1,3-Cyclopentadiene

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Reaction thermochemistry data, IR Spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas139.kJ/molChydRoth, Adamczak, et al., 1991ALS
Δfgas133.4kJ/molEqkFuruyama, Golden, et al., 1970ALS
Quantity Value Units Method Reference Comment
Δcgas-2960. ± 30.kJ/molCcbWassermann, 1935Corresponding Δfgas = 130. kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Quantity Value Units Method Reference Comment
gas274.47J/mol*KN/AFuruyama S., 1970This a second law entropy value was obtained from study of gas-phase equilibrium. The value of S(298.2 K)=270.3(4.2) J/mol*K was obtained from other equilibrium study [ Grant C.J., 1969].; GT

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
33.2950.Dorofeeva O.V., 1986Recommended S(T) values differ from other statistically calculated values [ Turnbull A.G., 1967, Furuyama S., 1970] up to 2.6 J/mol*K. Discrepancies in Cp(T) values amount to 1.3-4.3 J/mol*K. There is an excellent agreement between selected values of S(T) and Cp(T) and those obtained by ab initio calculation [ Karni M., 1991].; GT
35.04100.
40.32150.
49.53200.
68.30273.15
75.4 ± 2.0298.15
75.89300.
103.30400.
126.45500.
145.03600.
160.04700.
172.41800.
182.77900.
191.551000.
199.041100.
205.471200.
211.001300.
215.771400.
219.921500.

Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, IR Spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
MS - José A. Martinho Simões

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

cyclopentadienide anion + Hydrogen cation = 1,3-Cyclopentadiene

By formula: C5H5- + H+ = C5H6

Quantity Value Units Method Reference Comment
Δr1481. ± 9.2kJ/molG+TSBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B
Δr1485. ± 12.kJ/molG+TSCumming and Kebarle, 1978gas phase; B
Δr1495. ± 8.4kJ/molD-EAEngelking and Lineberger, 1977gas phase; B
Quantity Value Units Method Reference Comment
Δr1455. ± 8.4kJ/molIMREBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B
Δr1459. ± 8.4kJ/molIMRECumming and Kebarle, 1978gas phase; B

cyclopentadienide anion + 1,3-Cyclopentadiene = (cyclopentadienide anion • 1,3-Cyclopentadiene)

By formula: C5H5- + C5H6 = (C5H5- • C5H6)

Quantity Value Units Method Reference Comment
Δr<36.0kJ/molIMRBMeot-ner, 1988gas phase; B,M
Quantity Value Units Method Reference Comment
Δr84.J/mol*KN/AMeot-ner, 1988gas phase; Entropy change calculated or estimated, DG<, ΔrH<; M
Quantity Value Units Method Reference Comment
Δr<11. ± 4.2kJ/molIMRBMeot-ner, 1988gas phase; B

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
15.250.PHPMSMeot-ner, 1988gas phase; Entropy change calculated or estimated, DG<, ΔrH<; M

Maleic anhydride + 1,3-Cyclopentadiene = Carbic anhydride

By formula: C4H2O3 + C5H6 = C9H8O3

Quantity Value Units Method Reference Comment
Δr-104. ± 2.kJ/molCmBreslauer and Kabakoff, 1974liquid phase; solvent: Dioxane; ALS
Δr-107.9kJ/molCmRogers and Quan, 1973liquid phase; Gas phase Diels-Alder; ALS

2Hydrogen + 1,3-Cyclopentadiene = Cyclopentane

By formula: 2H2 + C5H6 = C5H10

Quantity Value Units Method Reference Comment
Δr-210.8 ± 0.84kJ/molChydKistiakowsky, Ruhoff, et al., 1936gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -212.8 ± 0.84 kJ/mol; At 355 °K; ALS

Chlorine anion + 1,3-Cyclopentadiene = (Chlorine anion • 1,3-Cyclopentadiene)

By formula: Cl- + C5H6 = (Cl- • C5H6)

Quantity Value Units Method Reference Comment
Δr<10.5kJ/molTDEqFrench, Ikuta, et al., 1982gas phase; B

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
10.300.PHPMSFrench, Ikuta, et al., 1982gas phase; DG<; M

