Pentane
- Formula: C5H12
- Molecular weight: 72.1488
- IUPAC Standard InChIKey: OFBQJSOFQDEBGM-UHFFFAOYSA-N
- CAS Registry Number: 109-66-0
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: n-Pentane; Skellysolve A; n-C5H12; Pentan; Pentanen; Pentani; Amyl hydride; NSC 72415
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Phase change data, Reaction thermochemistry data, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | -35.08 ± 0.14 | kcal/mol | Ccb | Good, 1970 | ALS |
ΔfH°gas | -35.16 ± 0.24 | kcal/mol | Cm | Pilcher and Chadwick, 1967 | ALS |
ΔfH°gas | -35.00 ± 0.16 | kcal/mol | Ccb | Prosen and Rossini, 1945 | ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°gas | -844.99 ± 0.23 | kcal/mol | Cm | Pilcher and Chadwick, 1967 | Corresponding ΔfHºgas = -35.16 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°gas | -845.27 ± 0.21 | kcal/mol | Ccb | Rossini, 1934 | Corresponding ΔfHºgas = -34.88 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS |
Quantity | Value | Units | Method | Reference | Comment |
S°gas | 83.13 ± 0.20 | cal/mol*K | N/A | Messerly G.H., 1940 | Scott [ Scott D.W., 1974] has calculated the value of S(298.15 K)=349.49(0.71) J/mol*K on the basis of data [ Messerly G.H., 1940].; GT |
Constant pressure heat capacity of gas
Cp,gas (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
28.697 ± 0.057 | 298.15 | Kharin V.E., 1985 | Experimental data [ Sage B.H., 1937] are less accurate than selected ones. Please also see Hossenlopp I.A., 1981.; GT |
30.554 ± 0.062 | 323.15 | ||
32.481 ± 0.065 | 348.15 | ||
34.405 ± 0.069 | 373.15 | ||
36.310 ± 0.072 | 398.15 | ||
38.162 ± 0.076 | 423.15 | ||
40.002 ± 0.079 | 448.15 | ||
40.179 | 450. | ||
41.766 ± 0.084 | 473.15 | ||
43.494 ± 0.086 | 498.15 | ||
43.592 | 500. | ||
45.191 ± 0.091 | 523.15 | ||
46.836 | 550. | ||
50.007 | 600. | ||
53.043 | 650. | ||
55.664 | 700. |
Constant pressure heat capacity of gas
Cp,gas (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
22.36 | 200. | Scott D.W., 1974, 2 | Recommended values were obtained from the consistent correlation scheme for alkanes [ Scott D.W., 1974, Scott D.W., 1974, 2]. This approach gives a better agreement with experimental data than the statistical thermodynamics calculation [ Pitzer K.S., 1944, Pitzer K.S., 1946].; GT |
26.900 | 273.15 | ||
28.69 ± 0.02 | 298.15 | ||
28.829 | 300. | ||
36.460 | 400. | ||
43.640 | 500. | ||
49.900 | 600. | ||
55.301 | 700. | ||
59.900 | 800. | ||
63.800 | 900. | ||
67.299 | 1000. | ||
70.201 | 1100. | ||
72.801 | 1200. | ||
75.000 | 1300. | ||
77.000 | 1400. | ||
79.001 | 1500. |
Phase change data
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 309.2 ± 0.2 | K | AVG | N/A | Average of 81 out of 94 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Tfus | 143.4 ± 0.7 | K | AVG | N/A | Average of 30 out of 31 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Ttriple | 143.46 ± 0.05 | K | AVG | N/A | Average of 6 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Tc | 469.8 ± 0.5 | K | AVG | N/A | Average of 27 out of 31 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Pc | 33.1 ± 0.6 | atm | AVG | N/A | Average of 20 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Vc | 0.311 | l/mol | N/A | Ambrose and Tsonopoulos, 1995 | |
