Ethylene
- Formula: C2H4
- Molecular weight: 28.0532
- IUPAC Standard InChIKey: VGGSQFUCUMXWEO-UHFFFAOYSA-N
- CAS Registry Number: 74-85-1
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Isotopologues:
- Other names: Ethene; Acetene; Bicarburretted hydrogen; Elayl; Olefiant gas; C2H4; Athylen; Liquid ethyene; UN 1038; UN 1962
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Reaction thermochemistry data, IR Spectrum, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | 12.54 | kcal/mol | Review | Chase, 1998 | Data last reviewed in September, 1965 |
ΔfH°gas | 12.5 ± 0.1 | kcal/mol | Review | Manion, 2002 | adopted recommendation of Gurvich, Veyts, et al., 1991; DRB |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°gas | -337.285 ± 0.072 | kcal/mol | Cm | Rossini and Knowlton, 1937 | Reanalyzed by Cox and Pilcher, 1970, Original value = -337.230 ± 0.072 kcal/mol; Corresponding ΔfHºgas = 12.55 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS |
Quantity | Value | Units | Method | Reference | Comment |
S°gas,1 bar | 52.419 | cal/mol*K | Review | Chase, 1998 | Data last reviewed in September, 1965 |
Constant pressure heat capacity of gas
Cp,gas (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
7.949 | 50. | Thermodynamics Research Center, 1997 | p=1 bar. Recommended entropies and heat capacities are in good agreement with those obtained from other statistical thermodynamics calculations [ Chao J., 1975, Gurvich, Veyts, et al., 1989] as well as with ab initio value of S(298.15 K)=219.14 J/mol*K [ East A.L.L., 1997].; GT |
7.952 | 100. | ||
8.045 | 150. | ||
8.454 | 200. | ||
9.704 | 273.15 | ||
10.25 | 298.15 | ||
10.30 | 300. | ||
12.68 | 400. | ||
14.93 | 500. | ||
16.89 | 600. | ||
18.57 | 700. | ||
20.03 | 800. | ||
21.31 | 900. | ||
22.44 | 1000. | ||
23.42 | 1100. | ||
24.285 | 1200. | ||
25.038 | 1300. | ||
25.700 | 1400. | ||
26.281 | 1500. | ||
27.440 | 1750. | ||
28.291 | 2000. | ||
28.927 | 2250. | ||
29.412 | 2500. | ||
29.785 | 2750. | ||
30.081 | 3000. |
Constant pressure heat capacity of gas
Cp,gas (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
8.284 ± 0.062 | 178.15 | Burcik E.J., 1941 | Other experimental values of heat capacity [ Haas M.E., 1932] are less accurate, see [ Chao J., 1975]. Please also see Eucken A., 1933.; GT |
8.437 ± 0.062 | 192.35 | ||
8.674 ± 0.065 | 210.40 | ||
8.975 ± 0.067 | 230.90 | ||
9.326 ± 0.069 | 250.60 | ||
9.739 ± 0.005 | 270.7 | ||
9.804 ± 0.074 | 271.80 | ||
10.24 ± 0.076 | 293.45 | ||
10.39 ± 0.041 | 300.0 | ||
10.99 ± 0.01 | 320.7 | ||
11.89 ± 0.088 | 367.7 | ||
14.16 ± 0.11 | 463.6 |
Gas Phase Heat Capacity (Shomate Equation)
Cp° = A + B*t + C*t2 + D*t3 +
E/t2
H° − H°298.15= A*t + B*t2/2 +
C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 −
E/(2*t2) + G
Cp = heat capacity (cal/mol*K)
H° = standard enthalpy (kcal/mol)
S° = standard entropy (cal/mol*K)
t = temperature (K) / 1000.
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | 298. to 1200. | 1200. to 6000. |
---|---|---|
A | -1.526740 | 25.45660 |
B | 44.07311 | 3.282171 |
C | -27.00091 | -0.628222 |
D | 6.810691 | 0.041729 |
E | 0.075416 | -6.248731 |
F | 11.51370 | -8.451810 |
G | 38.99541 | 65.73671 |
H | 12.53990 | 12.53990 |
Reference | Chase, 1998 | Chase, 1998 |
Comment | Data last reviewed in September, 1965 | Data last reviewed in September, 1965 |
Reaction thermochemistry data
Go To: Top, Gas phase thermochemistry data, IR Spectrum, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
B - John E. Bartmess
MS - José A. Martinho Simões
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
RCD - Robert C. Dunbar
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Reactions 1 to 50
C2H3- + =
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 407. ± 2. | kcal/mol | AVG | N/A | Average of 5 out of 6 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 401.00 ± 0.50 | kcal/mol | IMRE | Ervin, Gronert, et al., 1990 | gas phase; B |
ΔrG° | 399.1 ± 2.1 | kcal/mol | H-TS | DePuy, Gronert, et al., 1989 | gas phase; B |
ΔrG° | 398.6 ± 4.9 | kcal/mol | H-TS | Peerboom, Rademaker, et al., 1992 | gas phase; B |
ΔrG° | >397.00 | kcal/mol | IMRB | Froelicher, Freiser, et al., 1986 | gas phase; B |
C7H4CrO5 (g) = C5CrO5 (g) + (g)
By formula: C7H4CrO5 (g) = C5CrO5 (g) + C2H4 (g)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 25.1 ± 1. | kcal/mol | KinG | McNamara, Becher, et al., 1994 | The reaction enthalpy was identified with the activation energy.; MS |
