraoka and Yamabe, 1991gas phase; M
Δr11.kcal/molPHPMSCaldwell, Masucci, et al., 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr17.1cal/mol*KPHPMSHiraoka and Yamabe, 1991gas phase; M
Δr17.8cal/mol*KPHPMSCaldwell and Kebarle, 1984gas phase; M
Quantity Value Units Method Reference Comment
Δr5.76kcal/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Δr6.0 ± 1.0kcal/molTDAsCaldwell and Kebarle, 1984gas phase; B
Δr5.7 ± 2.0kcal/molIMRETanabe, Morgon, et al., 1996gas phase; Anchored to H2O..I- of Caldwell and Kebarle, 1984; B

C2H5O+ + Methyl Alcohol = (C2H5O+ • Methyl Alcohol)

By formula: C2H5O+ + CH4O = (C2H5O+ • CH4O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr30.3kcal/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr26.9cal/mol*KN/ALarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr22.3kcal/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M

C2H7O+ + Methyl Alcohol = (C2H7O+ • Methyl Alcohol)

By formula: C2H7O+ + CH4O = (C2H7O+ • CH4O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr29.6kcal/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr26.6cal/mol*KN/ALarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr21.7kcal/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M

C3H7O- + Methyl Alcohol = (C3H7O- • Methyl Alcohol)

By formula: C3H7O- + CH4O = (C3H7O- • CH4O)

Quantity Value Units Method Reference Comment
Δr26.9 ± 2.9kcal/molN/ACaldwell, Rozeboom, et al., 1984gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B,M
Quantity Value Units Method Reference Comment
Δr29.3cal/mol*KN/ACaldwell, Rozeboom, et al., 1984gas phase; switching reaction(CH3O-)CH3OH, Entropy change calculated or estimated; re-evaluated using Meot-Ner(Mautner), 1986 and Paul and Kebarle, 1990; M
Quantity Value Units Method Reference Comment
Δr18.2 ± 2.0kcal/molIMRECaldwell, Rozeboom, et al., 1984gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B,M

Fluorine anion + Methyl Alcohol = (Fluorine anion • Methyl Alcohol)

By formula: F- + CH4O = (F- • CH4O)

Quantity Value Units Method Reference Comment
Δr29.6 ± 2.0kcal/molIMRELarson and McMahon, 1983gas phase; B,M
Δr29.4 ± 2.2kcal/molCIDTDeTuri and Ervin, 1999gas phase; B
Δr23.3 ± 2.0kcal/molTDAsHiraoka and Yamabe, 1991gas phase; B,M
Quantity Value Units Method Reference Comment
Δr25.0cal/mol*KPHPMSHiraoka and Yamabe, 1991gas phase; M
Δr22.6cal/mol*KN/ALarson and McMahon, 1983gas phase; switching reaction(F-)H2O, Entropy change calculated or estimated; Arshadi, Yamdagni, et al., 1970; M
Quantity Value Units Method Reference Comment
Δr22.8 ± 2.0kcal/molIMRELarson and McMahon, 1983gas phase; B,M
Δr15.8 ± 2.0kcal/molTDAsHiraoka and Yamabe, 1991gas phase; B

(Chlorine anion • 3Methyl Alcohol) + Methyl Alcohol = (Chlorine anion • 4Methyl Alcohol)

By formula: (Cl- • 3CH4O) + CH4O = (Cl- • 4CH4O)

Quantity Value Units Method Reference Comment
Δr10.5 ± 1.0kcal/molTDAsHiraoka and Mizuse, 1987gas phase; B,M
Δr10.50kcal/molTDAsEvans and Keesee, 1991gas phase; B
Δr11.20 ± 0.60kcal/molTDAsYamdagni, Payzant, et al., 1973gas phase; B,M
Quantity Value Units Method Reference Comment
Δr22.9cal/mol*KPHPMSHiraoka and Mizuse, 1987gas phase; M
Δr26.4cal/mol*KPHPMSYamdagni, Payzant, et al., 1973gas phase; M
Quantity Value Units Method Reference Comment
Δr3.6 ± 1.0kcal/molTDAsHiraoka and Mizuse, 1987gas phase; B
Δr3.70kcal/molTDAsEvans and Keesee, 1991gas phase; B
Δr3.30 ± 0.20kcal/molTDAsYamdagni, Payzant, et al., 1973gas phase; B

Bromine anion + Methyl Alcohol = (Bromine anion • Methyl Alcohol)

By formula: Br- + CH4O = (Br- • CH4O)

Quantity Value Units Method Reference Comment
Δr14.50 ± 0.10kcal/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Δr13.9 ± 1.0kcal/molTDAsHiraoka and Yamabe, 1991gas phase; B,M
Quantity Value Units Method Reference Comment
Δr17.6cal/mol*KPHPMSHiraoka and Yamabe, 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr8.00 ± 0.10kcal/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Δr8.7 ± 2.0kcal/molTDAsHiraoka and Yamabe, 1991gas phase; B
Δr8.4 ± 2.0kcal/molIMRETanabe, Morgon, et al., 1996gas phase; Anchored to H2O..Br- of Hiraoka, Mizure, et al., 19882; B

C3H9Si+ + Methyl Alcohol = (C3H9Si+ • Methyl Alcohol)

By formula: C3H9Si+ + CH4O = (C3H9Si+ • CH4O)

Quantity Value Units Method Reference Comment
Δr39.2kcal/molPHPMSWojtyniak and Stone, 1986gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)H2O, Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr29.7cal/mol*KN/AWojtyniak and Stone, 1986gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)H2O, Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
25.3468.PHPMSWojtyniak and Stone, 1986gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)H2O, Entropy change calculated or estimated; M

Sodium ion (1+) + Methyl Alcohol = (Sodium ion (1+) • Methyl Alcohol)

By formula: Na+ + CH4O = (Na+ • CH4O)

Quantity Value Units Method Reference Comment
Δr23.2 ± 1.3kcal/molCIDCAmicangelo and Armentrout, 2001Anchor NH3=24.41; RCD
Δr21.9 ± 1.4kcal/molCIDTArmentrout and Rodgers, 2000RCD
Δr24.0 ± 0.2kcal/molHPMSHoyau, Norrman, et al., 1999RCD
Δr26.6 ± 0.2kcal/molHPMSGuo, Conklin, et al., 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr20500.cal/mol*KHPMSHoyau, Norrman, et al., 1999RCD
Δr24.3cal/mol*KHPMSGuo, Conklin, et al., 1989gas phase; M

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
17.3298.IMREMcMahon and Ohanessian, 2000Anchor alanine=39.89; RCD

(Chlorine anion • 4Methyl Alcohol) + Methyl Alcohol = (Chlorine anion • 5Methyl Alcohol)

By formula: (Cl- • 4CH4O) + CH4O = (Cl- • 5CH4O)

Quantity Value Units Method Reference Comment
Δr9.2 ± 1.0kcal/molTDAsHiraoka and Mizuse, 1987gas phase; B,M
Δr10.50 ± 0.50kcal/molN/AYamdagni, Payzant, et al., 1973gas phase; B,M
Quantity Value Units Method Reference Comment
Δr21.7cal/mol*KPHPMSHiraoka and Mizuse, 1987gas phase; M
Δr25.5cal/mol*KPHPMSYamdagni, Payzant, et al., 1973gas phase; M
Quantity Value Units Method Reference Comment
Δr2.7 ± 1.0kcal/molTDAsHiraoka and Mizuse, 1987gas phase; B
Δr2.90 ± 0.10kcal/molTDAsYamdagni, Payzant, et al., 1973gas phase; B

Water + Propane, 2,2-dimethoxy- = 2Methyl Alcohol + Acetone

By formula: H2O + C5H12O2 = 2CH4O + C3H6O

Quantity Value Units Method Reference Comment
Δr4.86 ± 0.01kcal/molCmWiberg, Morgan, et al., 1994liquid phase; ALS
Δr4.88 ± 0.01kcal/molCmWiberg and Squires, 1979liquid phase; Heat of hydrolysis; ALS
Δr4.8836 ± 0.0067kcal/molCmWiberg and Squires, 1979, 2liquid phase; solvent: Water; Hydrolysis; ALS
Δr-3.95 ± 0.05kcal/molCmStern and Dorer, 1962liquid phase; Reanalyzed by Cox and Pilcher, 1970, Original value = 3.69 ± 0.05 kcal/mol; Heat of hydrolysis; ALS

(CH5O+ • Methyl Alcohol) + Methyl Alcohol = (CH5O+ • 2Methyl Alcohol)

By formula: (CH5O+ • CH4O) + CH4O = (CH5O+ • 2CH4O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr21.2kcal/molPHPMSMeot-Ner (Mautner), 1992gas phase; M
Δr21.0kcal/molPHPMSMeot-Ner(Mautner), 1986gas phase; M
Δr21.3kcal/molPHPMSGrimsrud and Kebarle, 1973gas phase; M
Quantity Value Units Method Reference Comment
Δr27.0cal/mol*KPHPMSMeot-Ner (Mautner), 1992gas phase; M
Δr25.8cal/mol*KPHPMSMeot-Ner(Mautner), 1986gas phase; M
Δr28.2cal/mol*KPHPMSGrimsrud and Kebarle, 1973gas phase; M

C5H11O- + Methyl Alcohol = (C5H11O- • Methyl Alcohol)

By formula: C5H11O- + CH4O = (C5H11O- • CH4O)

Quantity Value Units Method Reference Comment
Δr25.7 ± 2.9kcal/molN/ACaldwell, Rozeboom, et al., 1984gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B
Quantity Value Units Method Reference Comment
Δr17.0 ± 2.0kcal/molIMRECaldwell, Rozeboom, et al., 1984gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B