Vc | 0.3098 | l/mol | N/A | Aftienjew and Zawisza, 1977 | Uncertainty assigned by TRC = 0.0003 l/mol; TRC |
Vc | 0.295 | l/mol | N/A | Beattie, Levine, et al., 1951 | Uncertainty assigned by TRC = 0.006 l/mol; TRC |
Vc | 0.31482 | l/mol | N/A | Sage and Lacey, 1942 | Uncertainty assigned by TRC = 0.0031 l/mol; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ρc | 3.22 ± 0.07 | mol/l | AVG | N/A | Average of 14 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
ΔvapH° | 6.3 ± 0.2 | kcal/mol | AVG | N/A | Average of 11 values; Individual data points |
Enthalpy of vaporization
ΔvapH (kcal/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
6.164 | 309.2 | N/A | Majer and Svoboda, 1985 | |
6.2620 | 298.15 | N/A | Messerly and Kennedy, 1940 | P = 68.68 kPa; DH |
6.38 | 323. | N/A | Pfohl, Riebesell, et al., 2002 | Based on data from 308. to 423. K.; AC |
7.12 | 238. | A | Stephenson and Malanowski, 1987 | Based on data from 223. to 352. K.; AC |
7.72 | 208. | A | Stephenson and Malanowski, 1987 | Based on data from 143. to 223. K.; AC |
6.24 | 365. | A | Stephenson and Malanowski, 1987 | Based on data from 350. to 422. K.; AC |
6.26 | 433. | A | Stephenson and Malanowski, 1987 | Based on data from 418. to 470. K.; AC |
6.67 | 284. | EB | Stephenson and Malanowski, 1987 | Based on data from 269. to 341. K. See also Osborn and Douslin, 1974.; AC |
6.09 | 310. | N/A | Das, Reed, et al., 1977 | AC |
5.5 | 350. | N/A | Das, Reed, et al., 1977 | AC |
4.71 | 390. | N/A | Das, Reed, et al., 1977 | AC |
3.61 | 430. | N/A | Das, Reed, et al., 1977 | AC |
2.0 | 460. | N/A | Das, Reed, et al., 1977 | AC |
Enthalpy of vaporization
ΔvapH = A exp(-αTr)
(1 − Tr)β
ΔvapH =
Enthalpy of vaporization (at saturation pressure)
(kcal/mol)
Tr = reduced temperature (T / Tc)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | 260. to 428. |
---|---|
A (kcal/mol) | 8.846 |
α | -0.1238 |
β | 0.4121 |
Tc (K) | 469.6 |
Reference | Majer and Svoboda, 1985 |
Entropy of vaporization
ΔvapS (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
21.00 | 298.15 | Messerly and Kennedy, 1940 | P; DH |
Antoine Equation Parameters
log10(P) = A − (B / (T + C))
P = vapor pressure (atm)
T = temperature (K)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A | B | C | Reference | Comment |
---|---|---|---|---|---|
268.8 to 341.37 | 3.9835 | 1070.617 | -40.454 | Osborn and Douslin, 1974 | Coefficents calculated by NIST from author's data. |
Enthalpy of sublimation
ΔsubH (kcal/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
10.0 | 143. | B | Bondi, 1963 | AC |
Enthalpy of fusion
ΔfusH (kcal/mol) | Temperature (K) | Reference | Comment |
---|---|---|---|
2.008 | 143.47 | Messerly, Guthrie, et al., 1967 | DH |
2.0112 | 143.46 | Messerly and Kennedy, 1940 | DH |
2.0 | 143.5 | Acree, 1991 | AC |
2.002 | 143.4 | Parks and Huffman, 1930 | DH |
Entropy of fusion
ΔfusS (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
14.00 | 143.47 | Messerly, Guthrie, et al., 1967 | DH |
14.02 | 143.46 | Messerly and Kennedy, 1940 | DH |
13.96 | 143.4 | Parks and Huffman, 1930 | DH |
Reaction thermochemistry data
Go To: Top, Gas phase thermochemistry data, Phase change data, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
MS - José A. Martinho Simões