ΔrH° | 24.7 ± 2.4 | kcal/mol | KinG | Wells, House, et al., 1994 | The reaction enthalpy relies on the measured activation energy and on the assumption of a negligible barrier for product recombination Wells, House, et al., 1994.; MS |
By formula: Ag+ + C2H4 = (Ag+ • C2H4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 33.7 | kcal/mol | HPMS | Guo and Castleman, 1991 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 22.1 | cal/mol*K | N/A | Guo and Castleman, 1991 | gas phase; Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
17.1 | 750. | HPMS | Guo and Castleman, 1991 | gas phase; Entropy change calculated or estimated; M |
By formula: H4N+ + C2H4 = (H4N+ • C2H4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 10. | kcal/mol | PHPMS | Deakyne and Meot-Ner (Mautner), 1985 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 20. | cal/mol*K | N/A | Deakyne and Meot-Ner (Mautner), 1985 | gas phase; Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
3.7 | 294. | PHPMS | Deakyne and Meot-Ner (Mautner), 1985 | gas phase; Entropy change calculated or estimated; M |
By formula: Co+ + C2H4 = (Co+ • C2H4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 44.5 ± 2.2 | kcal/mol | CIDT | Sievers, Jarvis, et al., 1998 | RCD |
Enthalpy of reaction
ΔrH° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
42.8 (+1.7,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; guided ion beam CID; M | |
6.5 (+3.0,-0.) | CID | Haynes and Armentrout, 1994 | gas phase; ΔrH>=, guided ion beam CID; M |
By formula: C2H5Cl = C2H4 + HCl
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 22.0 | kcal/mol | Eqk | Levanova, Bushneva, et al., 1979 | liquid phase; ALS |
ΔrH° | 17.1 | kcal/mol | Eqk | Levanova, Bushneva, et al., 1979 | gas phase; ALS |
ΔrH° | 17.35 ± 0.50 | kcal/mol | Eqk | Howlett, 1955 | gas phase; ALS |
ΔrH° | 17.1 | kcal/mol | Eqk | Lane, Linnett, et al., 1953 | gas phase; ALS |
By formula: Cr+ + C2H4 = (Cr+ • C2H4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 22.9 ± 2.6 | kcal/mol | CIDT | Sievers, Jarvis, et al., 1998 | RCD |
Enthalpy of reaction
ΔrH° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
29.9 (+4.5,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; ΔrH>=, guided ion beam CID; M |
By formula: Ni+ + C2H4 = (Ni+ • C2H4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 43.5 ± 2.6 | kcal/mol | CIDT | Sievers, Jarvis, et al., 1998 | RCD |
Enthalpy of reaction
ΔrH° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
32.9 (+4.5,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; ΔrH>=, guided ion beam CID; M |
By formula: Cu+ + C2H4 = (Cu+ • C2H4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 42.1 ± 3.3 | kcal/mol | CIDT | Sievers, Jarvis, et al., 1998 | RCD |
Enthalpy of reaction
ΔrH° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
22.7 (+2.6,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; ΔrH>=, guided ion beam CID; M |
By formula: Sc+ + C2H4 = (Sc+ • C2H4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 52. ± 3. | kcal/mol | PDiss | Ranashinge and Freiser, 1992 | gas phase; M |
Enthalpy of reaction
ΔrH° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
31.3 | CID | Armentrout and Kickel, 1994 | gas phase; ΔrH >=, guided ion beam CID; M |
By formula: La+ + C2H4 = (La+ • C2H4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 52. ± 3. | kcal/mol | PDiss | Ranashinge and Freiser, 1992 | gas phase; M |
Enthalpy of reaction
ΔrH° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
21.5 | CID | Armentrout and Kickel, 1994 | gas phase; ΔrH>=, guided ion beam CID; M |
By formula: Y+ + C2H4 = (Y+ • C2H4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 52. ± 3. | kcal/mol | PDiss | Ranashinge and Freiser, 1992 | gas phase; M |
Enthalpy of reaction
ΔrH° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
26.1 | CID | Armentrout and Kickel, 1994 | gas phase; ΔrH>=, guided ion beam CID; M |
By formula: Ti+ + C2H4 = (Ti+ • C2H4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 34.9 ± 2.6 | kcal/mol | CIDT | Sievers, Jarvis, et al., 1998 | RCD |
Enthalpy of reaction
ΔrH° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
28.4 | CID | Armentrout and Kickel, 1994 | gas phase; ΔrH>=, guided ion beam CID; M |
By formula: V+ + C2H4 = (V+ • C2H4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 29.9 ± 1.9 | kcal/mol | CIDT | Sievers, Jarvis, et al., 1998 | RCD |
Enthalpy of reaction
ΔrH° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
28.0 | CID | Armentrout and Kickel, 1994 | gas phase; ΔrH>=, guided ion beam CID; M |