1,3-Cyclopentadiene + Tetracyanoethylene = Bicyclo[2.2.1]hept-5-ene-2,2,3,3-tetracarbonitrile

By formula: C5H6 + C6N4 = C11H6N4

Quantity Value Units Method Reference Comment
Δr-112.kJ/molKinSamuilov, Bukharov, et al., 1981liquid phase; solvent: Chorobenzene; ALS
Δr-106.9 ± 2.9kJ/molCmRogers, 1972liquid phase; ALS

2,5-Norbornadiene = 1,3-Cyclopentadiene + Acetylene

By formula: C7H8 = C5H6 + C2H2

Quantity Value Units Method Reference Comment
Δr117.2 ± 2.1kJ/molKinWalsh and Wells, 1975gas phase; Reanalyzed by Pedley, Naylor, et al., 1986, Original value = 118.7 ± 1.3 kJ/mol; ALS

21,3-Cyclopentadiene (l) + magnesium (cr) = Magnesium, bis(η(5)-2,4-cyclopentadien-1-yl)- (cr) + Hydrogen (g)

By formula: 2C5H6 (l) + Mg (cr) = C10H10Mg (cr) + H2 (g)

Quantity Value Units Method Reference Comment
Δr-142.5 ± 2.9kJ/molRSCHull, Reid, et al., 1967Please also see Pedley and Rylance, 1977 and Cox and Pilcher, 1970, 2.; MS

C8H6MoO3 (solution) + 31,3-Diazine (solution) = C18H15MoN3O3 (solution) + 1,3-Cyclopentadiene (solution)

By formula: C8H6MoO3 (solution) + 3C4H4N2 (solution) = C18H15MoN3O3 (solution) + C5H6 (solution)

Quantity Value Units Method Reference Comment
Δr-69.9 ± 2.9kJ/molRSCNolan, Hoff, et al., 1985solvent: Pyridine; Reaction temperature: 323 K; MS

Bicyclo[2.1.0]pent-2-ene = 1,3-Cyclopentadiene

By formula: C5H6 = C5H6

Quantity Value Units Method Reference Comment
Δr-200. ± 2.kJ/molCisoRoth, Klarner, et al., 1980liquid phase; solvent: Heptane; ALS

Dicyclopentadiene = 21,3-Cyclopentadiene

By formula: C10H12 = 2C5H6

Quantity Value Units Method Reference Comment
Δr72.383kJ/molCmBaur and Frater, 1941gas phase; Heat of dissociation; ALS

2Hydrogen iodide + 1,3-Cyclopentadiene = Cyclopentene + Iodine

By formula: 2HI + C5H6 = C5H8 + I2

Quantity Value Units Method Reference Comment
Δr-89.5kJ/molEqkFuruyama, Golden, et al., 1970gas phase; ALS

2-Norbornene = 1,3-Cyclopentadiene + Ethylene

By formula: C7H10 = C5H6 + C2H4

Quantity Value Units Method Reference Comment
Δr97.2 ± 2.5kJ/molEqkWalsh and Wells, 1976gas phase; ALS

Bicyclo[2.2.1]hept-5-ene-2,2,3,3-tetracarbonitrile = 1,3-Cyclopentadiene + Tetracyanoethylene

By formula: C11H6N4 = C5H6 + C6N4

Quantity Value Units Method Reference Comment
Δr106.9 ± 2.9kJ/molCmRogers, 1972solid phase; ALS

1,3-Cyclopentadiene + Acetylene = 2,5-Norbornadiene

By formula: C5H6 + C2H2 = C7H8

Quantity Value Units Method Reference Comment
Δr-117. ± 2.kJ/molEqkWalsh and Wells, 1975gas phase; ALS

21,3-Cyclopentadiene = endo-Dicyclopentadiene

By formula: 2C5H6 = C10H12

Quantity Value Units Method Reference Comment
Δr-195.1kJ/molEqkLenz and Vaughan, 1989gas phase; ALS

21,3-Cyclopentadiene = C10H12

By formula: 2C5H6 = C10H12

Quantity Value Units Method Reference Comment
Δr-195.7kJ/molEqkLenz and Vaughan, 1989gas phase; ALS

IR Spectrum

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Coblentz Society, Inc.