C6H11S2- + Methyl Alcohol = (C6H11S2- • Methyl Alcohol)

By formula: C6H11S2- + CH4O = (C6H11S2- • CH4O)

Quantity Value Units Method Reference Comment
Δr21.9 ± 2.5kcal/molN/ACaldwell, Rozeboom, et al., 1984gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B
Quantity Value Units Method Reference Comment
Δr13.2 ± 1.6kcal/molIMRECaldwell, Rozeboom, et al., 1984gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B

(Copper ion (1+) • Methyl Alcohol) + Methyl Alcohol = (Copper ion (1+) • 2Methyl Alcohol)

By formula: (Cu+ • CH4O) + CH4O = (Cu+ • 2CH4O)

Quantity Value Units Method Reference Comment
Δr13.8kcal/molHPMSEl-Shall, Schriver, et al., 1989gas phase; Entropy change calculated or estimated, Cu+ from laser desorption; M
Quantity Value Units Method Reference Comment
Δr25.cal/mol*KN/AEl-Shall, Schriver, et al., 1989gas phase; Entropy change calculated or estimated, Cu+ from laser desorption; M
Quantity Value Units Method Reference Comment
Δr6.3kcal/molHPMSEl-Shall, Schriver, et al., 1989gas phase; Entropy change calculated or estimated, Cu+ from laser desorption; M

(CH5O+ • 2Water • 3Methyl Alcohol) + Water = (CH5O+ • 3Water • 3Methyl Alcohol)

By formula: (CH5O+ • 2H2O • 3CH4O) + H2O = (CH5O+ • 3H2O • 3CH4O)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr9.1kcal/molPHPMSMeot-Ner(Mautner), 1986gas phase; n, Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr22.cal/mol*KN/AMeot-Ner(Mautner), 1986gas phase; n, Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
3.1272.PHPMSMeot-Ner(Mautner), 1986gas phase; n, Entropy change calculated or estimated; M

(CH5O+ • 3Water • 2Methyl Alcohol) + Water = (CH5O+ • 4Water • 2Methyl Alcohol)

By formula: (CH5O+ • 3H2O • 2CH4O) + H2O = (CH5O+ • 4H2O • 2CH4O)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr9.3kcal/molPHPMSMeot-Ner(Mautner), 1986gas phase; n, Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr22.cal/mol*KN/AMeot-Ner(Mautner), 1986gas phase; n, Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
3.2272.PHPMSMeot-Ner(Mautner), 1986gas phase; n, Entropy change calculated or estimated; M

(CH5O+ • 4Water • Methyl Alcohol) + Water = (CH5O+ • 5Water • Methyl Alcohol)

By formula: (CH5O+ • 4H2O • CH4O) + H2O = (CH5O+ • 5H2O • CH4O)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr9.4kcal/molPHPMSMeot-Ner(Mautner), 1986gas phase; n, Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr22.cal/mol*KN/AMeot-Ner(Mautner), 1986gas phase; n, Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
3.5269.PHPMSMeot-Ner(Mautner), 1986gas phase; n, Entropy change calculated or estimated; M

(CH5O+ • Water) + Methyl Alcohol = (CH5O+ • Methyl Alcohol • Water)

By formula: (CH5O+ • H2O) + CH4O = (CH5O+ • CH4O • H2O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr24.5kcal/molPHPMSMeot-Ner(Mautner), 1986gas phase; n, Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr29.cal/mol*KN/AMeot-Ner(Mautner), 1986gas phase; n, Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
11.6452.PHPMSMeot-Ner(Mautner), 1986gas phase; n, Entropy change calculated or estimated; M

C6H5NO2- + Methyl Alcohol = (C6H5NO2- • Methyl Alcohol)

By formula: C6H5NO2- + CH4O = (C6H5NO2- • CH4O)

Quantity Value Units Method Reference Comment
Δr15.10 ± 0.20kcal/molTDAsSieck, 1985gas phase; B,M
Quantity Value Units Method Reference Comment
Δr26.1cal/mol*KPHPMSSieck, 1985gas phase; M
Quantity Value Units Method Reference Comment
Δr7.30 ± 0.40kcal/molTDAsSieck, 1985gas phase; B
Δr6.3 ± 1.6kcal/molIMREChowdhury, Grimsrud, et al., 1987gas phase; Free energy affinity at 70°C.; B

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
6.3343.PHPMSChowdhury, 1987gas phase; M

Copper ion (1+) + Methyl Alcohol = (Copper ion (1+) • Methyl Alcohol)

By formula: Cu+ + CH4O = (Cu+ • CH4O)

Quantity Value Units Method Reference Comment
Δr13.4kcal/molHPMSEl-Shall, Schriver, et al., 1989gas phase; Entropy change calculated or estimated, Cu+ from laser desorption; M
Quantity Value Units Method Reference Comment
Δr25.cal/mol*KN/AEl-Shall, Schriver, et al., 1989gas phase; Entropy change calculated or estimated, Cu+ from laser desorption; M
Quantity Value Units Method Reference Comment
Δr5.9kcal/molHPMSEl-Shall, Schriver, et al., 1989gas phase; Entropy change calculated or estimated, Cu+ from laser desorption; M

(Fluorine anion • Methyl Alcohol) + Methyl Alcohol = (Fluorine anion • 2Methyl Alcohol)

By formula: (F- • CH4O) + CH4O = (F- • 2CH4O)

Quantity Value Units Method Reference Comment
Δr20.30 ± 0.30kcal/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Δr19.3 ± 1.0kcal/molTDAsHiraoka and Yamabe, 1991gas phase; B,M
Quantity Value Units Method Reference Comment
Δr23.2cal/mol*KPHPMSHiraoka and Yamabe, 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr12.97kcal/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Δr12.4 ± 2.0kcal/molTDAsHiraoka and Yamabe, 1991gas phase; B

(Fluorine anion • 2Methyl Alcohol) + Methyl Alcohol = (Fluorine anion • 3Methyl Alcohol)

By formula: (F- • 2CH4O) + CH4O = (F- • 3CH4O)

Quantity Value Units Method Reference Comment
Δr15.10 ± 0.60kcal/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Δr14.5 ± 1.0kcal/molTDAsHiraoka and Yamabe, 1991gas phase; B,M
Quantity Value Units Method Reference Comment
Δr21.2cal/mol*KPHPMSHiraoka and Yamabe, 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr8.06kcal/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Δr8.2 ± 2.0kcal/molTDAsHiraoka and Yamabe, 1991gas phase; B

(Bromine anion • 2Methyl Alcohol) + Methyl Alcohol = (Bromine anion • 3Methyl Alcohol)

By formula: (Br- • 2CH4O) + CH4O = (Br- • 3CH4O)

Quantity Value Units Method Reference Comment
Δr9.50 ± 0.50kcal/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Δr10.6 ± 1.0kcal/molTDAsHiraoka and Yamabe, 1991gas phase; B,M
Quantity Value Units Method Reference Comment
Δr21.6cal/mol*KPHPMSHiraoka and Yamabe, 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr4.25kcal/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Δr4.2 ± 2.0kcal/molTDAsHiraoka and Yamabe, 1991gas phase; B

(Bromine anion • Methyl Alcohol) + Methyl Alcohol = (Bromine anion • 2Methyl Alcohol)

By formula: (Br- • CH4O) + CH4O = (Br- • 2CH4O)

Quantity Value Units Method Reference Comment
Δr12.00 ± 0.20kcal/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Δr12.5 ± 1.0kcal/molTDAsHiraoka and Yamabe, 1991gas phase; B,M
Quantity Value Units Method Reference Comment
Δr20.7cal/mol*KPHPMSHiraoka and Yamabe, 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr5.62kcal/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Δr6.3 ± 2.0kcal/molTDAsHiraoka and Yamabe, 1991gas phase; B

(Iodide • 2Methyl Alcohol) + Methyl Alcohol = (Iodide • 3Methyl Alcohol)

By formula: (I- • 2CH4O) + CH4O = (I- • 3CH4O)

Quantity Value Units Method Reference Comment
Δr7.70 ± 0.60kcal/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Δr9.8 ± 1.0kcal/molTDAsHiraoka and Yamabe, 1991gas phase; B,M
Quantity Value Units Method Reference Comment
Δr22.4cal/mol*KPHPMSHiraoka and Yamabe, 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr3.41kcal/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Δr3.1 ± 2.0kcal/molTDAsHiraoka and Yamabe, 1991gas phase; B

(Iodide • Methyl Alcohol) + Methyl Alcohol = (Iodide • 2Methyl Alcohol)

By formula: (I- • CH4O) + CH4O = (I- • 2CH4O)

Quantity Value Units Method Reference Comment
Δr9.50 ± 0.20kcal/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Δr11.1 ± 1.0kcal/molTDAsHiraoka and Yamabe, 1991gas phase; B,M
Quantity Value Units Method Reference Comment
Δr22.6cal/mol*KPHPMSHiraoka and Yamabe, 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr4.25kcal/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Δr4.4 ± 2.0kcal/molTDAsHiraoka and Yamabe, 1991gas phase; B

(Chlorine anion • 10Methyl Alcohol) + Methyl Alcohol = (Chlorine anion • 11Methyl Alcohol)

By formula: (Cl- • 10CH4O) + CH4O = (Cl- • 11CH4O)

Quantity Value Units Method Reference Comment
Δr7.3 ± 1.0kcal/molTDAsHiraoka and Mizuse, 1987gas phase; Estimated entropy; single temperature measurement; B,M
Quantity Value Units Method Reference Comment
Δr20.cal/mol*KN/AHiraoka and Mizuse, 1987gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr1.3 ± 1.0kcal/molTDAsHiraoka and Mizuse, 1987gas phase; Estimated entropy; single temperature measurement; B