By formula: Fe+ + C2H4 = (Fe+ • C2H4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 34.7 ± 2.6 | kcal/mol | CIDT | Sievers, Jarvis, et al., 1998 | RCD |
Enthalpy of reaction
ΔrH° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
34.6 (+1.4,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; guided ion beam CID; M |
By formula: C2H4 + Br2 = C2H4Br2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -28.90 ± 0.30 | kcal/mol | Cm | Conn, Kistiakowsky, et al., 1938 | gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -29.06 ± 0.30 kcal/mol; At 355 °K; ALS |
By formula: C2H4 + I2 = C2H4I2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -11.5 ± 0.2 | kcal/mol | Eqk | Abrams and Davis, 1954 | gas phase; ALS |
ΔrH° | -13.4 ± 0.5 | kcal/mol | Eqk | Cutherbertson and Kistiakowsky, 1935 | gas phase; Heat of dissociation; ALS |
By formula: (Ag+ • C2H4) + C2H4 = (Ag+ • 2C2H4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 32.4 | kcal/mol | HPMS | Guo and Castleman, 1991 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 30.2 | cal/mol*K | HPMS | Guo and Castleman, 1991 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -32.6 ± 0.5 | kcal/mol | Chyd | Kistiakowsky and Nickle, 1951 | gas phase; ALS |
ΔrH° | -32.58 ± 0.06 | kcal/mol | Chyd | Kistiakowsky, Romeyn, et al., 1935 | gas phase; ALS |
By formula: C2H5Br = HBr + C2H4
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 19.20 ± 0.50 | kcal/mol | Eqk | Lane, Linnett, et al., 1953 | gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = 19.1 kcal/mol; ALS |
By formula: C3H9Si+ + C2H4 = (C3H9Si+ • C2H4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 23.6 | kcal/mol | PHPMS | Li and Stone, 1989 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 38.5 | cal/mol*K | PHPMS | Li and Stone, 1989 | gas phase; M |
By formula: C2H4+ + C2H4 = (C2H4+ • C2H4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 15.8 | kcal/mol | PI | Ono, Linn, et al., 1984 | gas phase; M |
ΔrH° | 18.2 | kcal/mol | PI | Ceyer, Tiedemann, et al., 1979 | gas phase; M |
C6H4FeO4 (l) = 4 (g) + (cr) + (g)
By formula: C6H4FeO4 (l) = 4CO (g) + Fe (cr) + C2H4 (g)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 46.0 ± 2.0 | kcal/mol | HAL-HFC | Brown, Connor, et al., 1976 | MS |
ΔrH° | 44.31 | kcal/mol | TD-HFC | Brown, Connor, et al., 1976 | MS |
By formula: C8H12 = C6H8 + C2H4
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 32.4 | kcal/mol | Kin | Huybrechts, Rigaux, et al., 1980 | gas phase; Diels-Alder addition at 560°K, see Van Mele, Boon, et al., 1986; ALS |
By formula: F- + C2H4 = (F- • C2H4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 6.0 ± 3.0 | kcal/mol | IMRB | Sullivan and Beauchamp, 1976 | gas phase; Structure: Roy and McMahon, 1985; B |
By formula: Rh+ + C2H4 = (Rh+ • C2H4)
Enthalpy of reaction
ΔrH° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
38.5 (+0.7,-0.) | CID | Chen and Armetrout, 1995 | gas phase; guided ion beam CID; M |
C7H9Cl2NPd (solution) + (l) = (PdCl2(C5H5N)2) (solution) + (solution)
By formula: C7H9Cl2NPd (solution) + C4H4N2 (l) = (PdCl2(C5H5N)2) (solution) + C2H4 (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -13.8 ± 0.41 | kcal/mol | RSC | Partenheimer and Durham, 1974 | solvent: Dichloromethane; MS |
(solution) + (solution) = C13H19O2Rh (solution) + 2 (solution)
By formula: C9H15O2Rh (solution) + C8H12 (solution) = C13H19O2Rh (solution) + 2C2H4 (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -2.2 ± 0.1 | kcal/mol | RSC | Jesse, Cordfunke, et al., 1979 | solvent: n-Heptane; MS |
(g) + C2H3BrMg (solution) = (solution) + Br2Mg (solution)
By formula: HBr (g) + C2H3BrMg (solution) = C2H4 (solution) + Br2Mg (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -70.29 ± 0.53 | kcal/mol | RSC | Holm, 1981 | solvent: Tetrahydrofuran; MS |
By formula: C6HCrO6+ + C2H4 = (C6HCrO6+ • C2H4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 14.3 ± 1.2 | kcal/mol | ICRCD | Hop and McMahon, 1991 | gas phase; Ar collision gas; M |
By formula: Al+ + C2H4 = (Al+ • C2H4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 13.0 ± 2.0 | kcal/mol | CIDC,EqG | Stockigt, Schwarz, et al., 1996 | Anchored to theory; RCD |
(CAS Reg. No. 25013-41-6 • 4294967295) + = CAS Reg. No. 25013-41-6
By formula: (CAS Reg. No. 25013-41-6 • 4294967295C2H4) + C2H4 = CAS Reg. No. 25013-41-6
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 12.9 ± 2.1 | kcal/mol | N/A | DePuy, Gronert, et al., 1989 | gas phase; B |
By formula: H2 + C2H3Cl = C2H4 + HCl