Condensed Phase Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

IR spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Notice: Except where noted, spectra from this collection were measured on dispersive instruments, often in carefully selected solvents, and hence may differ in detail from measurements on FTIR instruments or in other chemical environments. More information on the manner in which spectra in this collection were collected can be found here.

Notice: Concentration information is not available for this spectrum and, therefore, molar absorptivity values cannot be derived.

Additional Data

View scan of original (hardcopy) spectrum.

View image of digitized spectrum (can be printed in landscape orientation).

View spectrum image in SVG format.

Download spectrum in JCAMP-DX format.

Owner COBLENTZ SOCIETY
Collection (C) 2018 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin WYANDOTTE CHEMICALS CORP., WYANDOTTE, MICHIGAN, USA
Source reference COBLENTZ NO. 2691
Date Not specified, most likely prior to 1970
Name(s) 1,3-cyclopentadiene
State LIQUID
Instrument Not specified, most likely a prism, grating, or hybrid spectrometer.
Path length 0.003 CM
Resolution 4
Sampling procedure TRANSMISSION
Data processing DIGITIZED BY NIST FROM HARD COPY
Boiling point 41 C

This IR spectrum is from the Coblentz Society's evaluated infrared reference spectra collection.


Gas Chromatography

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, IR Spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Kovats' RI, non-polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
CapillaryOV-101100.545.Diez, Guillen, et al., 1990N2; Column length: 25. m; Column diameter: 0.23 mm
CapillaryOV-10180.542.Diez, Guillen, et al., 1990N2; Column length: 25. m; Column diameter: 0.23 mm
CapillarySqualane100.534.7Diez, Guillen, et al., 1990N2; Column length: 45. m; Column diameter: 0.5 mm
CapillarySqualane80.510.5Diez, Guillen, et al., 1990N2; Column length: 45. m; Column diameter: 0.5 mm
CapillarySE-54100.552.5Diez, Guillen, et al., 1990N2; Column length: 25. m; Column diameter: 0.22 mm
CapillarySE-5480.549.5Diez, Guillen, et al., 1990N2; Column length: 25. m; Column diameter: 0.22 mm
PackedSqualane70.527.Safina, Poznyak, et al., 1989He, Risorb (0.2-0.3 mm); Column length: 2. m
CapillarySqualane50.521.7Papazova, Milina, et al., 1988Column length: 50. m; Column diameter: 0.25 mm
CapillaryBP-1100.543.Bermejo, Blanco, et al., 1987N2; Column length: 12. m; Column diameter: 0.22 mm
CapillaryBP-180.541.Bermejo, Blanco, et al., 1987N2; Column length: 12. m; Column diameter: 0.22 mm
CapillaryOV-101100.545.Bermejo, Blanco, et al., 1987N2; Column length: 25. m; Column diameter: 0.23 mm
CapillaryOV-10180.542.Bermejo, Blanco, et al., 1987N2; Column length: 25. m; Column diameter: 0.23 mm
CapillarySqualane64.523.Sojak, Ruman, et al., 198750. m/0.25 mm/0.25 μm, H2
CapillarySE-30130.546.Bredael, 1982Column length: 100. m; Column diameter: 0.5 mm
CapillarySE-3080.540.Bredael, 1982Column length: 100. m; Column diameter: 0.5 mm
CapillarySqualane50.521.8Bajus, Veselý, et al., 1979Column length: 100. m; Column diameter: 0.25 mm
CapillarySqualane50.521.6Bajus, Veselý, et al., 1979, 2Column length: 100. m; Column diameter: 0.25 mm
PackedSqualane27.518.Bogoslovsky, Anvaer, et al., 1978 
PackedSqualane49.521.Bogoslovsky, Anvaer, et al., 1978 
PackedSqualane67.527.Bogoslovsky, Anvaer, et al., 1978 
PackedSqualane86.530.Bogoslovsky, Anvaer, et al., 1978 
CapillarySqualane40.520.6Stopp, Engewald, et al., 1978Column length: 70. m; Column diameter: 0.23 mm
CapillarySqualane27.516.61Schomburg and Dielmann, 1973Column length: 100. m; Column diameter: 0.25 mm
PackedSqualane27.519.Hively and Hinton, 1968He, Chromosorb P; Column length: 15. m; Column diameter: 0.25 mm
PackedSqualane49.522.Hively and Hinton, 1968He, Chromosorb P; Column length: 15. m; Column diameter: 0.25 mm
PackedSqualane67.528.Hively and Hinton, 1968He, Chromosorb P; Column length: 15. m; Column diameter: 0.25 mm
PackedSqualane86.530.Hively and Hinton, 1968He, Chromosorb P; Column length: 15. m; Column diameter: 0.25 mm