(Sodium ion (1+) • Methyl Alcohol) + Methyl Alcohol = (Sodium ion (1+) • 2Methyl Alcohol)

By formula: (Na+ • CH4O) + CH4O = (Na+ • 2CH4O)

Quantity Value Units Method Reference Comment
Δr20.5 ± 1.4kcal/molCIDCAmicangelo and Armentrout, 2001Anchor NH3=24.41; RCD
Δr21.4 ± 1.6kcal/molCIDCAmicangelo and Armentrout, 2001Anchor NH3=24.41; RCD
Δr20.5 ± 1.6kcal/molCIDCAmicangelo and Armentrout, 2001Anchor NH3=24.41; RCD
Δr20.2 ± 0.2kcal/molHPMSGuo, Conklin, et al., 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr21.7cal/mol*KHPMSGuo, Conklin, et al., 1989gas phase; M

H4ClO2- + Methyl Alcohol + 2Water = CH8ClO3-

By formula: H4ClO2- + CH4O + 2H2O = CH8ClO3-

Quantity Value Units Method Reference Comment
Δr10.40 ± 0.20kcal/molTDAsEvans and Keesee, 1991gas phase; B
Δr11.40 ± 0.30kcal/molTDAsEvans and Keesee, 1991gas phase; For solvation by MeOH of core ion; B
Quantity Value Units Method Reference Comment
Δr5.80kcal/molTDAsEvans and Keesee, 1991gas phase; B
Δr6.00kcal/molTDAsEvans and Keesee, 1991gas phase; For solvation by MeOH of core ion; B

(CH5O+ • 2Methyl Alcohol) + Dimethyl ether = (CH5O+ • Dimethyl ether • 2Methyl Alcohol)

By formula: (CH5O+ • 2CH4O) + C2H6O = (CH5O+ • C2H6O • 2CH4O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr17.2kcal/molPHPMSHiraoka, Grimsrud, et al., 1974gas phase; n, note proton affinities, core ion may be (CH3)2OH+; M
Quantity Value Units Method Reference Comment
Δr28.6cal/mol*KPHPMSHiraoka, Grimsrud, et al., 1974gas phase; n, note proton affinities, core ion may be (CH3)2OH+; M

(CH5O+ • 3Methyl Alcohol) + Dimethyl ether = (CH5O+ • Dimethyl ether • 3Methyl Alcohol)

By formula: (CH5O+ • 3CH4O) + C2H6O = (CH5O+ • C2H6O • 3CH4O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr13.7kcal/molPHPMSHiraoka, Grimsrud, et al., 1974gas phase; n, note proton affinities, core ion may be (CH3)2OH+; M
Quantity Value Units Method Reference Comment
Δr30.8cal/mol*KPHPMSHiraoka, Grimsrud, et al., 1974gas phase; n, note proton affinities, core ion may be (CH3)2OH+; M

(CH5O+ • 2Methyl Alcohol) + Methyl Alcohol = (CH5O+ • 3Methyl Alcohol)

By formula: (CH5O+ • 2CH4O) + CH4O = (CH5O+ • 3CH4O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr14.0kcal/molPHPMSMeot-Ner (Mautner), 1992gas phase; M
Δr16.1kcal/molPHPMSGrimsrud and Kebarle, 1973gas phase; M
Quantity Value Units Method Reference Comment
Δr24.0cal/mol*KPHPMSMeot-Ner (Mautner), 1992gas phase; M
Δr28.9cal/mol*KPHPMSGrimsrud and Kebarle, 1973gas phase; M

(CH5O+ • 3Methyl Alcohol) + Methyl Alcohol = (CH5O+ • 4Methyl Alcohol)

By formula: (CH5O+ • 3CH4O) + CH4O = (CH5O+ • 4CH4O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr11.3kcal/molPHPMSMeot-Ner (Mautner), 1992gas phase; M
Δr13.5kcal/molPHPMSGrimsrud and Kebarle, 1973gas phase; M
Quantity Value Units Method Reference Comment
Δr22.3cal/mol*KPHPMSMeot-Ner (Mautner), 1992gas phase; M
Δr28.7cal/mol*KPHPMSGrimsrud and Kebarle, 1973gas phase; M

(CH5O+ • 4Methyl Alcohol) + Methyl Alcohol = (CH5O+ • 5Methyl Alcohol)

By formula: (CH5O+ • 4CH4O) + CH4O = (CH5O+ • 5CH4O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr10.2kcal/molPHPMSMeot-Ner (Mautner), 1992gas phase; M
Δr12.5kcal/molPHPMSGrimsrud and Kebarle, 1973gas phase; M
Quantity Value Units Method Reference Comment
Δr23.5cal/mol*KPHPMSMeot-Ner (Mautner), 1992gas phase; M
Δr31.1cal/mol*KPHPMSGrimsrud and Kebarle, 1973gas phase; M

(CH5O+ • Methyl Alcohol) + Dimethyl ether = (CH5O+ • Dimethyl ether • Methyl Alcohol)

By formula: (CH5O+ • CH4O) + C2H6O = (CH5O+ • C2H6O • CH4O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr21.9kcal/molPHPMSHiraoka, Grimsrud, et al., 1974gas phase; n, note proton affinities, core ion may be (CH3)2OH+; M
Quantity Value Units Method Reference Comment
Δr25.2cal/mol*KPHPMSHiraoka, Grimsrud, et al., 1974gas phase; n, note proton affinities, core ion may be (CH3)2OH+; M

(CH5O+ • 5Methyl Alcohol) + Methyl Alcohol = (CH5O+ • 6Methyl Alcohol)

By formula: (CH5O+ • 5CH4O) + CH4O = (CH5O+ • 6CH4O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr9.3kcal/molPHPMSMeot-Ner (Mautner), 1992gas phase; M
Δr11.9kcal/molPHPMSGrimsrud and Kebarle, 1973gas phase; M
Quantity Value Units Method Reference Comment
Δr23.5cal/mol*KPHPMSMeot-Ner (Mautner), 1992gas phase; M
Δr32.9cal/mol*KPHPMSGrimsrud and Kebarle, 1973gas phase; M

(CH5O+ • 6Methyl Alcohol) + Methyl Alcohol = (CH5O+ • 7Methyl Alcohol)

By formula: (CH5O+ • 6CH4O) + CH4O = (CH5O+ • 7CH4O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr9.0kcal/molPHPMSMeot-Ner (Mautner), 1992gas phase; M
Δr12.0kcal/molPHPMSGrimsrud and Kebarle, 1973gas phase; M
Quantity Value Units Method Reference Comment
Δr25.7cal/mol*KPHPMSMeot-Ner (Mautner), 1992gas phase; M
Δr35.7cal/mol*KPHPMSGrimsrud and Kebarle, 1973gas phase; M

(Fluorine anion • 11Methyl Alcohol) + Methyl Alcohol = (Fluorine anion • 12Methyl Alcohol)

By formula: (F- • 11CH4O) + CH4O = (F- • 12CH4O)

Quantity Value Units Method Reference Comment
Δr8.5 ± 1.0kcal/molTDAsHiraoka and Yamabe, 1991gas phase; Entropy estimated.; B,M
Quantity Value Units Method Reference Comment
Δr25.cal/mol*KN/AHiraoka and Yamabe, 1991gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr1.1 ± 2.0kcal/molTDAsHiraoka and Yamabe, 1991gas phase; Entropy estimated.; B

IR Spectrum

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas Chromatography, References, Notes

Data compiled by: Coblentz Society, Inc.

Data compiled by: Tanya L. Myers, Russell G. Tonkyn, Ashley M. Oeck, Tyler O. Danby, John S. Loring, Matthew S. Taubman, Stephen W. Sharpe, Jerome C. Birnbaum, and Timothy J. Johnson

Data compiled by: Pamela M. Chu, Franklin R. Guenther, George C. Rhoderick, and Walter J. Lafferty


Gas Chromatography

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, IR Spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Kovats' RI, non-polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
CapillarySE-30140.340.Haken and Korhonen, 1985Column length: 25. m; Column diameter: 0.33 mm
PackedSE-30100.384.Winskowski, 1983Gaschrom Q; Column length: 2. m
PackedSE-30150.356.Haken, Nguyen, et al., 1979Celatom AW silanized; Column length: 3.7 m
PackedApiezon L120.336.Bogoslovsky, Anvaer, et al., 1978Celite 545
PackedSE-30100.373.Pías and Gascó, 1975Ar, Chromosorb W AW DMCS HP (80-100 mesh); Column length: 1. m
PackedApiezon L100.355.Brown, Chapman, et al., 1968N2, DCMS-treated Chromosorb W; Column length: 2.3 m
PackedSE-3080.330.Viani, Müggler-Chavan, et al., 1965He, Chromosorb P; Column length: 6. m

Kovats' RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryPetrocol DH-100380.Haagen-Smit Laboratory, 1997He; Column length: 100. m; Column diameter: 0.2 mm; Program: 5C(10min) => 5C/min => 50C(48min) => 1.5C/min => 195C(91min)