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -18.39 | kcal/mol | Chyd | Lacher, Kianpour, et al., 1956 | gas phase; At 298 K; ALS |
By formula: C2H4 + Cl2 = C2H4Cl2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -43.65 ± 0.15 | kcal/mol | Cm | Conn, Kistiakowsky, et al., 1938 | gas phase; At 355 °K; ALS |
By formula: C2H4ClI = I + Cl + C2H4
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 76.5 ± 1.0 | kcal/mol | Kin | Minton, Felder, et al., 1984 | gas phase; ALS |
By formula: (C2H4+ • C2H4) + C2H4 = (C2H4+ • 2C2H4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 4.2 | kcal/mol | PI | Ceyer, Tiedemann, et al., 1979 | gas phase; M |
C12H14Mo (cr) + (cr) = C10H10I2Mo (cr) + (g)
By formula: C12H14Mo (cr) + I2 (cr) = C10H10I2Mo (cr) + C2H4 (g)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -38.96 ± 0.50 | kcal/mol | RSC | Calhorda, Carrondo, et al., 1991 | MS |
By formula: C9H15O2Rh (cr) + 2CO (g) = C7H7O4Rh (cr) + 2C2H4 (g)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -12.8 ± 0.41 | kcal/mol | DSC | Jesse, Baks, et al., 1978 | MS |
C9H15IrO2 (cr) + 2 (g) = C7H7IrO4 (cr) + 2 (g)
By formula: C9H15IrO2 (cr) + 2CO (g) = C7H7IrO4 (cr) + 2C2H4 (g)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -17.7 ± 1.1 | kcal/mol | DSC | Jesse, Baks, et al., 1978 | MS |
By formula: (Fe+ • C2H4) + C2H4 = (Fe+ • 2C2H4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 36.1 ± 3.6 | kcal/mol | CIDT | Sievers, Jarvis, et al., 1998 | RCD |
By formula: (Cr+ • C2H4) + C2H4 = (Cr+ • 2C2H4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 25.8 ± 2.6 | kcal/mol | CIDT | Sievers, Jarvis, et al., 1998 | RCD |
By formula: (Mn+ • C2H4) + C2H4 = (Mn+ • 2C2H4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 21.0 ± 3.3 | kcal/mol | CIDT | Sievers, Jarvis, et al., 1998 | RCD |
By formula: (V+ • C2H4) + C2H4 = (V+ • 2C2H4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 30.4 ± 3.3 | kcal/mol | CIDT | Sievers, Jarvis, et al., 1998 | RCD |
By formula: (Ni+ • C2H4) + C2H4 = (Ni+ • 2C2H4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 41.3 ± 3.3 | kcal/mol | CIDT | Sievers, Jarvis, et al., 1998 | RCD |
By formula: (Co+ • C2H4) + C2H4 = (Co+ • 2C2H4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 36.3 ± 3.3 | kcal/mol | CIDT | Sievers, Jarvis, et al., 1998 | RCD |
By formula: (Cu+ • C2H4) + C2H4 = (Cu+ • 2C2H4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 41.6 ± 3.1 | kcal/mol | CIDT | Sievers, Jarvis, et al., 1998 | RCD |
By formula: C7H10 = C5H6 + C2H4
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 23.2 ± 0.60 | kcal/mol | Eqk | Walsh and Wells, 1976 | gas phase; ALS |
By formula: 2C2H4 = C4H8
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -20.7 ± 1.0 | kcal/mol | Eqk | Quick, Knecht, et al., 1972 | gas phase; At 750 K; ALS |
By formula: C2H4I2 = C2H4 + I2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 11.5 ± 0.2 | kcal/mol | Eqk | Benson and Amano, 1962 | gas phase; ALS |
By formula: C4H8 + C2H4 = C6H12
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -16.7 | kcal/mol | Eqk | Scacchi and Back, 1977 | liquid phase; ALS |
IR Spectrum
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas Chromatography, References, Notes
Data compiled by: Coblentz Society, Inc.
Data compiled by: Pamela M. Chu, Franklin R. Guenther, George C. Rhoderick, and Walter J. Lafferty
- gas; IFS66V (Bruker); 3-Term B-H Apodization
0.1250, 0.2410, 0.4820, 0.9640, 1.9290 cm-1 resolution - gas; IFS66V (Bruker); Boxcar Apodization
0.1250, 0.2410, 0.4820, 0.9640, 1.9290 cm-1 resolution - gas; IFS66V (Bruker); Happ Genzel Apodization
0.1250, 0.2410, 0.4820, 0.9640, 1.9290 cm-1 resolution - gas; IFS66V (Bruker); NB Strong Apodization
0.1250, 0.2410, 0.4820, 0.9640, 1.9290 cm-1 resolution - gas; IFS66V (Bruker); Triangular Apodization
0.1250, 0.2410, 0.4820, 0.9640, 1.9290 cm-1 resolution
Gas Chromatography
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, IR Spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Kovats' RI, non-polar column, isothermal
Column type | Active phase | Temperature (C) | I | Reference | Comment |
---|---|---|---|---|---|
Capillary | OV-1 | 20. | 166. | Nijs and Jacobs, 1981 | He; Column length: 150. m; Column diameter: 0.50 mm |
Capillary | Squalane | 40. | 175. | Matukuma, 1969 | N2; Column length: 91.4 m; Column diameter: 0.25 mm |
Packed | Squalane | 27. | 177. | Hively and Hinton, 1968 | He, Chromosorb P; Column length: 15. m; Column diameter: 0.25 mm |
Packed | Squalane | 49. | 177. | Hively and Hinton, 1968 | He, Chromosorb P; Column length: 15. m; Column diameter: 0.25 mm |