Kovats' RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryPetrocol DH-100538.1Haagen-Smit Laboratory, 1997He; Column length: 100. m; Column diameter: 0.2 mm; Program: 5C(10min) => 5C/min => 50C(48min) => 1.5C/min => 195C(91min)
CapillaryDB-1533.Hoekman, 199360. m/0.32 mm/1.0 μm, He; Program: -40 C for 12 min; -40 - 125 C at 3 deg.min; 125-185 C at 6 deg/min; 185 - 220 C at 20 deg/min; hold 220 C for 2 min

Kovats' RI, polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
CapillaryCarbowax 20M64.745.7Sojak, Ruman, et al., 198750. m/0.25 mm/0.25 μm, H2

Kovats' RI, polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-Wax735.Umano and Shibamoto, 1987He, 40. C @ 10. min, 2. K/min; Column length: 60. m; Column diameter: 0.25 mm; Tend: 200. C

Normal alkane RI, non-polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
CapillaryMethyl Silicone50.522.N/AN2; Column length: 74.6 m; Column diameter: 0.28 mm

Normal alkane RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryPolydimethyl siloxane: CP-Sil 5 CB528.Bramston-Cook, 201360. m/0.25 mm/1.0 μm, Helium, 45. C @ 1.45 min, 3.6 K/min, 210. C @ 2.72 min
CapillaryPONA525.Zhang, Ding, et al., 200950. m/0.20 mm/0.50 μm, Nitrogen, 35. C @ 15. min, 2. K/min, 200. C @ 10. min

Normal alkane RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillarySqualane523.Chen, 2008Program: not specified
CapillaryPONA538.Perkin Elmer Instruments, 2002Column length: 100. m; Phase thickness: 0.50 μm; Program: not specified
CapillaryOV-101530.Zenkevich, 1998He; Column length: 25. m; Column diameter: 0.20 mm; Program: not specified
CapillaryOV-101535.Zenkevich, 1998He; Column length: 25. m; Column diameter: 0.20 mm; Program: not specified
CapillaryOV-1, SE-30, Methyl silicone, SP-2100, OV-101, DB-1, etc.540.Waggott and Davies, 1984Hydrogen; Column length: 50. m; Column diameter: 0.32 mm; Program: not specified

Lee's RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryHP-597.2Shao, Wang, et al., 200630. m/0.3 mm/0.25 μm, He, 50. C @ 5. min, 5. K/min, 200. C @ 15. min

References

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, IR Spectrum, Gas Chromatography, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Roth, Adamczak, et al., 1991
Roth, W.R.; Adamczak, O.; Breuckmann, R.; Lennartz, H.-W.; Boese, R., Die Berechnung von Resonanzenergien; das MM2ERW-Kraftfeld, Chem. Ber., 1991, 124, 2499-2521. [all data]

Furuyama, Golden, et al., 1970
Furuyama, S.; Golden, D.M.; Benson, S.W., Thermochemistry of cyclopentene and cyclopentadiene from studies of gas-phase equilibria, J. Chem. Thermodyn., 1970, 2, 161-169. [all data]

Wassermann, 1935
Wassermann, A., The mechanism of additions to double bonds. Part I. Thermochemistry and kinetics of a diene synthesis, J. Chem. Soc., 1935, 828-838. [all data]

Furuyama S., 1970
Furuyama S., Thermochemistry of cyclopentene and cyclopentadiene from studies of gas-phase equilibria, J. Chem. Thermodyn., 1970, 2, 161-169. [all data]

Grant C.J., 1969
Grant C.J., Reversibility in the gas-phase decomposition of cyclopentene. The entropy of cyclopentadiene, J. Chem. Soc. Chem. Comm., 1969, 667-668. [all data]