Kovats' RI, polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
CapillaryOV-351100.917.Haken and Korhonen, 1985N2; Column length: 25. m; Column diameter: 0.32 mm
CapillaryOV-35180.891.Haken and Korhonen, 1985N2; Column length: 25. m; Column diameter: 0.32 mm
PackedPEG-2000152.860.Anderson, Jurel, et al., 1973He, Celite 545 (44-60 mesh); Column length: 3. m
PackedPEG-2000179.881.Anderson, Jurel, et al., 1973He, Celite 545 (44-60 mesh); Column length: 3. m
PackedCarbowax 20M100.892.Zarazir, Chovin, et al., 1970Chromosorb W; Column length: 2. m
PackedPolyethylene Glycol 4000100.904.Bonastre and Grenier, 1968Chromosorb P; Column length: 6. m
PackedPolyethylene Glycol 4000120.897.Bonastre and Grenier, 1968Chromosorb P; Column length: 6. m
PackedPolyethylene Glycol 4000140.886.Bonastre and Grenier, 1968Chromosorb P; Column length: 6. m
PackedPolyethylene Glycol 400080.914.Bonastre and Grenier, 1968Chromosorb P; Column length: 6. m

Kovats' RI, polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryCBP-20899.Shimadzu, 200325. m/0.2 mm/0.25 μm, He, 50. C @ 5. min, 4. K/min; Tend: 200. C
CapillaryDB-Wax888.Shimoda and Shibamoto, 1990He, 40. C @ 6. min, 3. K/min; Column length: 60. m; Column diameter: 0.25 mm; Tend: 190. C

Kovats' RI, polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
PackedCarbowax 20M869.Kevei and Kozma, 1976Chromosorb; Program: not specified

Van Den Dool and Kratz RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryPetrocol DH372.7Censullo, Jones, et al., 200350. m/0.25 mm/0.5 μm, He, 35. C @ 10. min, 3. K/min, 200. C @ 10. min
CapillaryPetrocol DH378.2Censullo, Jones, et al., 200350. m/0.25 mm/0.5 μm, He, 35. C @ 10. min, 3. K/min, 200. C @ 10. min
CapillarySE-30400.0Golovnya, Kuz'menko, et al., 200025. m/0.32 mm/1. μm, He, 4. K/min; Tstart: 60. C
CapillarySE-30400.0Golovnya, Kuz'menko, et al., 2000, 225. m/0.32 mm/1. μm, He, 4. K/min; Tstart: 60. C
CapillaryDB-1361.Bartelt, 199730. m/0.32 mm/5. μm, He, 35. C @ 1. min, 10. K/min; Tend: 270. C

Van Den Dool and Kratz RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
PackedSE-30368.Peng, Ding, et al., 1988Supelcoport; Chromosorb; Column length: 3.05 m; Program: 40C(5min) => 10C/min => 200C or 250C (60min)

Van Den Dool and Kratz RI, polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryCarbowax910.4Censullo, Jones, et al., 200360. m/0.25 mm/0.5 μm, He, 50. C @ 10. min, 5. K/min, 250. C @ 10. min
CapillaryFFAP916.Ott, Fay, et al., 199730. m/0.25 mm/0.25 μm, He, 20. C @ 1. min, 4. K/min, 200. C @ 1. min
PackedCarbowax 20M866.van den Dool and Kratz, 1963Celite 545, 4.6 K/min; Tstart: 75. C; Tend: 228. C

Normal alkane RI, non-polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
CapillaryDB-160.382.Shimadzu, 2003, 260. m/0.32 mm/1. μm, He
PackedSqualane100.338.Vernon, 1971N2
PackedDC-400150.370.Anderson, 1968Helium, Gas-Pak (60-80 mesh); Column length: 3.0 m
PackedSqualane125.348.Cremer and Nonn, 1964H2, Chromosorb W (80-100 mesh); Column length: 3. m

Normal alkane RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryPolydimethyl siloxane: CP-Sil 5 CB395.Bramston-Cook, 201360. m/0.25 mm/1.0 μm, Helium, 45. C @ 1.45 min, 3.6 K/min, 210. C @ 2.72 min
CapillaryPetrocol DH379.Supelco, 2012100. m/0.25 mm/0.50 μm, Helium, 20. C @ 15. min, 15. K/min, 220. C @ 30. min
CapillaryHP-5367.5Leffingwell and Alford, 200560. m/0.32 mm/0.25 μm, He, 30. C @ 2. min, 2. K/min, 260. C @ 28. min
CapillaryOV-101381.Zenkevich, 200525. m/0.20 mm/0.10 μm, N2/He, 6. K/min; Tstart: 50. C; Tend: 250. C
CapillaryBP-1370.Health Safety Executive, 200050. m/0.22 mm/0.75 μm, He, 5. K/min; Tstart: 50. C; Tend: 200. C
CapillaryDB-5MS353.5Shoenmakers, Oomen, et al., 200030. m/0.25 mm/0.25 μm, He, 40. C @ 1. min, 3. K/min; Tend: 250. C

Normal alkane RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryHP-5 MS381.Kotowska, Zalikowski, et al., 201230. m/0.25 mm/0.25 μm, Helium; Program: not specified
CapillaryMethyl Silicone373.Chen and Feng, 2007Program: not specified
CapillaryMethyl Silicone373.Kou, Zhang, et al., 2006Program: not specified
CapillaryMethyl Silicone408.Blunden, Aneja, et al., 200560. m/0.32 mm/1.0 μm, Helium; Program: -50 0C (2 min) 8 0C/min -> 200 0C (7.75 min) 25 0C -> 225 0C (8 min)
CapillaryMethyl Silicone373.Fu and Wang, 2004Program: not specified
CapillaryMethyl Silicone362.N/AProgram: not specified
CapillaryPolydimethyl siloxanes381.Zenkevich, 2001Program: not specified
CapillaryPolydimethyl siloxanes381.Zenkevich, 2001, 2Program: not specified
CapillaryMethyl Silicone381.Zenkevich, 1999Program: not specified
CapillarySPB-1353.Flanagan, Streete, et al., 199760. m/0.53 mm/5. μm, He; Program: 40C(6min) => 5C/min => 80C => 10C/min => 200C
CapillaryPolydimethyl siloxanes381.Zenkevich and Chupalov, 1996Program: not specified
CapillaryMethyl Silicone381.Zenkevich, Korolenko, et al., 1995Program: not specified
CapillaryDB-1348.Schuberth, 199430. m/0.25 mm/1. μm, He; Program: 40C (4min) => 10C/min => 200C => 50C/min => 250C
CapillarySPB-1353.Strete, Ruprah, et al., 199260. m/0.53 mm/5.0 μm, Helium; Program: 40 0C (6 min) 5 0C/min -> 80 0C 10 0C/min -> 200 0C
CapillarySPB-1391.Strete, Ruprah, et al., 199260. m/0.53 mm/5.0 μm, Helium; Program: not specified
CapillaryCP Sil 8 CB404.Weller and Wolf, 198940. m/0.25 mm/0.25 μm, He; Program: 30 0C (1 min) 15 0C/min -> 45 0C 3 0C/min -> 120 0C
CapillaryOV-1, SE-30, Methyl silicone, SP-2100, OV-101, DB-1, etc.384.Waggott and Davies, 1984Hydrogen; Column length: 50. m; Column diameter: 0.32 mm; Program: not specified

Normal alkane RI, polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
CapillaryCarbowax 20M100.892.Sun, Siepmann, et al., 200630. m/0.25 mm/0.25 μm, Helium
CapillaryCarbowax 20M60.899.Sun, Siepmann, et al., 200630. m/0.25 mm/0.25 μm, Helium
CapillaryCarbowax 20M80.895.Sun, Siepmann, et al., 200630. m/0.25 mm/0.25 μm, Helium
CapillaryDB-Wax60.921.Shimadzu, 2003, 250. m/0.32 mm/1. μm, He

Normal alkane RI, polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-Wax911.Shimadzu, 201230. m/0.32 mm/0.50 μm, Helium, 4. K/min; Tstart: 40. C; Tend: 260. C
CapillaryDB-Wax907.Chida, Sone, et al., 200460. m/0.25 mm/0.5 μm, 35. C @ 5. min, 4. K/min, 240. C @ 10. min
CapillaryDB-Wax911.Shimadzu Corporation, 200330. m/0.32 mm/0.5 μm, He, 4. K/min; Tstart: 40. C; Tend: 260. C
CapillaryDB-Wax903.Tanaka, Yamauchi, et al., 200330. m/0.25 mm/0.25 μm, 30. C @ 1. min, 4. K/min; Tend: 250. C
CapillaryDB-Wax905.Tanaka, Yamauchi, et al., 200330. m/0.25 mm/0.25 μm, 30. C @ 1. min, 4. K/min; Tend: 250. C
CapillaryTC-Wax898.Suhardi, Suzuki, et al., 200260. m/0.25 mm/0.25 μm, He, 40. C @ 10. min, 3. K/min, 230. C @ 10. min
CapillaryDB-Wax905.Duque, Bonilla, et al., 200130. m/0.25 mm/0.25 μm, Helium, 4. K/min, 220. C @ 30. min; Tstart: 25. C

Normal alkane RI, polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryCarbowax 20M920.Vinogradov, 2004Program: not specified
CapillaryPolyethylene Glycol897.Zenkevich, Korolenko, et al., 1995Program: not specified
CapillaryDB-Wax909.Peng, Yang, et al., 1991Program: not specified
CapillaryCarbowax 400, Carbowax 20M, Carbowax 1540, Carbowax 4000, Superox 06, PEG 20M, etc.907.Waggott and Davies, 1984Hydrogen; Column length: 50. m; Column diameter: 0.32 mm; Program: not specified
CapillaryCarbowax 400, Carbowax 20M, Carbowax 1540, Carbowax 4000, Superox 06, PEG 20M, etc.920.Waggott and Davies, 1984Hydrogen; Column length: 50. m; Column diameter: 0.32 mm; Program: not specified
CapillaryCarbowax 20M883.Ramsey and Flanagan, 1982Program: not specified

