2-Propanone, 1,1,1,3,3,3-hexafluoro-

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Reaction thermochemistry data, IR Spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Quantity Value Units Method Reference Comment
Δfgas-342.6kcal/molSemiStewart, 2004 

Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, IR Spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

Fluorine anion + 2-Propanone, 1,1,1,3,3,3-hexafluoro- = (Fluorine anion • 2-Propanone, 1,1,1,3,3,3-hexafluoro-)

By formula: F- + C3F6O = (F- • C3F6O)

Quantity Value Units Method Reference Comment
Δr49.7 ± 2.0kcal/molIMRELarson and McMahon, 1985gas phase; These relative affinities are ca. 10 kcal/mol weaker than threshold values (see Wenthold and Squires, 1995) for donors greater than ca. 27 kcal/mol in free energy. This discrepancy has not yet been resolved, though the stronger value appears preferable.; B,M
Quantity Value Units Method Reference Comment
Δr27.cal/mol*KN/ALarson and McMahon, 1985gas phase; switching reaction,Thermochemical ladder(F-)H2O, Entropy change calculated or estimated; Arshadi, Yamdagni, et al., 1970; M
Quantity Value Units Method Reference Comment
Δr41.6 ± 2.0kcal/molIMRELarson and McMahon, 1985gas phase; These relative affinities are ca. 10 kcal/mol weaker than threshold values (see Wenthold and Squires, 1995) for donors greater than ca. 27 kcal/mol in free energy. This discrepancy has not yet been resolved, though the stronger value appears preferable.; B,M

Chlorine anion + 2-Propanone, 1,1,1,3,3,3-hexafluoro- = (Chlorine anion • 2-Propanone, 1,1,1,3,3,3-hexafluoro-)

By formula: Cl- + C3F6O = (Cl- • C3F6O)

Quantity Value Units Method Reference Comment
Δr28.8 ± 1.0kcal/molTDAsBofdanov and McMahon, 2002gas phase; B
Δr22.9 ± 2.0kcal/molIMRELarson and McMahon, 1985gas phase; B,M
Quantity Value Units Method Reference Comment
Δr22.cal/mol*KN/ALarson and McMahon, 1985gas phase; switching reaction,Thermochemical ladder(t-C4H9OH), Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr17.6 ± 1.0kcal/molTDAsBofdanov and McMahon, 2002gas phase; B
Δr16.3 ± 2.0kcal/molIMRELarson and McMahon, 1985gas phase; B,M
Δr16.3kcal/molICRLarson and McMahon, 1984gas phase; switching reaction(Cl-)(C2H5)3B; M

Methyl cation + 2-Propanone, 1,1,1,3,3,3-hexafluoro- = (Methyl cation • 2-Propanone, 1,1,1,3,3,3-hexafluoro-)

By formula: CH3+ + C3F6O = (CH3+ • C3F6O)

Quantity Value Units Method Reference Comment
Δr58.5kcal/molPHPMSMcMahon, Heinis, et al., 1988gas phase; switching reaction(CH3+)N2, Entropy change calculated or estimated, uses MCA(N2) = 48.3 kcal/mol; Foster, Williamson, et al., 1974; M

Isopropylphenol + 2-Propanone, 1,1,1,3,3,3-hexafluoro- = 2-Propanol, 1,1,1,3,3,3-hexafluoro-2-[2-(1-methylethyl)phenoxy]-

By formula: C9H12O + C3F6O = C12H12F6O2

Quantity Value Units Method Reference Comment
Δr-13.5kcal/molEqkN/Aliquid phase; solvent: Ethyl acetate; Flourene NMR; ALS

(CAS Reg. No. 44870-01-1 • 42949672952-Propanone, 1,1,1,3,3,3-hexafluoro-) + 2-Propanone, 1,1,1,3,3,3-hexafluoro- = CAS Reg. No. 44870-01-1

By formula: (CAS Reg. No. 44870-01-1 • 4294967295C3F6O) + C3F6O = CAS Reg. No. 44870-01-1

Quantity Value Units Method Reference Comment
Δr82.6 ± 5.5kcal/molN/ATaft, Koppel, et al., 1990gas phase; B

1,1,1,3,3,3-hexafluoropropane-2,2-diol = 2-Propanone, 1,1,1,3,3,3-hexafluoro- + Water

By formula: C3H2F6O2 = C3F6O + H2O

Quantity Value Units Method Reference Comment
Δr20.4 ± 0.2kcal/molCmRogers and Rapiejko, 1971solid phase; Hydration; ALS

1,1,1,3,3,3-Hexafluoro-2-methoxy-2-propanol = Methyl Alcohol + 2-Propanone, 1,1,1,3,3,3-hexafluoro-