Dorofeeva O.V., 1986
Dorofeeva O.V., Thermodynamic properties of twenty-one monocyclic hydrocarbons, J. Phys. Chem. Ref. Data, 1986, 15, 437-464. [all data]

Turnbull A.G., 1967
Turnbull A.G., Thermochemistry of biscyclopentadienyl metal compounds, Austral. J. Chem., 1967, 20, 2059-2067. [all data]

Karni M., 1991
Karni M., Ab initio calculations and ideal gas thermodynamic functions of cyclopentadiene and cyclopentadiene derivatives, J. Phys. Chem. Ref. Data, 1991, 20, 665-683. [all data]

Bartmess, Scott, et al., 1979
Bartmess, J.E.; Scott, J.A.; McIver, R.T., Jr., The gas phase acidity scale from methanol to phenol, J. Am. Chem. Soc., 1979, 101, 6047. [all data]

Cumming and Kebarle, 1978
Cumming, J.B.; Kebarle, P., Summary of gas phase measurements involving acids AH. Entropy changes in proton transfer reactions involving negative ions. Bond dissociation energies D(A-H) and electron affinities EA(A), Can. J. Chem., 1978, 56, 1. [all data]

Engelking and Lineberger, 1977
Engelking, P.C.; Lineberger, W.C., Laser photoelectron spectrometry of C5H5-: A determination of the electron affinity and Jahn-Teller coupling in cyclopentadienyl, J. Chem. Phys., 1977, 67, 1412. [all data]

Meot-ner, 1988
Meot-ner, M., The Ionic Hydrogen Bond and Solvation. 7. Interaction Energies of Carbanions with Solvent Molecules, J. Am. Chem. Soc., 1988, 110, 12, 3858, https://doi.org/10.1021/ja00220a022 . [all data]

Breslauer and Kabakoff, 1974
Breslauer, K.J.; Kabakoff, D.S., Enthalpy of the Diels-Alder reaction of cyclopentadiene and maleic anhydride, J. Org. Chem., 1974, 39, 721-722. [all data]

Rogers and Quan, 1973
Rogers, F.E.; Quan, S.W., Thermochemistry of the Diels-Alder reaction. III. Heat of addition of cyclopentadience to maleic anhydride, J. Phys. Chem., 1973, 77, 828-831. [all data]

Kistiakowsky, Ruhoff, et al., 1936
Kistiakowsky, G.B.; Ruhoff, J.R.; Smith, H.A.; Vaughan, W.E., Heats of organic reactions. IV. Hydrogenation of some dienes and of benzene, J. Am. Chem. Soc., 1936, 58, 146-153. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

French, Ikuta, et al., 1982
French, M.A.; Ikuta, S.; Kebarle, P., Hydrogen bonding of O-H and C-H hydrogen donors to Cl-. Results from mass spectrometric measurement of the ion-molecule equilibria RH + Cl- = RHCl-, Can. J. Chem., 1982, 60, 1907. [all data]

Samuilov, Bukharov, et al., 1981
Samuilov, Ya.D.; Bukharov, S.V.; Konovalov, A.I., Reactivity of tetraphenylcyclopentadiene and tetracyclone in the Diels-Alder reaction with cyanoethylenes, Zh. Org. Khim., 1981, 17, 2389-2393. [all data]

Rogers, 1972
Rogers, F.E., Thermochemistry of the Diels-Alder reactions. II. Heat of addition of several dienes to tetracyanoethylene, J. Phys. Chem., 1972, 76, 106-109. [all data]

Walsh and Wells, 1975
Walsh, R.; Wells, J.M., The enthalpy of formation of bicyclo[2,2,1]hepta-2,5-diene. Thermodynamic functions of bicyclo[2,2,1]heptane and bicyclo[2,2,1]hepta-2,5-diene, J. Chem. Thermodyn., 1975, 7, 149-154. [all data]

Pedley, Naylor, et al., 1986
Pedley, J.B.; Naylor, R.D.; Kirby, S.P., Thermochemical Data of Organic Compounds, Chapman and Hall, New York, 1986, 1-792. [all data]

Hull, Reid, et al., 1967
Hull, H.S.; Reid, A.F.; Turnbull, A.G., Inorg. Chem., 1967, 6, 805. [all data]