References

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, IR Spectrum, Gas Chromatography, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Rossini, 1932
Rossini, F.D., The heats of combustion of methyl and ethyl alcohols, J. Res. NBS, 1932, 8, 119-139. [all data]

Thermodynamics Research Center, 1997
Thermodynamics Research Center, Selected Values of Properties of Chemical Compounds., Thermodynamics Research Center, Texas A&M University, College Station, Texas, 1997. [all data]

Ivash E.V., 1955
Ivash E.V., Thermodynamic properties of ideal gaseous methanol, J. Chem. Phys., 1955, 23, 1814-1818. [all data]

Zhuravlev E.Z., 1959
Zhuravlev E.Z., Isotopic effect on thermodynamic functions of some organic deuterocompounds in the ideal gas state, Tr. Khim. i Khim. Tekhnol., 1959, 2, 475-485. [all data]

Chen S.S., 1977
Chen S.S., Thermodynamic properties of normal and deuterated methanols, J. Phys. Chem. Ref. Data, 1977, 6, 105-112. [all data]

Chao J., 1986
Chao J., Ideal gas thermodynamic properties of simple alkanols, Int. J. Thermophys., 1986, 7, 431-442. [all data]

Gurvich, Veyts, et al., 1989
Gurvich, L.V.; Veyts, I.V.; Alcock, C.B., Thermodynamic Properties of Individual Substances, 4th ed.; Vols. 1 and 2, Hemisphere, New York, 1989. [all data]

Chao J., 1986, 2
Chao J., Thermodynamic properties of key organic oxygen compounds in the carbon range C1 to C4. Part 2. Ideal gas properties, J. Phys. Chem. Ref. Data, 1986, 15, 1369-1436. [all data]

Stromsoe E., 1970
Stromsoe E., Heat capacity of alcohol vapors at atmospheric pressure, J. Chem. Eng. Data, 1970, 15, 286-290. [all data]

Halford J.O., 1957
Halford J.O., Standard heat capacities of gaseous methanol, ethanol, methane and ethane at 279 K by thermal conductivity, J. Phys. Chem., 1957, 61, 1536-1539. [all data]

De Vries T., 1941
De Vries T., The heat capacity of organic vapors. I. Methyl alcohol, J. Am. Chem. Soc., 1941, 63, 1343-1346. [all data]

Weltner W., 1951
Weltner W., Jr., Methyl alcohol: the entropy, heat capacity and polymerization equilibria in the vapor, and potential barrier to internal rotation, J. Am. Chem. Soc., 1951, 73, 2606-2610. [all data]

Evans and Keesee, 1991
Evans, D.H.; Keesee, R.G., Thermodynamics of Gas-Phase Mixed-Solvent Cluster Ions - Water and Methanol on K+ and Cl- and Comparison to Liquid Solutions, J. Phys. Chem., 1991, 95, 9, 3558, https://doi.org/10.1021/j100162a024 . [all data]

Hiraoka and Mizuse, 1987
Hiraoka, K.; Mizuse, S., Gas-Phase Solvation of Cl- with H2O, CH3OH, C2H4OH, i-C3H7OH, n-C3H7OH, and t-C4H9OH, Chem. Phys., 1987, 118, 3, 457, https://doi.org/10.1016/0301-0104(87)85078-4 . [all data]

Sieck, 1985
Sieck, L.W., Thermochemistry of Solvation of NO2- and C6H5NO2- by Polar Molecules in the Vapor Phase. Comparison with Cl- and Variation with Ligand Structure., J. Phys. Chem., 1985, 89, 25, 5552, https://doi.org/10.1021/j100271a049 . [all data]

Larson and McMahon, 1984
Larson, J.W.; McMahon, T.B., Gas phase negative ion chemistry of alkylchloroformates, Can. J. Chem., 1984, 62, 675. [all data]

French, Ikuta, et al., 1982
French, M.A.; Ikuta, S.; Kebarle, P., Hydrogen bonding of O-H and C-H hydrogen donors to Cl-. Results from mass spectrometric measurement of the ion-molecule equilibria RH + Cl- = RHCl-, Can. J. Chem., 1982, 60, 1907. [all data]

Yamdagni, Payzant, et al., 1973
Yamdagni, R.; Payzant, J.D.; Kebarle, P., Solvation of Cl- and O2- with H2O, CH3OH, and CH3CN in the gas phase, Can. J. Chem., 1973, 51, 2507. [all data]

Nee, Osterwalder, et al., 2006
Nee, M.J.; Osterwalder, A.; Zhou, J.; Neumark, D.M., Slow electron velocity-map imaging photoelectron spectra of the methoxide anion, J. Chem. Phys., 2006, 125, 1, 014306, https://doi.org/10.1063/1.2212411 . [all data]

Osborn, Leahy, et al., 1998
Osborn, D.L.; Leahy, D.J.; Kim, E.H.; deBeer, E.; Neumark, D.M., Photoelectron spectroscopy of CH3O- and CD3O-, Chem. Phys. Lett., 1998, 292, 4-6, 651-655, https://doi.org/10.1016/S0009-2614(98)00717-9 . [all data]

Bartmess, Scott, et al., 1979
Bartmess, J.E.; Scott, J.A.; McIver, R.T., Jr., The gas phase acidity scale from methanol to phenol, J. Am. Chem. Soc., 1979, 101, 6047. [all data]

Haas and Harrison, 1993
Haas, M.J.; Harrison, A.G., The Fragmentation of Proton-Bound Cluster Ions and the Gas-Phase Acidities of Alcohols, Int. J. Mass Spectrom. Ion Proc., 1993, 124, 2, 115, https://doi.org/10.1016/0168-1176(93)80003-W . [all data]

Meot-ner and Sieck, 1986
Meot-ner, M.; Sieck, L.W., Relative acidities of water and methanol, and the stabilities of the dimer adducts, J. Phys. Chem., 1986, 90, 6687. [all data]

Meot-Ner (Mautner), 1992
Meot-Ner (Mautner), M., Intermolecular Forces in Organic Clusters, J. Am. Chem. Soc., 1992, 114, 9, 3312, https://doi.org/10.1021/ja00035a024 . [all data]

Szulejko and McMahon, 1992
Szulejko, J.; McMahon, T.B., personal communication, 1992. [all data]

Meot-Ner(Mautner), 1986
Meot-Ner(Mautner), M., Comparative Stabilities of Cationic and Anionic Hydrogen-Bonded Networks. Mixed Clusters of Water-Methanol, J. Am. Chem. Soc., 1986, 108, 20, 6189, https://doi.org/10.1021/ja00280a014 . [all data]

Grimsrud and Kebarle, 1973
Grimsrud, E.P.; Kebarle, P., Gas Phase Ion Equilibria Studies of the Solvation of the Hydrogen Ion by Methanol, Dimethyl Ether and Water. Effect of Hydrogen Bonding, J. Am. Chem. Soc., 1973, 95, 24, 7939, https://doi.org/10.1021/ja00805a002 . [all data]

Larson and McMahon, 1982
Larson, J.W.; McMahon, T.B., Formation, Thermochemistry, and Relative Stabilities of Proton - Bound dimers of Oxygen n - Donor Bases from Ion Cyclotron Resonance Solvent - Exchange Equilibria Measurements, J. Am. Chem. Soc., 1982, 104, 23, 6255, https://doi.org/10.1021/ja00387a016 . [all data]

Lias, Liebman, et al., 1984
Lias, S.G.; Liebman, J.F.; Levin, R.D., Evaluated gas phase basicities and proton affinities of molecules heats of formation of protonated molecules, J. Phys. Chem. Ref. Data, 1984, 13, 695. [all data]

Keesee and Castleman, 1986
Keesee, R.G.; Castleman, A.W., Jr., Thermochemical data on Ggs-phase ion-molecule association and clustering reactions, J. Phys. Chem. Ref. Data, 1986, 15, 1011. [all data]

Paul and Kebarle, 1990
Paul, G.J.C.; Kebarle, P., Thermodynamics of the Association Reactions OH- - H2O = HOHOH- and CH3O- - CH3OH = CH3OHOCH3- in the Gas Phase, J. Phys. Chem., 1990, 94, 12, 5184, https://doi.org/10.1021/j100375a076 . [all data]

Caldwell, Rozeboom, et al., 1984
Caldwell, G.; Rozeboom, M.D.; Kiplinger, J.P.; Bartmess, J.E., Anion-alcohol hydrogen bond strengths in the gas phase, J. Am. Chem. Soc., 1984, 106, 4660. [all data]

Moylan, Dodd, et al., 1985
Moylan, C.R.; Dodd, J.A.; Brauman, J.I., Electron photodetachment spectroscopy of Sslvated anions. A probe of structure and energetics, Chem. Phys. Lett., 1985, 118, 38. [all data]

Mustanir, Matsuoka, et al., 2006
Mustanir; Matsuoka, M.; Mishima, M.; Koch, H., Stability of complexes of phenylacetylides and benzyl alkoxides with methanol in the gas phase. Acid-base correlation in the ionic hydrogen-bond strength, Bull. Chem. Soc. Japan, 2006, 79, 7, 1118-1125, https://doi.org/10.1246/bcsj.79.1118 . [all data]

MacKay and Bohme, 1978
MacKay, G.I.; Bohme, D.K., Proton-Transfer Reactions in Nitromethane at 297K, Int. J. Mass Spectrom. Ion Phys., 1978, 26, 4, 327, https://doi.org/10.1016/0020-7381(78)80052-7 . [all data]