By formula: C4H4F6O2 = CH4O + C3F6O

Quantity Value Units Method Reference Comment
Δr21.3 ± 0.3kcal/molCmRogers and Rapiejko, 1971liquid phase; Hydration; ALS

Propene + 2-Propanone, 1,1,1,3,3,3-hexafluoro- = 4-Penten-2-ol, 1,1,1-trifluoro-2-(trifluoromethyl)-

By formula: C3H6 + C3F6O = C6H6F6O

Quantity Value Units Method Reference Comment
Δr-18.7 ± 1.0kcal/molEqkMoore, 1971gas phase; ALS

IR Spectrum

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Gas Phase Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

IR spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Notice: Concentration information is not available for this spectrum and, therefore, molar absorptivity values cannot be derived.

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

View spectrum image in SVG format.

Download spectrum in JCAMP-DX format.

Owner NIST Standard Reference Data Program
Collection (C) 2018 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin Sadtler Research Labs Under US-EPA Contract
State gas

This IR spectrum is from the NIST/EPA Gas-Phase Infrared Database .


References

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, IR Spectrum, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Stewart, 2004
Stewart, J.J.P., Comparison of the accuracy of semiempirical and some DFT methods for predicting heats of formation, J. Mol. Model, 2004, 10, 1, 6-10, https://doi.org/10.1007/s00894-003-0157-6 . [all data]

Larson and McMahon, 1985
Larson, J.W.; McMahon, T.B., Fluoride and chloride affinities of the main group oxides, fluorides, oxofluorides, and alkyls. Quantitative scales of lewis acidities from ICR halide exchange equilibria, J. Am. Chem. Soc., 1985, 107, 766. [all data]

Wenthold and Squires, 1995
Wenthold, P.G.; Squires, R.R., Bond dissociation energies of F2(-) and HF2(-). A gas-phase experimental and G2 theoretical study, J. Phys. Chem., 1995, 99, 7, 2002, https://doi.org/10.1021/j100007a034 . [all data]

Arshadi, Yamdagni, et al., 1970
Arshadi, M.; Yamdagni, R.; Kebarle, P., Hydration of Halide Negative Ions in the Gas Phase. II. Comparison of Hydration Energies for the Alkali Positive and Halide Negative Ions, J. Phys. Chem., 1970, 74, 7, 1475, https://doi.org/10.1021/j100702a014 . [all data]

Bofdanov and McMahon, 2002
Bofdanov, B.; McMahon, T.B., Structures, Thermochemistry, and Infrared Spectra of Chloride Ion-Fluorinated Acetone Complexes and Neutral Fluorinated Acetones in the Gas Phase: Experiment and Theory, Int. J. Mass Spectrom., 2002, 219, 3, 593-613, https://doi.org/10.1016/S1387-3806(02)00745-5 . [all data]

Larson and McMahon, 1984
Larson, J.W.; McMahon, T.B., Fluoride and chloride affinities of main group oxides, fluorides, oxofluorides, and alkyls. Quantitative scales of lewis acidities from ion cyclotron resonance halide-exchange equilibria, J. Phys. Chem., 1984, 88, 1083. [all data]

McMahon, Heinis, et al., 1988
McMahon, T.; Heinis, T.; Nicol, G.; Hovey, J.K.; Kebarle, P., Methyl Cation Affinities, J. Am. Chem. Soc., 1988, 110, 23, 7591, https://doi.org/10.1021/ja00231a002 . [all data]

Foster, Williamson, et al., 1974
Foster, M.S.; Williamson, A.D.; Beauchamp, J.L., Photoionization mass spectrometry of trans-azomethane, Int. J. Mass Spectrom. Ion Phys., 1974, 15, 429. [all data]

Taft, Koppel, et al., 1990
Taft, R.W.; Koppel, I.J.; Topsom, R.D.; Anvia, F., Acidities of OH Compounds, including Alcohols, Phenols, Carboxylic Acids, and Mineral Acids, J. Am. Chem. Soc., 1990, 112, 6, 2047, https://doi.org/10.1021/ja00162a001 . [all data]

Rogers and Rapiejko, 1971
Rogers, F.E.; Rapiejko, R.J., Thermochemistry of carbonyl addition reactions. I. Addition of water and methanol to hexafluoroacetone, J. Am. Chem. Soc., 1971, 93, 4596-1597. [all data]

Moore, 1971
Moore, L.O., Kinetics and thermodynamic data for the hydrogen fluoride addition to vinyl fluoride, Can. J. Chem., 1971, 49, 2471-2475. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, IR Spectrum, References