Pedley and Rylance, 1977
Pedley, J.B.; Rylance, J., Computer Analysed Thermochemical Data: Organic and Organometallic Compounds, University of Sussex, Brigton, 1977. [all data]

Cox and Pilcher, 1970, 2
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds in Academic Press, New York, 1970. [all data]

Nolan, Hoff, et al., 1985
Nolan, S.P.; Hoff, C.D.; Landrum, J.T., J. Organometal. Chem., 1985, 282, 357. [all data]

Roth, Klarner, et al., 1980
Roth, W.R.; Klarner, F.-G.; Lennartz, H.-W., Heats of hydrogenation. II. Heat of hydrogenation of bicyclo[2.1.0]pent-2-ene, an antiaromatic system, Chem. Ber., 1980, 113, 1806-1818. [all data]

Baur and Frater, 1941
Baur, E.; Frater, S., Kinetik der bildung und des zerfalls von dicyclopentadien, Helv. Chim. Acta, 1941, 24, 768-783. [all data]

Walsh and Wells, 1976
Walsh, R.; Wells, J.M., The enthalpy of formation and thermodynamic functions of bicyclo[2,2,1]hept-2-ene, J. Chem. Thermodyn., 1976, 8, 55-60. [all data]

Lenz and Vaughan, 1989
Lenz, T.G.; Vaughan, J.D., Employing force-field calculations to predict equilibrium constants and other thermodynamic properties for the dimerization of 1,3-cyclopentadiene, J. Phys. Chem., 1989, 93, 1592-1596. [all data]

Diez, Guillen, et al., 1990
Diez, M.A.; Guillen, M.D.; Blanco, C.G.; Bermejo, J., Chromatographic study of methylcyclopentadiene dimers and iso-dimers and determination of their boiling points, J. Chromatogr., 1990, 508, 363-374, https://doi.org/10.1016/S0021-9673(00)91279-2 . [all data]

Safina, Poznyak, et al., 1989
Safina, L.R.; Poznyak, T.I.; Lisitsyn, D.M.; Kiseleva, E.V.; Kovalev, G.I., Selective gas-chromatographic determination of trace unsaturated and aromatic-hydrocarbons in complex-mixtures, J. Appl. Chem. USSR (Engl. Transl.), 1989, 44, 5, 749-754. [all data]

Papazova, Milina, et al., 1988
Papazova, D.; Milina, R.; Dimov, N., Comparative evaluation of retention of hydrocarbons present in the C5-petroleum fraction of methylsilicone and squalane phases, Chromatographia, 1988, 25, 3, 177-180, https://doi.org/10.1007/BF02316441 . [all data]

Bermejo, Blanco, et al., 1987
Bermejo, J.; Blanco, C.G.; Diez, M.A.; Guillén, M.D., Kováts retention indices of selected mono and polycyclic olefins, J. Hi. Res. Chromatogr. Chromatogr. Comm., 1987, 10, 8, 461-463, https://doi.org/10.1002/jhrc.1240100809 . [all data]

Sojak, Ruman, et al., 1987
Sojak, L.; Ruman, J.; Janak, J., Characterization of Monoalkylcyclopentadiens by Retention-Structure Correlation in Capillary Gas Chromatography, J. Chromatogr., 1987, 391, 79-87, https://doi.org/10.1016/S0021-9673(01)94306-7 . [all data]

Bredael, 1982
Bredael, P., Retention indices of hydrocarbons on SE-30, J. Hi. Res. Chromatogr. Chromatogr. Comm., 1982, 5, 6, 325-328, https://doi.org/10.1002/jhrc.1240050610 . [all data]

Bajus, Veselý, et al., 1979
Bajus, M.; Veselý, V.; Leclercq, P.A.; Rijks, J.A., Steam cracking of hydrocarbons. 2. Pyrolysis of methylcyclohexane, Ind. Eng. Chem. Prod. Res. Dev., 1979, 18, 2, 135-142, https://doi.org/10.1021/i360070a012 . [all data]

Bajus, Veselý, et al., 1979, 2
Bajus, M.; Veselý, V.; Leclercq, P.A.; Rijks, J.A., Steam cracking of hydrocarbons. 1. Pyrolysis of heptane, Ind. Eng. Chem. Prod. Res. Dev., 1979, 18, 1, 30-37, https://doi.org/10.1021/i360069a007 . [all data]