Meot-Ner and Sieck, 1986
Meot-Ner, M.; Sieck, L.W., The ionic hydrogen bond and ion solvation. 5. OH...O- bonds. Gas phase solvation and clustering of alkoxide and carboxylate anions, J. Am. Chem. Soc., 1986, 108, 7525. [all data]

DeTuri and Ervin, 1999
DeTuri, V.F.; Ervin, K.M., Competitive threshold collision-induced dissociation: Gas-phase acidities and bond dissociation energies for a series of alcohols, J. Phys. Chem. A, 1999, 103, 35, 6911-6920, https://doi.org/10.1021/jp991459m . [all data]

Mackay, Rakshit, et al., 1982
Mackay, G.I.; Rakshit, A.B.; Bohme, D.K., An Experimental Study of the Reactivity and Relative Basicity of the Methoxide Anion in the Gas Phase at Room Temperature, and their Perturbation by Methanol Solvent, Can. J. Chem., 1982, 60, 20, 2594, https://doi.org/10.1139/v82-373 . [all data]

Caldwell and Kebarle, 1986
Caldwell, G.; Kebarle, P., Mobility of Gaseous Ions in Weak Electric Fields in Unpublished results, 1986. [all data]

Taft, 1983
Taft, R.W., Protonic acidities and basicities in the gas phase and in solution: Substiuent and solvent effects, Prog. Phys. Org. Chem., 1983, 14, 247. [all data]

Bogdanov, Peschke, et al., 1999
Bogdanov, B.; Peschke, M.; Tonner, D.S.; Szulejko, J.E.; McMahon, T.B., Stepwise solvation of halides by alcohol molecules in the gas phase, Int. J. Mass Spectrom., 1999, 187, 707-725, https://doi.org/10.1016/S1387-3806(98)14180-5 . [all data]

Chabinyc and Brauman, 1999
Chabinyc, M.L.; Brauman, J.I., Hydrogen bond strength and acidity. Structural and energetic correlations for acetylides and alcohols, J. Phys. Chem. A, 1999, 103, 46, 9163-9166, https://doi.org/10.1021/jp992852v . [all data]

Larson, Szulejko, et al., 1988
Larson, J.W.; Szulejko, J.E.; McMahon, T.B., Gas Phase Lewis Acid-Base Interactions. An Experimental Determination of Cyanide Binding Energies From Ion Cyclotron Resonance and High-Pressure Mass Spectrometric Equilibrium Measurements., J. Am. Chem. Soc., 1988, 110, 23, 7604, https://doi.org/10.1021/ja00231a004 . [all data]

Meot-ner, 1988
Meot-ner, M., Ionic Hydrogen Bond and Ion Solvation. 6. Interaction Energies of the Acetate Ion with Organic Molecules. Comparison of CH3COO- with Cl-, CN-, and SH-, J. Am. Chem. Soc., 1988, 110, 12, 3854, https://doi.org/10.1021/ja00220a022 . [all data]

Larson and McMahon, 1987
Larson, J.W.; McMahon, T.B., Hydrogen bonding in gas phase anions. The energetics of interaction between cyanide ion and bronsted acids, J. Am. Chem. Soc., 1987, 109, 6230. [all data]

Payzant, Yamdagni, et al., 1971
Payzant, J.D.; Yamdagni, R.; Kebarle, P., Hydration of CN-, NO2-, NO3-, and HO- in the gas phase, Can. J. Chem., 1971, 49, 3308. [all data]

Rodgers and Armentrout, 2000
Rodgers, M.T.; Armentrout, P.B., Noncovalent Metal-Ligand Bond Energies as Studied by Threshold Collision-Induced Dissociation, Mass Spectrom. Rev., 2000, 19, 4, 215, https://doi.org/10.1002/1098-2787(200007)19:4<215::AID-MAS2>3.0.CO;2-X . [all data]

Woodin and Beauchamp, 1978
Woodin, R.L.; Beauchamp, J.L., Bonding of Li+ to Lewis Bases in the Gas Phase. Reversals in Methyl Substituent Effects for Different Reference Acids, J. Am. Chem. Soc., 1978, 100, 2, 501, https://doi.org/10.1021/ja00470a024 . [all data]

Dzidic and Kebarle, 1970
Dzidic, I.; Kebarle, P., Hydration of the Alkali Ions in the Gas Phase. Enthalpies and Entropies of Reactions M+(H2O)n-1 + H2O = M+(H2O)n, J. Phys. Chem., 1970, 74, 7, 1466, https://doi.org/10.1021/j100702a013 . [all data]

Staley and Beauchamp, 1975
Staley, R.H.; Beauchamp, J.L., Intrinsic Acid - Base Properties of Molecules. Binding Energies of Li+ to pi - and n - Donor Bases, J. Am. Chem. Soc., 1975, 97, 20, 5920, https://doi.org/10.1021/ja00853a050 . [all data]

Caldwell and Kebarle, 1984
Caldwell, G.; Kebarle, P., Binding energies and structural effects in halide anion-ROH and -RCOOH complexes from gas phase equilibria measurements, J. Am. Chem. Soc., 1984, 106, 967. [all data]

Hiraoka and Yamabe, 1991
Hiraoka, K.; Yamabe, S., Solvation of Halide Ions with CH3OH in the gas Phase, Int. J. Mass Spectrom. Ion Proc., 1991, 109, 133, https://doi.org/10.1016/0168-1176(91)85101-Q . [all data]

Caldwell, Masucci, et al., 1989
Caldwell, G.W.; Masucci, J.A.; Ikonomou, M.G., Negative Ion Chemical Ionization Mass Spectrometry - Binding of Molecules to Bromide and Iodide Anions, Org. Mass Spectrom., 1989, 24, 1, 8, https://doi.org/10.1002/oms.1210240103 . [all data]

Tanabe, Morgon, et al., 1996
Tanabe, F.K.J.; Morgon, N.H.; Riveros, J.M., Relative Bromide and Iodide Affinity of Simple Solvent Molecules Determined by FT-ICR, J. Phys. Chem., 1996, 100, 8, 2862-2866, https://doi.org/10.1021/jp952290p . [all data]

Larson and McMahon, 1983
Larson, J.W.; McMahon, T.B., Strong hydrogen bonding in gas-phase anions. An ion cyclotron resonance determination of fluoride binding energetics to bronsted acids from gas-phase fluoride exchange equilibria measurements, J. Am. Chem. Soc., 1983, 105, 2944. [all data]

Arshadi, Yamdagni, et al., 1970
Arshadi, M.; Yamdagni, R.; Kebarle, P., Hydration of Halide Negative Ions in the Gas Phase. II. Comparison of Hydration Energies for the Alkali Positive and Halide Negative Ions, J. Phys. Chem., 1970, 74, 7, 1475, https://doi.org/10.1021/j100702a014 . [all data]

Hiraoka, Mizure, et al., 1988
Hiraoka, K.; Mizure, S.; Yamabe, S.; Nakatsuji, Y., Gas Phase Clustering Reactions of CN- and CH2CN- with MeCN, Chem. Phys. Lett., 1988, 148, 6, 497, https://doi.org/10.1016/0009-2614(88)80320-8 . [all data]

Wojtyniak and Stone, 1986
Wojtyniak, A.C.M.; Stone, A.J., A High-Pressure Mass Spectrometric Study of the Bonding of Trimethylsilylium to Oxygen and Aromatic Bases, Can. J. Chem., 1986, 74, 59. [all data]

Amicangelo and Armentrout, 2001
Amicangelo, J.C.; Armentrout, P.B., Relative and Absolute Bond Dissociation Energies of Sodium Cation Complexes Determined Using Competitive Collision-Induced Dissociation Experiments, Int. J. Mass Spectrom., 2001, 212, 1-3, 301, https://doi.org/10.1016/S1387-3806(01)00494-8 . [all data]

Armentrout and Rodgers, 2000
Armentrout, P.B.; Rodgers, M.T., An Absolute Sodium Cation Affinity Scale: Threshold Collision-Induced Dissociation Experiments and ab Initio Theory, J. Phys. Chem A, 2000, 104, 11, 2238, https://doi.org/10.1021/jp991716n . [all data]

Hoyau, Norrman, et al., 1999
Hoyau, S.; Norrman, K.; McMahon, T.B.; Ohanessian, G., A Quantitative Basis for a Scale of Na+ Affinities of Organic and Small Biological Molecules in the Gas Phase, J. Am. Chem. Soc., 1999, 121, 38, 8864, https://doi.org/10.1021/ja9841198 . [all data]

Guo, Conklin, et al., 1989
Guo, B.C.; Conklin, B.J.; Castleman, A.W., Thermochemical Properties of Ion Complexes Na+(M)n in the Gas Phase, J. Am. Chem. Soc., 1989, 111, 17, 6506, https://doi.org/10.1021/ja00199a005 . [all data]

McMahon and Ohanessian, 2000
McMahon, T.B.; Ohanessian, G., An Experimental and Ab Initio Study of the Nature of the Binding in Gas-Phase Complexes of Sodium Ions, Chem. Eur. J., 2000, 6, 16, 2931, https://doi.org/10.1002/1521-3765(20000818)6:16<2931::AID-CHEM2931>3.0.CO;2-7 . [all data]

Wiberg, Morgan, et al., 1994
Wiberg, K.B.; Morgan, K.M.; Maltz, H., Thermochemistry of carbonyl reactions. 6. A study of hydration equilibria, J. Am. Chem. Soc., 1994, 116, 11067-11077. [all data]

Wiberg and Squires, 1979
Wiberg, K.B.; Squires, R.R., Thermodynamics of hydrolysis aliphatic ketals. An entropy component of steric effects, J. Am. Chem. Soc., 1979, 101, 5512-5515. [all data]