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
By formula: C5H10 + H2 = C5H12
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -30.27 ± 0.58 | kcal/mol | Chyd | Molnar, Rachford, et al., 1984 | liquid phase; solvent: Dioxane; ALS |
ΔrH° | -29.87 ± 0.42 | kcal/mol | Chyd | Molnar, Rachford, et al., 1984 | liquid phase; solvent: Hexane; ALS |
ΔrH° | -29.30 ± 0.57 | kcal/mol | Chyd | Rogers and Skanupong, 1974 | liquid phase; solvent: Hexane; ALS |
ΔrH° | -28.5 ± 0.3 | kcal/mol | Chyd | Rogers and McLafferty, 1971 | liquid phase; solvent: Hydrocarbon; ALS |
C10H12CrO5 (solution) = (solution) + C5CrO5 (solution)
By formula: C10H12CrO5 (solution) = C5H12 (solution) + C5CrO5 (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 8.91 | kcal/mol | N/A | Morse, Parker, et al., 1989 | solvent: Pentane; The reaction enthalpy was derived by using the LPHP value for the enthalpy of cleavage of Cr-CO bond in Cr(CO)6, 36.81 kcal/mol Lewis, Golden, et al., 1984, toghether with a PAC value for the reaction Cr(CO)6(solution) + n-C5H12(solution) = Cr(CO)5(n-C5H12)(solution) + CO(solution), 27.89 kcal/mol Morse, Parker, et al., 1989; MS |
(solution) + (solution) = C10H12CrO5 (solution) + (solution)
By formula: C5H12 (solution) + C6CrO6 (solution) = C10H12CrO5 (solution) + CO (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 27.9 ± 2.5 | kcal/mol | PAC | Morse, Parker, et al., 1989 | solvent: Pentane; The reaction enthalpy relies on 0.67 for the quantum yield of CO dissociation; MS |
By formula: 3H2 + C5H6 = C5H12
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -96.8 ± 0.1 | kcal/mol | Chyd | Roth, Adamczak, et al., 1991 | liquid phase; ALS |
ΔrH° | -95.6 ± 1.1 | kcal/mol | Chyd | Skinner and Snelson, 1959 | liquid phase; solvent: Acetic acid; ALS |
By formula: 3H2 + C5H6 = C5H12
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -97.0 ± 0.3 | kcal/mol | Chyd | Roth, Adamczak, et al., 1991 | liquid phase; ALS |
ΔrH° | -96.0 ± 0.4 | kcal/mol | Chyd | Skinner and Snelson, 1959 | liquid phase; solvent: Acetic acid; ALS |
By formula: 2H2 + C5H8 = C5H12
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -60.22 ± 0.15 | kcal/mol | Chyd | Kistiakowsky, Ruhoff, et al., 1936 | gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -60.79 ± 0.15 kcal/mol; At 355 °K; ALS |
(solution) + C5H11BrMg (solution) = C6H5BrMgO (solution) + (solution)
By formula: C6H6O (solution) + C5H11BrMg (solution) = C6H5BrMgO (solution) + C5H12 (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -48.4 ± 1.0 | kcal/mol | RSC | Holm, 1983 | solvent: Diethyl ether; MS |
C5H11BrMg (solution) + (g) = (solution) + Br2Mg (solution)
By formula: C5H11BrMg (solution) + HBr (g) = C5H12 (solution) + Br2Mg (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -73.21 ± 0.53 | kcal/mol | RSC | Holm, 1981 | solvent: Diethyl ether; MS |
(solution) + C5H11BrMg (solution) = C2H5BrMgO (solution) + (solution)
By formula: C2H6O (solution) + C5H11BrMg (solution) = C2H5BrMgO (solution) + C5H12 (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -47.7 ± 1.0 | kcal/mol | RSC | Holm, 1983 | solvent: Diethyl ether; MS |
C5H11BrMg (solution) + (solution) = CH4BrMgN (solution) + (solution)