Packed | Squalane | 67. | 178. | Hively and Hinton, 1968 | He, Chromosorb P; Column length: 15. m; Column diameter: 0.25 mm |
Packed | Squalane | 86. | 178. | Hively and Hinton, 1968 | He, Chromosorb P; Column length: 15. m; Column diameter: 0.25 mm |
Kovats' RI, non-polar column, custom temperature program
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | Petrocol DH-100 | 178.1 | Haagen-Smit Laboratory, 1997 | He; Column length: 100. m; Column diameter: 0.2 mm; Program: 5C(10min) => 5C/min => 50C(48min) => 1.5C/min => 195C(91min) |
Capillary | DB-1 | 164. | Hoekman, 1993 | 60. m/0.32 mm/1.0 μm, He; Program: -40 C for 12 min; -40 - 125 C at 3 deg.min; 125-185 C at 6 deg/min; 185 - 220 C at 20 deg/min; hold 220 C for 2 min |
Van Den Dool and Kratz RI, non-polar column, temperature ramp
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | Chromosorb 101 | 183. | Voorhees, Hileman, et al., 1975 | 10. K/min; Tstart: 0. C; Tend: 220. C |
Normal alkane RI, non-polar column, temperature ramp
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | Petrocol DH | 158. | Supelco, 2012 | 100. m/0.25 mm/0.50 μm, Helium, 20. C @ 15. min, 15. K/min, 220. C @ 30. min |
Capillary | OV-101 | 166. | Zenkevich, 2005 | 25. m/0.20 mm/0.10 μm, N2/He, 6. K/min; Tstart: 50. C; Tend: 250. C |
Capillary | OV-101 | 165. | Chupalov and Zenkevich, 1996 | N2, 3. K/min; Column length: 52. m; Column diameter: 0.26 mm; Tstart: 50. C; Tend: 220. C |
Normal alkane RI, non-polar column, custom temperature program
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | Methyl Silicone | 178. | Chen and Feng, 2007 | Program: not specified |
Capillary | Porapack Q | 180. | Zenkevich and Rodin, 2004 | Program: not specified |
Capillary | Methyl Silicone | 166. | Zenkevich, 2000 | Program: not specified |
Capillary | SPB-1 | 165. | Flanagan, Streete, et al., 1997 | 60. m/0.53 mm/5. μm, He; Program: 40C(6min) => 5C/min => 80C => 10C/min => 200C |
Capillary | Polydimethyl siloxanes | 165. | Zenkevich, 1997 | Program: not specified |
Capillary | Polydimethyl siloxanes | 165. | Zenkevich, Chupalov, et al., 1996 | Program: not specified |
Capillary | SPB-1 | 165. | Strete, Ruprah, et al., 1992 | 60. m/0.53 mm/5.0 μm, Helium; Program: 40 0C (6 min) 5 0C/min -> 80 0C 10 0C/min -> 200 0C |
Packed | SE-30 | 188. | Robinson and Odell, 1971 | N2, Chromosorb W; Column length: 6.1 m; Program: 50C910min) => 20C/min => 90(6min) => 10C/min => 150C(hold) |
Packed | Squalane | 180. | Robinson and Odell, 1971 | N2, Embacel; Column length: 3.0 m; Program: 25C(5min) => 2C/min => 35 => 4C/min => 95C(hold) |
References
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, IR Spectrum, Gas Chromatography, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Chase, 1998
Chase, M.W., Jr.,
NIST-JANAF Themochemical Tables, Fourth Edition,
J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]
Manion, 2002
Manion, J.A.,
Evaluated Enthalpies of Formation of the Stable Closed Shell C1 and C2 Chlorinated Hydrocarbons,
J. Phys. Chem. Ref. Data, 2002, 31, 1, 123-172, https://doi.org/10.1063/1.1420703
. [all data]
Gurvich, Veyts, et al., 1991
Thermodynamic Properties of Individual Substances, 4th edition, Volume 2, Gurvich, L.V.; Veyts, I.V.; Alcock, C.B.;, ed(s)., Hemisphere, New York, 1991. [all data]
Rossini and Knowlton, 1937
Rossini, F.d.; Knowlton, J.W.,
Calorimetric determination of the heats of combustion of ethylene and propylene,
J. Res. NBS, 1937, 19, 249-262. [all data]
Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G.,
Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]
Thermodynamics Research Center, 1997
Thermodynamics Research Center,
Selected Values of Properties of Chemical Compounds., Thermodynamics Research Center, Texas A&M University, College Station, Texas, 1997. [all data]
Chao J., 1975
Chao J.,
Ideal gas thermodynamic properties of ethylene and propylene,
J. Phys. Chem. Ref. Data, 1975, 4, 251-261. [all data]
Gurvich, Veyts, et al., 1989
Gurvich, L.V.; Veyts, I.V.; Alcock, C.B.,
Thermodynamic Properties of Individual Substances, 4th ed.; Vols. 1 and 2, Hemisphere, New York, 1989. [all data]
East A.L.L., 1997
East A.L.L.,
Ab initio statistical thermodynamical models for the computation of third-law entropies,
J. Chem. Phys., 1997, 106, 6655-6674. [all data]
Burcik E.J., 1941
Burcik E.J.,
The vibrational energy levels and specific heat of ethylene,
J. Chem. Phys., 1941, 9, 118-119. [all data]
Haas M.E., 1932
Haas M.E.,
