Hydrazine, 1,1-dimethyl-

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Phase change data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Donald R. Burgess, Jr.

Quantity Value Units Method Reference Comment
Δfgas83.3 ± 3.6kJ/molN/ADonovan, Shomate, et al., 1960Value computed using ΔfHliquid° value of 48.3±3.6 kj/mol from Donovan, Shomate, et al., 1960 and ΔvapH° value of 35±0.2 kj/mol from missing citation.

Phase change data

Go To: Top, Gas phase thermochemistry data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
AC - William E. Acree, Jr., James S. Chickos

Quantity Value Units Method Reference Comment
Tboil337.1KN/AWeast and Grasselli, 1989BS
Tboil336.2KN/AMajer and Svoboda, 1985 
Quantity Value Units Method Reference Comment
Tfus216.KN/AMcMillan, 1967Uncertainty assigned by TRC = 1.5 K; TRC
Quantity Value Units Method Reference Comment
Ttriple215.95KN/AAston, Wood, et al., 1953Uncertainty assigned by TRC = 0.02 K; TRC
Quantity Value Units Method Reference Comment
Δvap35.22kJ/molN/AMajer and Svoboda, 1985 
Δvap35.0 ± 0.2kJ/molVAston, Wood, et al., 1953, 2ALS

Reduced pressure boiling point

Tboil (K) Pressure (bar) Reference Comment
336.21.00Aldrich Chemical Company Inc., 1990BS

Enthalpy of vaporization

ΔvapH (kJ/mol) Temperature (K) Method Reference Comment
35.003298.15N/AAston, Wood, et al., 1953, 3P = 20.90 kPa; DH
32.55336.2N/AMajer and Svoboda, 1985 
34.1284.N/ABourret-Courchesne, Ye, et al., 2000Based on data from 267. to 303. K.; AC
36.5277.AStephenson and Malanowski, 1987Based on data from 238. to 292. K. See also Aston, Wood, et al., 1953, 3 and Boublik, Fried, et al., 1984.; AC

Entropy of vaporization

ΔvapS (J/mol*K) Temperature (K) Reference Comment
117.4298.15Aston, Wood, et al., 1953, 3P; DH

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (bar)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
237.74 to 293.084.713161388.51-40.613Aston, Wood, et al., 1953, 3Coefficents calculated by NIST from author's data.

Enthalpy of fusion

ΔfusH (kJ/mol) Temperature (K) Reference Comment
10.0726215.95Aston, Wood, et al., 1953, 3DH
10.07216.Domalski and Hearing, 1996AC

Entropy of fusion

ΔfusS (J/mol*K) Temperature (K) Reference Comment
46.64215.95Aston, Wood, et al., 1953, 3DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Phase change data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin Japan AIST/NIMC Database- Spectrum MS-NW-1126
NIST MS number 229632

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


References

Go To: Top, Gas phase thermochemistry data, Phase change data, Mass spectrum (electron ionization), Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Donovan, Shomate, et al., 1960
Donovan, T.M.; Shomate, C.H.; McBride, W.R., The heat of combustion of tetramethyltetrazene and 1,1-dimethylhydrazine, J. Phys. Chem., 1960, 64, 281-282. [all data]

Weast and Grasselli, 1989
CRC Handbook of Data on Organic Compounds, 2nd Editon, Weast,R.C and Grasselli, J.G., ed(s)., CRC Press, Inc., Boca Raton, FL, 1989, 1. [all data]

Majer and Svoboda, 1985
Majer, V.; Svoboda, V., Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]

McMillan, 1967
McMillan, J.A., Hydrazine-1,1-Dimethylhydrazine Solid-Liquid Phase Diagram, J. Chem. Eng. Data, 1967, 12, 39. [all data]

Aston, Wood, et al., 1953
Aston, J.G.; Wood, J.L.; Zolki, T.P., The Thermodynamic Properties and Configuration of Unsymmetrical Dimethylhydrazine, J. Am. Chem. Soc., 1953, 75, 6202. [all data]

Aston, Wood, et al., 1953, 2
Aston, J.G.; Wood, J.L.; Zolki, T.P., The thermodynamic properties and configuration of unsymmetrical dimethylhydrazine, J. Am. Chem. Soc., 1953, 75, 6202-62. [all data]

Aldrich Chemical Company Inc., 1990
Aldrich Chemical Company Inc., Catalog Handbook of Fine Chemicals, Aldrich Chemical Company, Inc., Milwaukee WI, 1990, 1. [all data]

Aston, Wood, et al., 1953, 3
Aston, J.G.; Wood, J.L.; Zolki, T.P., The thermodynamic properties and configuration of unsymmetrical dimethylhydrazine, J. Am. Chem. Soc., 1953, 75, 6202-6204. [all data]

Bourret-Courchesne, Ye, et al., 2000
Bourret-Courchesne, E.; Ye, Q.; Peters, D.W.; Arnold, J.; Ahmed, M.; Irvine, S.J.C.; Kanjolia, R.; Smith, L.M.; Rushworth, S.A., Pyrolysis of dimethylhydrazine and its co-pyrolysis with triethylgallium, Journal of Crystal Growth, 2000, 217, 1-2, 47-54, https://doi.org/10.1016/S0022-0248(00)00398-5 . [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Boublik, Fried, et al., 1984
Boublik, T.; Fried, V.; Hala, E., The Vapour Pressures of Pure Substances: Selected Values of the Temperature Dependence of the Vapour Pressures of Some Pure Substances in the Normal and Low Pressure Region, 2nd ed., Elsevier, New York, 1984, 972. [all data]

Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D., Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III, J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985 . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Phase change data, Mass spectrum (electron ionization), References