By formula: C5H11BrMg (solution) + CH5N (solution) = CH4BrMgN (solution) + C5H12 (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -31.19 ± 0.60 | kcal/mol | RSC | Holm, 1983 | solvent: Diethyl ether; MS |
By formula: 2H2 + C5H8 = C5H12
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -65.5 ± 0.2 | kcal/mol | Chyd | Roth, Kirmse, et al., 1982 | liquid phase; solvent: Isooctane; ALS |
C5O5W (g) + (g) = C10H12O5W (g)
By formula: C5O5W (g) + C5H12 (g) = C10H12O5W (g)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -10.6 ± 3.0 | kcal/mol | EqG | Brown, Ishikawa, et al., 1990 | Temperature range: ca. 300-350 K; MS |
C5H11BrMg (solution) + (solution) = (solution) + CH3BrMg (solution)
By formula: C5H11BrMg (solution) + CH4 (solution) = C5H12 (solution) + CH3BrMg (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -3.6 ± 1.0 | kcal/mol | RSC | Holm, 1983 | solvent: Diethyl ether; MS |
(solution) + C5H11BrMg (solution) = C3HBrMgN2 (solution) + (solution)
By formula: C3H2N2 (solution) + C5H11BrMg (solution) = C3HBrMgN2 (solution) + C5H12 (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -48.59 | kcal/mol | RSC | Holm, 1983 | solvent: Diethyl ether; MS |
(solution) + C5H11BrMg (solution) = C12H10BrMgN (solution) + (solution)
By formula: C12H11N (solution) + C5H11BrMg (solution) = C12H10BrMgN (solution) + C5H12 (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -28.39 | kcal/mol | RSC | Holm, 1983 | solvent: Diethyl ether; MS |
C5H11BrMg (solution) + (solution) = C2BrF3MgO2 (solution) + (solution)
By formula: C5H11BrMg (solution) + C2HF3O2 (solution) = C2BrF3MgO2 (solution) + C5H12 (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -65.39 | kcal/mol | RSC | Holm, 1983 | solvent: Diethyl ether; MS |
C5H11BrMg (solution) + (solution) = C6BrF5MgO (cr) + (solution)
By formula: C5H11BrMg (solution) + C6HF5O (solution) = C6BrF5MgO (cr) + C5H12 (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -55.90 | kcal/mol | RSC | Holm, 1983 | solvent: Diethyl ether; MS |
C5H11BrMg (solution) + (solution) = C2H2BrF3MgO (solution) + (solution)
By formula: C5H11BrMg (solution) + C2H3F3O (solution) = C2H2BrF3MgO (solution) + C5H12 (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -47.71 | kcal/mol | RSC | Holm, 1983 | solvent: Diethyl ether; MS |
(solution) + C5H11BrMg (solution) = CH3BrMgO (cr) + (solution)
By formula: CH4O (solution) + C5H11BrMg (solution) = CH3BrMgO (cr) + C5H12 (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -52.51 | kcal/mol | RSC | Holm, 1983 | solvent: Diethyl ether; MS |
By formula: 2H2 + C5H8 = C5H12
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -54.11 ± 0.15 | kcal/mol | Chyd | Dolliver, Gresham, et al., 1937 | gas phase; At 355 °K; ALS |
By formula: C5H12 = C5H12
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -1.861 | kcal/mol | Eqk | Pines, Kvetinskas, et al., 1945 | gas phase; Heat of isomerization; ALS |
By formula: H2 + C5H10 = C5H12
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -28.1 ± 0.2 | kcal/mol | Chyd | Egger and Benson, 1966 | gas phase; ALS |
By formula: H2 + C5H10 = C5H12
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -27.2 ± 0.2 | kcal/mol | Chyd | Egger and Benson, 1966 | gas phase; ALS |
Mass spectrum (electron ionization)
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
Due to licensing restrictions, this spectrum cannot be downloaded.