The heat capacity and free energy of formation of ethylene gas,
J. Phys. Chem., 1932, 36, 2127-2132. [all data]
Eucken A., 1933
Eucken A.,
Molar heats and normal frequencies of ethane and ethylene,
Z. Phys. Chem., 1933, B20, 184-194. [all data]
Ervin, Gronert, et al., 1990
Ervin, K.M.; Gronert, S.; Barlow, S.E.; Gilles, M.K.; Harrison, A.G.; Bierbaum, V.M.; DePuy, C.H.; Lin, W.C.,
Bonds Strengths of Ethylene and Acetylene,
J. Am. Chem. Soc., 1990, 112, 15, 5750, https://doi.org/10.1021/ja00171a013
. [all data]
DePuy, Gronert, et al., 1989
DePuy, C.H.; Gronert, S.; Barlow, S.E.; Bierbaum, V.M.; Damrauer, R.,
The Gas Phase Acidities of the Alkanes,
J. Am. Chem. Soc., 1989, 111, 6, 1968, https://doi.org/10.1021/ja00188a003
. [all data]
Peerboom, Rademaker, et al., 1992
Peerboom, R.A.L.; Rademaker, G.J.; Dekoning, L.J.; Nibbering, N.M.M.,
Stabilization of Cycloalkyl Carbanions in the Gas Phase,
Rapid Commun. Mass Spectrom., 1992, 6, 6, 394, https://doi.org/10.1002/rcm.1290060608
. [all data]
Froelicher, Freiser, et al., 1986
Froelicher, S.W.; Freiser, B.S.; Squires, R.R.,
The C3H5- isomers. Experimental and theoretical studies of the tautomeric propenyl ions and the cyclopropyl anion in the gas phase,
J. Am. Chem. Soc., 1986, 108, 2853. [all data]
McNamara, Becher, et al., 1994
McNamara, B.; Becher, D.M.; Towns, M.H.; Grant, E.R.,
J. Phys. Chem., 1994, 98, 4622. [all data]
Wells, House, et al., 1994
Wells, J.R.; House, P.G.; Weitz, E.,
J. Phys. Chem., 1994, 98, 8343. [all data]
Guo and Castleman, 1991
Guo, B.C.; Castleman, A.W.,
The Bonding Strength of Ag+(C2H4) and Ag+(C2H4)2 Complexes,
Chem. Phys. Lett., 1991, 181, 1, 16, https://doi.org/10.1016/0009-2614(91)90214-T
. [all data]
Deakyne and Meot-Ner (Mautner), 1985
Deakyne, C.A.; Meot-Ner (Mautner), M.,
Unconventional Ionic Hydrogen Bonds. 2. NH+ pi. Complexes of Onium Ions with Olefins and Benzene Derivatives,
J. Am. Chem. Soc., 1985, 107, 2, 474, https://doi.org/10.1021/ja00288a034
. [all data]
Sievers, Jarvis, et al., 1998
Sievers, M.R.; Jarvis, L.M.; Armentrout, P.B.,
Transition Metal Ethene Bonds: Thermochemistry of M+(C2H4)n (M=Ti-Cu, n=1 and 2) Complexes,
J. Am. Chem. Soc., 1998, 120, 8, 1891, https://doi.org/10.1021/ja973834z
. [all data]
Armentrout and Kickel, 1994
Armentrout, P.B.; Kickel, B.L.,
Gas Phase Thermochemistry of Transition Metal Ligand Systems: Reassessment of Values and Periodic Trends, in Organometallic Ion Chemistry, B. S. Freiser, ed, 1994. [all data]
Haynes and Armentrout, 1994
Haynes, C.L.; Armentrout, P.B.,
Thermochemistry and Structures of CoC3H6+: Metallacyclic and Metal-Alkene Isomers,
Organomettalics, 1994, 13, 9, 3480, https://doi.org/10.1021/om00021a022
. [all data]
Levanova, Bushneva, et al., 1979
Levanova, s.V.; Bushneva, I.I.; Rodova, R.M.; Rozhnov, A.M.; Treger, Yu.A.; Aprelkin, A.S.,
Thermodynamic stability of chloroethanes in dehydrochlorination reactions,
J. Appl. Chem. USSR, 1979, 52, 1439-1442. [all data]
Howlett, 1955
Howlett, K.E.,
The use of equilibrium constants to calculate thermodynamic quantities. Part II,
J. Chem. Soc., 1955, 1784-17. [all data]
Lane, Linnett, et al., 1953
Lane, M.R.; Linnett, J.W.; Oswin, H.G.,
A study of the C2H4+HCl=C2H5Cl and C2H4+Hbr=C2H5Br equilibria,
Proc. Roy. Soc. London A, 1953, 216, 361-374. [all data]
Ranashinge and Freiser, 1992
Ranashinge, Y.A.; Freiser, B.S.,
Gas-Phase Photodissociation of MC2H2+ (M = Sc, Y, La). Determination of D0(M+ - C2H2),
Chem. Phys. Let., 1992, 200, 1-2, 135, https://doi.org/10.1016/0009-2614(92)87058-W
. [all data]
Conn, Kistiakowsky, et al., 1938
Conn, J.B.; Kistiakowsky, G.B.; Smith, E.A.,
Heats of organic reactions. VII. Addition of halogens to olefins,
J. Am. Chem. Soc., 1938, 60, 2764-2771. [all data]
Abrams and Davis, 1954
Abrams, A.; Davis, T.W.,
Use of radioactive iodine to determine equilibrium constants in ethylene-iodine-1,2-diiodoethane systems,
J. Am. Chem. Soc., 1954, 76, 5993-59. [all data]
Cutherbertson and Kistiakowsky, 1935
Cutherbertson, G.R.; Kistiakowsky, G.B.,
The thermal equilibrium between ethylene iodide, ethylene and iodine,
J. Chem. Phys., 1935, 3, 631-634. [all data]
Kistiakowsky and Nickle, 1951
Kistiakowsky, G.B.; Nickle, A.G.,
Ethane-ethylene and propane-propylene equilibria,
Faraday Discuss. Chem. Soc., 1951, 10, 175-187. [all data]
Kistiakowsky, Romeyn, et al., 1935
Kistiakowsky, G.B.; Romeyn, H., Jr.; Ruhoff, J.R.; Smith, H.A.; Vaughan, W.E.,
Heats of organic reactions. I. The apparatus and the heat of hydrogenation of ethylene,
J. Am. Chem. Soc., 1935, 57, 65-75. [all data]