Wiberg and Squires, 1979, 2
Wiberg, K.B.; Squires, R.R., A microprocessor-controlled system for precise measurement of temperature changes. Determination of the enthalpies of hydrolysis of some polyoxygenated hydrocarbons, J. Chem. Thermodyn., 1979, 11, 773-786. [all data]

Stern and Dorer, 1962
Stern, J.H.; Dorer, F.H., Standard heats of formation of 2,2-Dimethoxypropane (1), and 2,2 -Diethoxypropane (1). Group additivity theory and calculated heats of formation and five ketals, J. Phys. Chem., 1962, 66, 97-99. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

El-Shall, Schriver, et al., 1989
El-Shall, M.S.; Schriver, K.E.; Whetten, R.L.; Meot-Ner (Mautner), M., Ion/Molecule Clustering Thermochemistry by Laser Ionization High - Pressure Mass Spectrometry, J. Phys. Chem., 1989, 93, 24, 7969, https://doi.org/10.1021/j100361a002 . [all data]

Chowdhury, Grimsrud, et al., 1987
Chowdhury, S.; Grimsrud, E.P.; Kebarle, P., Bonding of Charged Delocalized Anions to Protic and Dipolar Aprotic Solvent Molecules, J. Phys. Chem., 1987, 91, 10, 2551, https://doi.org/10.1021/j100294a021 . [all data]

Chowdhury, 1987
Chowdhury, S. Grimsrud, Bonding of Charge Delocalized Anions to Protic and Dipolar Aprotic Solvents, J. Phys. Chem., 1987, 91, 10, 2551, https://doi.org/10.1021/j100294a021 . [all data]

Hiraoka, Grimsrud, et al., 1974
Hiraoka, K.; Grimsrud, E.P.; Kebarle, P., Gas Phase Ion Equilibria Studies of the Hydrogen Ion in Water - Dimethyl Ether and Methanol - Dimethyl Ether Mixtures, J. Am. Chem. Soc., 1974, 96, 11, 3359, https://doi.org/10.1021/ja00818a004 . [all data]

Haken and Korhonen, 1985
Haken, J.K.; Korhonen, I.O.O., Gas chromatography of homologous esters. XXVII. Retention increments of C1-C18 primary alkanols and their 2-chloropropanoyl and 3-chloropropanoyl derivatives on SE-30 and OV-351 capillary columns, J. Chromatogr., 1985, 319, 131-142, https://doi.org/10.1016/S0021-9673(01)90548-5 . [all data]

Winskowski, 1983
Winskowski, J., Gaschromatographische Identifizierung von Stoffen anhand von Indexziffem und unterschiedlichen Detektoren, Chromatographia, 1983, 17, 3, 160-165, https://doi.org/10.1007/BF02271041 . [all data]

Haken, Nguyen, et al., 1979
Haken, J.K.; Nguyen, A.; Wainwright, M.S., Application of linear extrathermodynamic relationships to alcohols, aldehydes, ketones, amd ethoxy alcohols, J. Chromatogr., 1979, 179, 1, 75-85, https://doi.org/10.1016/S0021-9673(00)80658-5 . [all data]

Bogoslovsky, Anvaer, et al., 1978
Bogoslovsky, Yu.N.; Anvaer, B.I.; Vigdergauz, M.S., Chromatographic constants in gas chromatography (in Russian), Standards Publ. House, Moscow, 1978, 192. [all data]

Pías and Gascó, 1975
Pías, J.B.; Gascó, L., GC Retention Data of Alcohols and Benzoyl Derivatives of Alcohols, J. Chromatogr. - Chrom. Data, 1975, d14-d16. [all data]

Brown, Chapman, et al., 1968
Brown, I.; Chapman, I.L.; Nicholson, G.J., Gas chromatography of polar solutes in electron acceptor stationary phases, Aust. J. Chem., 1968, 21, 5, 1125-1141, https://doi.org/10.1071/CH9681125 . [all data]

Viani, Müggler-Chavan, et al., 1965
Viani, R.; Müggler-Chavan, F.; Reymond, D.; Egli, R.H., 196. Sur la composition de l'arôme de café, Helv. Chim. Acta, 1965, 48, 195-196, 1809-1815, https://doi.org/10.1002/hlca.19650480743 . [all data]

Haagen-Smit Laboratory, 1997
Haagen-Smit Laboratory, Procedure for the detailed hydrocarbon analysis of gasolines by single column high efficiency (capillary) column gas chromatography, SOP NO. MLD 118, Revision No. 1.1, California Environmental Protection Agency, Air Resources Board, El Monte, California, 1997, 22. [all data]

Anderson, Jurel, et al., 1973
Anderson, A.; Jurel, S.; Shymanska, M.; Golender, L., Gas-liquid chromatography of some aliphatic and heterocyclic mono- and pollyfunctional amines. VII. Retention indices of amines in some polar and unpolar stationary phases, Latv. PSR Zinat. Akad. Vestis Kim. Ser., 1973, 1, 51-63. [all data]

Zarazir, Chovin, et al., 1970
Zarazir, D.; Chovin, P.; Guiochon, G., Identification of hydroxylic compounds and their derivatives by gas chromatography, Chromatographia, 1970, 3, 4, 180-195, https://doi.org/10.1007/BF02269018 . [all data]

Bonastre and Grenier, 1968
Bonastre, J.; Grenier, P., Contribution à l'étude de la polarité des phases stationnaires en chromatographie gaz-liquide. III. Calcul des coefficients d'activité relatifs et des indices de rétention de quelques alcools aliphatiques, Bull. Soc. Chim. Fr., 1968, 1, 118-125. [all data]

Shimadzu, 2003
Shimadzu, Gas chromatography analysis of organic solvents using capillary columns (No. 2), 2003, retrieved from http://www.shimadzu.com/apps/form.cfm. [all data]

Shimoda and Shibamoto, 1990
Shimoda, M.; Shibamoto, T., Isolation and identification of headspace volatiles from brewed coffee with an on-column GC/MS method, J. Agric. Food Chem., 1990, 38, 3, 802-804, https://doi.org/10.1021/jf00093a045 . [all data]

Kevei and Kozma, 1976
Kevei, E.; Kozma, E., Gaschromatographische Untersuchungsmethoden zur Aromaprüfung in gekochtem Schweinefleisch (M. semimembranosus), Nahrung, 1976, 20, 3, 243-252, https://doi.org/10.1002/food.19760200303 . [all data]

Censullo, Jones, et al., 2003
Censullo, A.C.; Jones, D.R.; Wills, M.T., Speciation of the volatile organic compounds (VOCs) in solventborne aerosol coatings by solid phase microextraction-gas chromatography, J. Coat. Technol., 2003, 75, 936, 47-53, https://doi.org/10.1007/BF02697922 . [all data]

Golovnya, Kuz'menko, et al., 2000
Golovnya, R.V.; Kuz'menko, T.e.; Samusenko, A.L., Method for prediction of the ability of analyte for self-association in pure liquid, Proceedings 23rd ISCC; CD-ROM, 2000, retrieved from http://www.richrom.com/assets/CD23PDF/a09.pdf. [all data]

Golovnya, Kuz'menko, et al., 2000, 2
Golovnya, R.V.; Kuz'menko, T.E.; Samusenko, A.L., Gas-chromatographic method of evaluation of n-alkanol ability for self-association in pure liquid, Russ. Chem. Bull. (Engl. Transl.), 2000, 49, 2, 317-320, https://doi.org/10.1007/BF02494680 . [all data]

Bartelt, 1997
Bartelt, R.J., Calibration of a commercial solid-phase microextraction device for measuring headspace concentrations of organic volatiles, Anal. Chem., 1997, 69, 3, 364-372, https://doi.org/10.1021/ac960820n . [all data]

Peng, Ding, et al., 1988
Peng, C.T.; Ding, S.F.; Hua, R.L.; Yang, Z.C., Prediction of Retention Indexes I. Structure-Retention Index Relationship on Apolar Columns, J. Chromatogr., 1988, 436, 137-172, https://doi.org/10.1016/S0021-9673(00)94575-8 . [all data]

Ott, Fay, et al., 1997
Ott, A.; Fay, L.B.; Chaintreau, A., Determination and origin of the aroma impact compounds of yogurt flavor, J. Agric. Food Chem., 1997, 45, 3, 850-858, https://doi.org/10.1021/jf960508e . [all data]

van den Dool and Kratz, 1963
van den Dool, H.; Kratz, P. Dec., A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography, J. Chromatogr., 1963, 11, 463-471, https://doi.org/10.1016/S0021-9673(01)80947-X . [all data]

Shimadzu, 2003, 2
Shimadzu, Gas chromatography analysis of organic solvents using capillary columns (No. 3), 2003, retrieved from http://www.shimadzu.com/apps/form.cfm. [all data]

Vernon, 1971
Vernon, F., An investigation into hydrogen bonding in gas-liquid chromatography, J. Chromatogr., 1971, 63, 249-257, https://doi.org/10.1016/S0021-9673(01)85637-5 . [all data]

Anderson, 1968
Anderson, D.G., USe of Kovats retention indices and response factors for the qualitative and quantitative analysis of coating solvents, J. Paint Technol., 1968, 40, 527, 549-557. [all data]

Cremer and Nonn, 1964
Cremer, E.; Nonn, H., Kennzahlen zur Identifizierung chromatographisch getrennter Komponenten, Monatsh. Chem., 1964, 3, 3, 910-921, https://doi.org/10.1007/BF00908804 . [all data]