Owner | NIST Mass Spectrometry Data Center Collection (C) 2014 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
---|---|
Origin | NIST Mass Spectrometry Data Center, 1998. |
NIST MS number | 291244 |
References
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Mass spectrum (electron ionization), Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Good, 1970
Good, W.D.,
The enthalpies of combustion and formation of the isomeric pentanes,
J. Chem. Thermodyn., 1970, 2, 237-244. [all data]
Pilcher and Chadwick, 1967
Pilcher, G.; Chadwick, J.D.M.,
Measurements of heats of combustion by flame calorimetry. Part 4.-n-Pentane, isopentane, neopentane,
Trans. Faraday Soc., 1967, 63, 2357-2361. [all data]
Prosen and Rossini, 1945
Prosen, E.J.; Rossini, F.D.,
Heats of combustion and formation of the paraffin hydrocarbons at 25° C,
J. Res. NBS, 1945, 263-267. [all data]
Rossini, 1934
Rossini, F.D.,
Calorimetric determination of the heats of combustion of ethane, propane, normal butane, and normal pentane,
J. Res. NBS, 1934, 12, 735-750. [all data]
Messerly G.H., 1940
Messerly G.H.,
The heat capacity and entropy, heats of fusion and vaporization and the vapor pressure of n-pentane,
J. Am. Chem. Soc., 1940, 62, 2988-2991. [all data]
Scott D.W., 1974
Scott D.W.,
Correlation of the chemical thermodynamic properties of alkane hydrocarbons,
J. Chem. Phys., 1974, 60, 3144-3165. [all data]
Kharin V.E., 1985
Kharin V.E.,
Isobaric heat capacity of n-pentane in the vapor phase,
Izv. Vyssh. Ucheb. Zaved., Neft. Gaz, 1985, 28, 63-66. [all data]
Sage B.H., 1937
Sage B.H.,
Phase equilibria in hydrocarbon systems. XX. Isobaric heat capacity of gaseous propane, n-butane, isobutane, and n-pentane,
Ind. Eng. Chem., 1937, 29, 1309-1314. [all data]
Hossenlopp I.A., 1981
Hossenlopp I.A.,
Vapor heat capacities and enthalpies of vaporization of five alkane hydrocarbons,
J. Chem. Thermodyn., 1981, 13, 415-421. [all data]
Scott D.W., 1974, 2
Scott D.W.,
Chemical Thermodynamic Properties of Hydrocarbons and Related Substances. Properties of the Alkane Hydrocarbons, C1 through C10 in the Ideal Gas State from 0 to 1500 K. U.S. Bureau of Mines, Bulletin 666, 1974. [all data]
Pitzer K.S., 1944
Pitzer K.S.,
Thermodynamics of gaseous paraffins. Specific heat and related properties,
Ind. Eng. Chem., 1944, 36, 829-831. [all data]
Pitzer K.S., 1946
Pitzer K.S.,
The entropies and related properties of branched paraffin hydrocarbons,
Chem. Rev., 1946, 39, 435-447. [all data]
Ambrose and Tsonopoulos, 1995
Ambrose, D.; Tsonopoulos, C.,
Vapor-Liquid Critical Properties of Elements and Compounds. 2. Normal Alkenes,
J. Chem. Eng. Data, 1995, 40, 531-546. [all data]
Aftienjew and Zawisza, 1977
Aftienjew, J.; Zawisza, A.,
High-Pressure Liquid Vapour-Equilibria, Critical State and p(V,T,x) Up to 501.15 K and 4.560 MPa for n-Pentane + n-Perfluoropentane,
J. Chem. Thermodyn., 1977, 9, 2, 153-165, https://doi.org/10.1016/0021-9614(77)90081-7
. [all data]
Beattie, Levine, et al., 1951