Li and Stone, 1989
Li, X.; Stone, J.A.,
Determination of the beta silicon effect from a mass spectrometric study of the association of trimethylsilylium ion with alkenes,
J. Am. Chem. Soc., 1989, 111, 15, 5586, https://doi.org/10.1021/ja00197a013
. [all data]
Ono, Linn, et al., 1984
Ono, Y.; Linn, S.H.; Tzeng, W.-B.; Ng, C.Y.,
A Study of the Unimolecular Decomposition of the (C2H4)2+ Complex,
J. Chem. Phys., 1984, 80, 4, 1482, https://doi.org/10.1063/1.446897
. [all data]
Ceyer, Tiedemann, et al., 1979
Ceyer, S.T.; Tiedemann, P.W.; Ng, C.Y.; Mahan, B.H.; Lee, Y.T.,
Photoionization of Ethylene Clusters,
J. Chem. Phys., 1979, 70, 5, 2138, https://doi.org/10.1063/1.437758
. [all data]
Brown, Connor, et al., 1976
Brown, D.L.S.; Connor, J.A.; Leung, M.L.; Paz-Andrade, M.I.; Skinner, H.A.,
J. Organometal. Chem., 1976, 110, 79. [all data]
Huybrechts, Rigaux, et al., 1980
Huybrechts, G.; Rigaux, D.; Vankeerberghen, J.; Van Mele, B.,
Kinetics of the Diels-Alder addition of ethene to cyclohexa-1,3-diene and its reverse reaction in the gas phase,
Int. J. Chem. Kinet., 1980, 12, 253-259. [all data]
Van Mele, Boon, et al., 1986
Van Mele, B.; Boon, G.; Huybrechts, G.,
Gas-phase kinetic and thermochemical data for endo- and exo-5-monosubstituted bicyclo[2.2.2]oct-2-enes,
Int. J. Chem. Kinet., 1986, 18, 537-545. [all data]
Sullivan and Beauchamp, 1976
Sullivan, S.A.; Beauchamp, J.L.,
Competition between proton transfer and elimination in the reactions of strong bases with fluoroethanes in the gas phase. Influence of base strength on reactivity,
J. Am. Chem. Soc., 1976, 98, 1160. [all data]
Roy and McMahon, 1985
Roy, M.; McMahon, T.B.,
The Anomalous Gas Phase Acidity of Ethyl Fluoride. An ab initio Investigation of the Importance of Hydrogen Bonding between Fluoride and sp2 and sp C-H Bonds.,
Can. J. Chem., 1985, 63, 3, 708, https://doi.org/10.1139/v85-117
. [all data]
Chen and Armetrout, 1995
Chen, Y.M.; Armetrout, P.B.,
Activation of C2H6, C3H8, and c-C3H6 by Gas-Phase Rh+ and the Thermochemistry of Rh-Ligand Complexes,
J. Am. Chem. Soc., 1995, 117, 36, 9291, https://doi.org/10.1021/ja00141a022
. [all data]
Partenheimer and Durham, 1974
Partenheimer, W.; Durham, B.,
J. Am. Chem. Soc., 1974, 96, 3800. [all data]
Jesse, Cordfunke, et al., 1979
Jesse, A.C.; Cordfunke, E.H.P.; Ouweltjes, W.,
Thermochim. Acta, 1979, 30, 293. [all data]
Holm, 1981
Holm, T.,
J. Chem. Soc., Perkin Trans. II, 1981, 464.. [all data]
Hop and McMahon, 1991
Hop, C.E.C.A.; McMahon, T.B.,
High Pressure Mass Spectrometric Observation of Metal Carbonyl Alkyl Adduct Ions of Novel Structure,
Inorg. Chem., 1991, 30, 13, 2828, https://doi.org/10.1021/ic00013a025
. [all data]
Stockigt, Schwarz, et al., 1996
Stockigt, D.; Schwarz, J.; Schwarz, H.,
Theoretical and Experimental Studies on the Bond Dissociation Energies of Al(methane)+, Al(acetylene)+, Al(ethene)+, and Al(ethane)+,
J. Phys. Chem., 1996, 100, 21, 8786, https://doi.org/10.1021/jp960060k
. [all data]
Lacher, Kianpour, et al., 1956
Lacher, J.R.; Kianpour, A.; Oetting, F.; Park, J.D.,
Reaction calorimetry. The hydrogenation of organic fluorides and chlorides,
Trans. Faraday Soc., 1956, 52, 1500-1508. [all data]
Minton, Felder, et al., 1984
Minton, T.K.; Felder, P.; Brudzynski, R.J.; Lee, Y.T.,
Photodissociation of 1,2-chloroiodoethane at 248 and 266 nm: The enthalpy of formation of CH2ClCH2I,
J. Chem. Phys., 1984, 81, 1759-1769. [all data]
Calhorda, Carrondo, et al., 1991
Calhorda, M.J.; Carrondo, M.A.A.F.C.T.; Dias, A.R.; Galvão, A.M.; Garcia, M.H.; Martins, A.M.; Minas da Piedade, M.E.; Pinheiro, C.I.; Romão, C.C.; Martinho Simões, J.A.; Veiros, L.F.,
Organometallics, 1991, 10, 483. [all data]
Jesse, Baks, et al., 1978
Jesse, A.C.; Baks, A.; Stufkens, D.J.; Vrieze, K.,
Inorg. Chim. Acta, 1978, 29, 177. [all data]
Walsh and Wells, 1976
Walsh, R.; Wells, J.M.,
The enthalpy of formation and thermodynamic functions of bicyclo[2,2,1]hept-2-ene,
J. Chem. Thermodyn., 1976, 8, 55-60. [all data]
Quick, Knecht, et al., 1972
Quick, L.M.; Knecht, D.A.; Back, M.H.,
Kinetics of the formation of cyclobutane from ethylene,
Int. J. Chem. Kinet., 1972, 4, 61-68. [all data]
Benson and Amano, 1962
Benson, S.W.; Amano, A.,
Thermodynamics of iodine addition to ethylene, propylene, and cyclopropane,
J. Chem. Phys., 1962, 36, 3464-3471. [all data]
Scacchi and Back, 1977
Scacchi, G.; Back, M.H.,
The cycloaddition of ethylene to butene-2. II. Energy relations,
Int. J. Chem. Kinet., 1977, 9, 525-534. [all data]
Nijs and Jacobs, 1981
Nijs, H.H.; Jacobs, P.A.,