Bogoslovsky, Anvaer, et al., 1978
Bogoslovsky, Yu.N.; Anvaer, B.I.; Vigdergauz, M.S., Chromatographic constants in gas chromatography (in Russian), Standards Publ. House, Moscow, 1978, 192. [all data]

Stopp, Engewald, et al., 1978
Stopp, I.; Engewald, W.; Kühn, H.; Welsch, Th., Molekülstruktur und retentionsverhalten. VIII. Zum gaschromatographischen retentionsverhalten von dicyclopentadienderivaten, J. Chromatogr., 1978, 147, 21-30, https://doi.org/10.1016/S0021-9673(00)85113-4 . [all data]

Schomburg and Dielmann, 1973
Schomburg, G.; Dielmann, G., Identification by means of retention parameters, J. Chromatogr. Sci., 1973, 11, 3, 151-159, https://doi.org/10.1093/chromsci/11.3.151 . [all data]

Hively and Hinton, 1968
Hively, R.A.; Hinton, R.E., Variation of the retention index with temperature on squalane substrates, J. Gas Chromatogr., 1968, 6, 4, 203-217, https://doi.org/10.1093/chromsci/6.4.203 . [all data]

Haagen-Smit Laboratory, 1997
Haagen-Smit Laboratory, Procedure for the detailed hydrocarbon analysis of gasolines by single column high efficiency (capillary) column gas chromatography, SOP NO. MLD 118, Revision No. 1.1, California Environmental Protection Agency, Air Resources Board, El Monte, California, 1997, 22. [all data]

Hoekman, 1993
Hoekman, S.K., Improved gas chromatography procedure for speciated hydrocarbon measurements of vehicle emissions, J. Chromatogr., 1993, 639, 2, 239-253, https://doi.org/10.1016/0021-9673(93)80260-F . [all data]

Umano and Shibamoto, 1987
Umano, K.; Shibamoto, T., Analysis of headspace volatiles from overheated beef fat, J. Agric. Food Chem., 1987, 35, 1, 14-18, https://doi.org/10.1021/jf00073a004 . [all data]

Bramston-Cook, 2013
Bramston-Cook, R., Kovats indices for C2-C13 hydrocarbons and selected oxygenated/halocarbons with 100 % dimethylpolysiloxane columns, 2013, retrieved from http://lotusinstruments.com/monographs/List .... [all data]

Zhang, Ding, et al., 2009
Zhang, X.; Ding, L.; Sun, Z.; Song, L.; Sun, T., Study on quantitative structure-retention relationships for hydrocarbons in FCC gasoline, Chromatographia, 2009, 70, 3/4, 511-518, https://doi.org/10.1365/s10337-009-1174-0 . [all data]

Chen, 2008
Chen, H.-F., Quantitative prediction of gas chromatography retention indices with support vector machines, radial basis neutral networks and multiple linear regression, Anal. Chim. Acta, 2008, 609, 1, 24-36, https://doi.org/10.1016/j.aca.2008.01.003 . [all data]

Perkin Elmer Instruments, 2002
Perkin Elmer Instruments, Detailed hydrocarbon analysis (DHAX) Model 4015, 2002, retrieved from http://www.perkinelmer.com/instruments. [all data]

Zenkevich, 1998
Zenkevich, I.G., Application of Methods of Molecular Dynamics in Chromato-Spectral Identification of ISomeric Products of Organic reactions (in Russian), Zh. Org. Khim., 1998, 34, 10, 1463-1470. [all data]

Waggott and Davies, 1984
Waggott, A.; Davies, I.W., Identification of organic pollutants using linear temperature programmed retention indices (LTPRIs) - Part II, 1984, retrieved from http://dwi.defra.gov.uk/research/completed-research/reports/dwi0383.pdf. [all data]

Shao, Wang, et al., 2006
Shao, X.; Wang, G.; Sun, Y.; Zhang, R.; Xie, K.; Liu, H., Determination and Characterization of the Pyrolysis Products of Isoprocarb by GC-MS, J. Chromatogr. Sci., 2006, 44, 3, 141-147, https://doi.org/10.1093/chromsci/44.3.141 . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, IR Spectrum, Gas Chromatography, References