Beattie, J.A.; Levine, S.W.; Douslin, D.R.,
The vapor pressure and critical constants of normal pentane,
J. Am. Chem. Soc., 1951, 73, 4431. [all data]
Sage and Lacey, 1942
Sage, B.H.; Lacey, W.N.,
Phase equilibria in hydrocarbon systems. Thermodynamic properties of n- pentane.,
Ind. Eng. Chem., 1942, 34, 730-737. [all data]
Majer and Svoboda, 1985
Majer, V.; Svoboda, V.,
Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]
Messerly and Kennedy, 1940
Messerly, G.H.; Kennedy, R.M.,
The heat capacity and entropy, heats of fusion and vaporization and the vapor pressure of n-pentane,
J. Am. Chem. Soc., 1940, 62, 2988-2991. [all data]
Pfohl, Riebesell, et al., 2002
Pfohl, Oliver; Riebesell, Christine; Dohrn, Ralf,
Measurement and calculation of phase equilibria in the system n-pentane + poly(dimethylsiloxane) at 308.15--423.15 K,
Fluid Phase Equilibria, 2002, 202, 2, 289-306, https://doi.org/10.1016/S0378-3812(02)00123-1
. [all data]
Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw,
Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2
. [all data]
Osborn and Douslin, 1974
Osborn, Ann G.; Douslin, Donald R.,
Vapor-pressure relations for 15 hydrocarbons,
J. Chem. Eng. Data, 1974, 19, 2, 114-117, https://doi.org/10.1021/je60061a022
. [all data]
Das, Reed, et al., 1977
Das, Tarun R.; Reed, Charles O.; Eubank, Philip T.,
PVT surface and thermodynamic properties of n-pentane,
J. Chem. Eng. Data, 1977, 22, 1, 3-9, https://doi.org/10.1021/je60072a014
. [all data]
Bondi, 1963
Bondi, A.,
Heat of Siblimation of Molecular Crystals: A Catalog of Molecular Structure Increments.,
J. Chem. Eng. Data, 1963, 8, 3, 371-381, https://doi.org/10.1021/je60018a027
. [all data]
Messerly, Guthrie, et al., 1967
Messerly, J.F.; Guthrie, G.B.; Todd, S.S.; Finke, H.L.,
Low-temperature thermal data for n-pentane, n-heptadecane, and n-octadecane,
J. Chem. Eng. Data, 1967, 12, 338-346. [all data]
Acree, 1991
Acree, William E.,
Thermodynamic properties of organic compounds: enthalpy of fusion and melting point temperature compilation,
Thermochimica Acta, 1991, 189, 1, 37-56, https://doi.org/10.1016/0040-6031(91)87098-H
. [all data]
Parks and Huffman, 1930
Parks, G.S.; Huffman, H.M.,
Thermal data on organic compounds. IX. A study of the effect of unsaturation on the heat capacities, entropies and free energies of some hydrocarbons and other compounds,
J. Am. Chem. Soc., 1930, 52, 4381-4391. [all data]
Molnar, Rachford, et al., 1984
Molnar, A.; Rachford, R.; Smith, G.V.; Liu, R.,
Heats of hydrogenation by a simple and rapid flow calorimetric method,
Appl. Catal., 1984, 9, 219-223. [all data]
Rogers and Skanupong, 1974
Rogers, D.W.; Skanupong, S.,
Heats of hydrogenation of sixteen terminal monoolefins. The alternating effect,
J. Phys. Chem., 1974, 78, 2569-2572. [all data]
Rogers and McLafferty, 1971
Rogers, D.W.; McLafferty, F.J.,
A new hydrogen calorimeter. Heats of hydrogenation of allyl and vinyl unsaturation adjacent to a ring,
Tetrahedron, 1971, 27, 3765-3775. [all data]
Morse, Parker, et al., 1989