On-Line Single Run Analysis of Effluents from a Fischer-Tropsch Reactor,
J. Chromatogr. Sci., 1981, 19, 1, 40-45, https://doi.org/10.1093/chromsci/19.1.40
. [all data]
Matukuma, 1969
Matukuma, A.,
Retention indices of alkanes through C10 and alkenes through C8 and relation between boiling points and retention data,
Gas Chromatogr., Int. Symp. Anal. Instrum. Div Instrum Soc. Amer., 1969, 7, 55-75. [all data]
Hively and Hinton, 1968
Hively, R.A.; Hinton, R.E.,
Variation of the retention index with temperature on squalane substrates,
J. Gas Chromatogr., 1968, 6, 4, 203-217, https://doi.org/10.1093/chromsci/6.4.203
. [all data]
Haagen-Smit Laboratory, 1997
Haagen-Smit Laboratory,
Procedure for the detailed hydrocarbon analysis of gasolines by single column high efficiency (capillary) column gas chromatography, SOP NO. MLD 118, Revision No. 1.1, California Environmental Protection Agency, Air Resources Board, El Monte, California, 1997, 22. [all data]
Hoekman, 1993
Hoekman, S.K.,
Improved gas chromatography procedure for speciated hydrocarbon measurements of vehicle emissions,
J. Chromatogr., 1993, 639, 2, 239-253, https://doi.org/10.1016/0021-9673(93)80260-F
. [all data]
Voorhees, Hileman, et al., 1975
Voorhees, K.J.; Hileman, F.D.; Einhorn, I.N.,
Generation of retention index standards by pyrolysis of hydrocarbons,
Anal. Chem., 1975, 47, 14, 2385-2389, https://doi.org/10.1021/ac60364a035
. [all data]
Supelco, 2012
Supelco, CatalogNo. 24160-U,
Petrocol DH Columns. Catalog No. 24160-U, 2012, retrieved from http://www.sigmaaldrich.com/etc/medialib/docs/Supelco/Datasheet/1/w97949.Par.0001.File.tmp/w97949.pdf. [all data]
Zenkevich, 2005
Zenkevich, I.G.,
Experimentally measured retention indices., 2005. [all data]
Chupalov and Zenkevich, 1996
Chupalov, A.A.; Zenkevich, I.G.,
Chromatographic Characterization of Structural Transformations of Organic Compounds in Diels-Alder Reaction. Aliphatic Dienes and Dienophyls,
Zh. Org. Khim., 1996, 32, 6, 675-684. [all data]
Chen and Feng, 2007
Chen, Y.; Feng, C.,
QSPR study on gas chromatography retention index of some organic pollutants,
Comput. Appl. Chem. (China), 2007, 24, 10, 1404-1408. [all data]
Zenkevich and Rodin, 2004
Zenkevich, I.G.; Rodin, A.A.,
Gas chromatographic identification of some volatile toxic fluorine containing compounds by precalculated retention indices,
J. Ecol. Chem. (Rus.), 2004, 13, 1, 22-28. [all data]
Zenkevich, 2000
Zenkevich, I.G.,
Mutual Correlation between Gas Chromatographic Retention Indices of Unsaturated and Saturated Hydrocarbons found by Molecular Dynamics,
Z. Anal. Chem., 2000, 55, 10, 1091-1097. [all data]
Flanagan, Streete, et al., 1997
Flanagan, R.J.; Streete, P.J.; Ramsey, J.D.,
Volatile Substance Abuse, UNODC Technical Series, No 5, United Nations, Office on Drugs and Crime, Vienna International Centre, PO Box 500, A-1400 Vienna, Austria, 1997, 56, retrieved from http://www.odccp.org/pdf/technicalseries1997-01-011.pdf. [all data]
Zenkevich, 1997
Zenkevich, I.G.,
Influence of the Variations of Dynamics Molecular Parameterts on the Additivity of Chromatigraphic Retention Indices of Products of Organic Reactions Relative to Initial Reagents,
Dokl. Akad. Nauk (Rus.), 1997, 353, 5, 625-627. [all data]
Zenkevich, Chupalov, et al., 1996
Zenkevich, I.G.; Chupalov, A.A.; Herzschuh, R.,
Correlation of the Increments of Gas Chromatographic Retention Indices with the Differences of Innermolecular Energies of Reagents and Products of Chemical Reactions,
Zh. Org. Khim. (Rus.), 1996, 32, 11, 1685-1691. [all data]
Strete, Ruprah, et al., 1992
Strete, P.J.; Ruprah, M.; Ramsey, J.D.; Flanagan, R.J.,
Detection and identification of volatile substances by headspace capillary gas chromatography to aid the diagnosis of acute poisoning,
Analyst, 1992, 117, 7, 1111-1127, https://doi.org/10.1039/an9921701111
. [all data]
Robinson and Odell, 1971
Robinson, P.G.; Odell, A.L.,
A system of standard retention indices and its uses. The characterisation of stationary phases and the prediction of retention indices,
J. Chromatogr., 1971, 57, 1-10, https://doi.org/10.1016/0021-9673(71)80001-8
. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, IR Spectrum, Gas Chromatography, References
- Symbols used in this document:
Cp,gas Constant pressure heat capacity of gas S°gas,1 bar Entropy of gas at standard conditions (1 bar) T Temperature ΔcH°gas Enthalpy of combustion of gas at standard conditions ΔfH°gas Enthalpy of formation of gas at standard conditions ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.