Bramston-Cook, 2013
Bramston-Cook, R., Kovats indices for C2-C13 hydrocarbons and selected oxygenated/halocarbons with 100 % dimethylpolysiloxane columns, 2013, retrieved from http://lotusinstruments.com/monographs/List .... [all data]

Supelco, 2012
Supelco, CatalogNo. 24160-U, Petrocol DH Columns. Catalog No. 24160-U, 2012, retrieved from http://www.sigmaaldrich.com/etc/medialib/docs/Supelco/Datasheet/1/w97949.Par.0001.File.tmp/w97949.pdf. [all data]

Leffingwell and Alford, 2005
Leffingwell, J.C.; Alford, E.D., Volatile constituents of Perique tobacco, Electron. J. Environ. Agric. Food Chem., 2005, 4, 2, 899-915. [all data]

Zenkevich, 2005
Zenkevich, I.G., Experimentally measured retention indices., 2005. [all data]

Health Safety Executive, 2000
Health Safety Executive, MDHS 96 Volatile organic compounds in air - Laboratory method using pumed solid sorbent tubes, solvent desorption and gas chromatography in Methods for the Determination of Hazardous Substances (MDHS) guidance, Crown, Colegate, Norwich, 2000, 1-24, retrieved from http://www.hse.gov.uk/pubns/mdhs/pdfs/mdhs96.pdf. [all data]

Shoenmakers, Oomen, et al., 2000
Shoenmakers, P.J.; Oomen, J.L.M.M.; Blomberg, J.; Genuit, W.; van Velzen, G., Comparison of comprehensive two-dimensional gas chromatography and gas chromatography-mass spectrometry for the characterization of complex hydrocarbon mixtures, J. Chromatogr. A, 2000, 892, 1-2, 29-46, https://doi.org/10.1016/S0021-9673(00)00744-5 . [all data]

Kotowska, Zalikowski, et al., 2012
Kotowska, U.; Zalikowski, M.; Isidorov, V.A., HS-SPME/GC-MS analysis of volatile and semi-volatile organic compounds emitted from municipal sewage sludge, Environ. Monit. Asses., 2012, 184, 5, 2893-2907, https://doi.org/10.1007/s10661-011-2158-8 . [all data]

Chen and Feng, 2007
Chen, Y.; Feng, C., QSPR study on gas chromatography retention index of some organic pollutants, Comput. Appl. Chem. (China), 2007, 24, 10, 1404-1408. [all data]

Kou, Zhang, et al., 2006
Kou, J.; Zhang, S.; Hu, Y.; Qiao, H.; Li, J., Stidy on the relationships between structures and gas chromatographic retention indices of alcohols, Comput. Appl. Chem. (Chinese), 2006, 23, 7, 651-654. [all data]

Blunden, Aneja, et al., 2005
Blunden, J.; Aneja, V.P.; Lonneman, W.A., Characterization of non-methane volatile organic compounds at swine facilities in eastern North Carolina, Atm. Environ., 2005, 39, 36, 6707-6718, https://doi.org/10.1016/j.atmosenv.2005.03.053 . [all data]

Fu and Wang, 2004
Fu, S.-P.; Wang, Y.-Q., Estimation and prediction of gas chromatographic retention indices of alcohols by molecular electronegativity-distance vector, J. Chongqing Univ., 2004, 27, 6, 106-109. [all data]

Zenkevich, 2001
Zenkevich, I.G., Encyclopedia of Chromatography. Derivatization of Acids for GC Analysis, Marcel Dekker, Inc., New York - Basel, 2001, 221. [all data]

Zenkevich, 2001, 2
Zenkevich, I.G., Encyclopedia of Chromatography. Derivatization of Carbonyls for GC Analysis, MArcel Dekker, Inc., New York - Basel, 2001, 233. [all data]

Zenkevich, 1999
Zenkevich, I.G., New Application of the Retention Index Concept in Gas and High Performance Liquid Chromatography, Fresenius' J. Anal. Chem., 1999, 365, 4, 305-309, https://doi.org/10.1007/s002160051491 . [all data]

Flanagan, Streete, et al., 1997
Flanagan, R.J.; Streete, P.J.; Ramsey, J.D., Volatile Substance Abuse, UNODC Technical Series, No 5, United Nations, Office on Drugs and Crime, Vienna International Centre, PO Box 500, A-1400 Vienna, Austria, 1997, 56, retrieved from http://www.odccp.org/pdf/technicalseries1997-01-011.pdf. [all data]

Zenkevich and Chupalov, 1996
Zenkevich, I.G.; Chupalov, A.A., New Possibilities of Chromato Mass Pectrometric Identification of Organic Compounds Using Increments of Gas Chromatographic Retention Indices of Molecular Structural Fragments, Zh. Org. Khim. (Rus.), 1996, 32, 5, 656-666. [all data]

Zenkevich, Korolenko, et al., 1995
Zenkevich, I.G.; Korolenko, L.I.; Khralenkova, N.B., Desorption with solvent vapor as a method of sample preparation in the sorption preconcentration of organic-compounds from the air of a working area and from industrial-waste gases, J. Appl. Chem. USSR (Engl. Transl.), 1995, 50, 10, 937-944. [all data]

Schuberth, 1994
Schuberth, J., Joint use of retention index and mass spectrum in postmortem tests for volatile organics by headspace capillary gas chromatography with ion-trap detection, J. Chromatogr. A, 1994, 674, 1-2, 63-71, https://doi.org/10.1016/0021-9673(94)85217-0 . [all data]

Strete, Ruprah, et al., 1992
Strete, P.J.; Ruprah, M.; Ramsey, J.D.; Flanagan, R.J., Detection and identification of volatile substances by headspace capillary gas chromatography to aid the diagnosis of acute poisoning, Analyst, 1992, 117, 7, 1111-1127, https://doi.org/10.1039/an9921701111 . [all data]

Weller and Wolf, 1989
Weller, J.-P.; Wolf, M., Massenspektroskopie und Headspace-GC, Beitr. Gerichtl. Med., 1989, 47, 525-532. [all data]

Waggott and Davies, 1984
Waggott, A.; Davies, I.W., Identification of organic pollutants using linear temperature programmed retention indices (LTPRIs) - Part II, 1984, retrieved from http://dwi.defra.gov.uk/research/completed-research/reports/dwi0383.pdf. [all data]

Sun, Siepmann, et al., 2006
Sun, L.; Siepmann, J.I.; Klotz, W.L.; Schure, M.R., retention in gas-liquid chromatography with a polyethylene oxide stationary phase: molecular simulation and experiment, J. Chromatogr. A, 2006, 1126, 1-2, 373-380, https://doi.org/10.1016/j.chroma.2006.05.084 . [all data]

Shimadzu, 2012
Shimadzu, Pharmaceutical Related, Analysis of pharmaceutical residual solvent (observation of separation) (1) - GC, 2012, retrieved from www.shimadzu.ru/applications/Applicationspdf/GC/Pharma/Pharmaceutical residual solvents GC.pdf. [all data]

Chida, Sone, et al., 2004
Chida, M.; Sone, Y.; Tamura, H., Aroma characteristics of stored tobacco cut leaves analyzed by a high vacuum distillation and canister system, J. Agric. Food Chem., 2004, 52, 26, 7918-7924, https://doi.org/10.1021/jf049223p . [all data]

Shimadzu Corporation, 2003
Shimadzu Corporation, Analysis of pharmaceutical residual solvent (observation of separation), 2003, retrieved from http://www.shimadzu.com.br/analitica/aplicacoes/book/pharm69.pdf. [all data]

Tanaka, Yamauchi, et al., 2003
Tanaka, T.; Yamauchi, T.; Katsumata, R.; Kiuchi, K., Comparison of volatile components in commercial Itohiki-Natto by solid phase microextraction and gas chromatography, Nippon Shokuhin Kagaku Kogaku Kaishi, 2003, 50, 6, 278-285, https://doi.org/10.3136/nskkk.50.278 . [all data]

Suhardi, Suzuki, et al., 2002
Suhardi, S.; Suzuki, M.; Yoshida, K.; Muto, T.; Fujita, A.; Watanbe, N., Changes in the volatile compounds and in the chemical and physical properties of snake fruit (Salacca edulis Reinw) Cv. Pondoh during maturation, J. Agric. Food Chem., 2002, 50, 26, 7627-7633, https://doi.org/10.1021/jf020620e . [all data]

Duque, Bonilla, et al., 2001
Duque, C.; Bonilla, A.; Bautista, E.; Zea, S., Exudation of low molecular wight compounds (thiobismethane, methyl isocyanide, amd methyl isothiocyanate) as a possible chemical defense mechanism in the marine sponge Ircinia felix, Biochem. Systematics Ecol., 2001, 29, 5, 459-467, https://doi.org/10.1016/S0305-1978(00)00081-8 . [all data]

Vinogradov, 2004
Vinogradov, B.A., Production, composition, properties and application of essential oils, 2004, retrieved from http://viness.narod.ru. [all data]

Peng, Yang, et al., 1991
Peng, C.T.; Yang, Z.C.; Ding, S.F., Prediction of rentention idexes. II. Structure-retention index relationship on polar columns, J. Chromatogr., 1991, 586, 1, 85-112, https://doi.org/10.1016/0021-9673(91)80028-F . [all data]

Ramsey and Flanagan, 1982
Ramsey, J.D.; Flanagan, R.J., Detection and Identification of Volatile Organic Compounds in Blood by Headspace Gas Chromatography as an Aid to the Diagnosis of Solvent Abuse, J. Chromatogr., 1982, 240, 2, 423-444, https://doi.org/10.1016/S0021-9673(00)99622-5 . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, IR Spectrum, Gas Chromatography, References