Morse, J.M., Jr.; Parker, G.H.; Burkey, T.J.,
Organometallics, 1989, 8, 2471. [all data]
Lewis, Golden, et al., 1984
Lewis, K.E.; Golden, D.M.; Smith, G.P.,
Organometallic bond dissociation energies: Laser pyrolysis of Fe(CO)5, Cr(CO)6, Mo(CO)6, and W(CO)6,
J. Am. Chem. Soc., 1984, 106, 3905. [all data]
Roth, Adamczak, et al., 1991
Roth, W.R.; Adamczak, O.; Breuckmann, R.; Lennartz, H.-W.; Boese, R.,
Die Berechnung von Resonanzenergien; das MM2ERW-Kraftfeld,
Chem. Ber., 1991, 124, 2499-2521. [all data]
Skinner and Snelson, 1959
Skinner, H.A.; Snelson, A.,
Heats of hydrogenation Part 3.,
Trans. Faraday Soc., 1959, 55, 405-407. [all data]
Kistiakowsky, Ruhoff, et al., 1936
Kistiakowsky, G.B.; Ruhoff, J.R.; Smith, H.A.; Vaughan, W.E.,
Heats of organic reactions. IV. Hydrogenation of some dienes and of benzene,
J. Am. Chem. Soc., 1936, 58, 146-153. [all data]
Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G.,
Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]
Holm, 1983
Holm, T.,
Acta Chem. Scand. B, 1983, 37, 797. [all data]
Holm, 1981
Holm, T.,
J. Chem. Soc., Perkin Trans. II, 1981, 464.. [all data]
Roth, Kirmse, et al., 1982
Roth, W.R.; Kirmse, W.; Hoffmann, W.; Lennartz, H.W.,
Heats of hydrogenation. III. Effect of fluoro substituents on the thermal rearrangement of cyclopropane systems,
Chem. Ber., 1982, 115, 2508-2515. [all data]
Brown, Ishikawa, et al., 1990
Brown, C.E.; Ishikawa, Y.; Hackett, P.A.; Rayner, D.M.,
J. Am. Chem. Soc., 1990, 112, 2530. [all data]
Dolliver, Gresham, et al., 1937
Dolliver, M.a.; Gresham, T.L.; Kistiakowsky, G.B.; Vaughan, W.E.,
Heats of organic reactions. V. Heats of hydrogenation of various hydrocarbons,
J. Am. Chem. Soc., 1937, 59, 831-841. [all data]
Pines, Kvetinskas, et al., 1945
Pines, H.; Kvetinskas, B.; Kassel, L.S.; Ipatieff, V.N.,
Determination of equilibrium constants for butanes and pentanes,
J. Am. Chem. Soc., 1945, 67, 631-637. [all data]
Egger and Benson, 1966
Egger, K.W.; Benson, S.W.,
Nitric oxide and iodine catalyzed isomerization of olefins. VI. Thermodynamic data from equilibrium studies of the geometrical and positional isomerization of n-pentenes,
J. Am. Chem. Soc., 1966, 88, 236-240. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Mass spectrum (electron ionization), References
- Symbols used in this document:
Cp,gas Constant pressure heat capacity of gas Pc Critical pressure S°gas Entropy of gas at standard conditions Tboil Boiling point Tc Critical temperature Tfus Fusion (melting) point Ttriple Triple point temperature Vc Critical volume ΔcH°gas Enthalpy of combustion of gas at standard conditions ΔfH°gas Enthalpy of formation of gas at standard conditions ΔfusH Enthalpy of fusion ΔfusS Entropy of fusion ΔrH° Enthalpy of reaction at standard conditions ΔsubH Enthalpy of sublimation ΔvapH Enthalpy of vaporization ΔvapH° Enthalpy of vaporization at standard conditions ΔvapS Entropy of vaporization ρc Critical density - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.