Methyl Alcohol

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Phase change data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas-205. ± 10.kJ/molAVGN/AAverage of 9 values; Individual data points
Quantity Value Units Method Reference Comment
Δcgas-763.68 ± 0.20kJ/molCmRossini, 1932Flame Calorimetry; Corresponding Δfgas = -201.49 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
34.0050.Thermodynamics Research Center, 1997p=1 bar. Recommended entropies and heat capacities are in good agreement with other statistically calculated values [ Ivash E.V., 1955, Zhuravlev E.Z., 1959, Chen S.S., 1977, Chao J., 1986, Gurvich, Veyts, et al., 1989]. Please also see Chao J., 1986, 2.; GT
36.95100.
38.64150.
39.71200.
42.59273.15
44.06 ± 0.03298.15
44.17300.
51.63400.
59.70500.
67.19600.
73.86700.
79.76800.
84.95900.
89.541000.
93.571100.
97.121200.
100.241300.
102.981400.
105.401500.
110.21750.
113.82000.
116.52250.
118.62500.
120.2750.
121.3000.

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
42.4 ± 1.3279.Stromsoe E., 1970Heat capacity at 279 K was obtained by thermal conductivity [ Halford J.O., 1957]. Vapor heat capacities from calorimetric measurements [ De Vries T., 1941] were converted to the ideal gas heat capacities by corrections for the gas imperfection effects [ Chen S.S., 1977, Chao J., 1986, 2]. Ideal gas heat capacities are given by [ Stromsoe E., 1970] as a linear function Cp=f1*(a+bT). This expression approximates the experimental values with the average deviation of 1.17 J/mol*K. The accuracy of the experimental heat capacities [ Stromsoe E., 1970] is estimated as less than 0.3%. Please also see De Vries T., 1941, Weltner W., 1951, Halford J.O., 1957.; GT
48.0 ± 1.3345.6
46.8 ± 1.2347.35
46.1 ± 1.3349.65
47.6 ± 1.2356.55
46.7 ± 1.3358.15
48.2 ± 1.3358.85
48.8 ± 1.3359.85
50.3 ± 1.3368.15
49.0 ± 1.2373.35
51.3 ± 1.3382.15
51.1 ± 1.2398.95
52.3 ± 1.3401.15
51.3 ± 1.2401.35
52.01 ± 0.42403.2
53.2 ± 1.3420.15
53.9 ± 1.2431.45
54.8 ± 1.2442.15
55.9 ± 1.3442.65
56.0 ± 1.2457.35
57.20 ± 0.42464.0
57.8 ± 1.2477.75
58.4 ± 1.2485.05
59.5 ± 1.2498.95
60.4 ± 1.3521.2
61.4 ± 1.2521.35
64.3 ± 1.2555.95
66.4 ± 1.2581.35
66.8 ± 1.2585.35

Phase change data

Go To: Top, Gas phase thermochemistry data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
DH - Eugene S. Domalski and Elizabeth D. Hearing
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
CAL - James S. Chickos, William E. Acree, Jr., Joel F. Liebman, Students of Chem 202 (Introduction to the Literature of Chemistry), University of Missouri -- St. Louis

Quantity Value Units Method Reference Comment
Tboil337.8 ± 0.3KAVGN/AAverage of 154 out of 171 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus176. ± 1.KAVGN/AAverage of 13 values; Individual data points
Quantity Value Units Method Reference Comment
Ttriple175.5 ± 0.5KAVGN/AAverage of 8 values; Individual data points
Quantity Value Units Method Reference Comment
Tc513. ± 1.KAVGN/AAverage of 27 out of 31 values; Individual data points
Quantity Value Units Method Reference Comment
Pc81. ± 1.barAVGN/AAverage of 17 out of 20 values; Individual data points
Quantity Value Units Method Reference Comment
Vc0.117l/molN/AGude and Teja, 1995 
Vc0.113024l/molN/ACraven and de Reuck, 1986TRC
Vc0.118l/molN/AFrancesconi, Lentz, et al., 1981Uncertainty assigned by TRC = 0.004 l/mol; TRC
Vc0.11663l/molN/AZubarev and Bagdonas, 1969Uncertainty assigned by TRC = 0.0035 l/mol; TRC
Quantity Value Units Method Reference Comment
ρc8.51 ± 0.07mol/lAVGN/AAverage of 7 values; Individual data points
Quantity Value Units Method Reference Comment
Δvap37.6 ± 0.5kJ/molAVGN/AAverage of 11 out of 12 values; Individual data points

Enthalpy of vaporization

ΔvapH (kJ/mol) Temperature (K) Method Reference Comment
35.21337.7N/AMajer and Svoboda, 1985 
39.2258.AStephenson and Malanowski, 1987Based on data from 175. to 273. K.; AC
36.9353.AStephenson and Malanowski, 1987Based on data from 338. to 487. K.; AC
43.7213.AStephenson and Malanowski, 1987Based on data from 188. to 228. K.; AC
38.9275.AStephenson and Malanowski, 1987Based on data from 224. to 290. K.; AC
38.3300.AStephenson and Malanowski, 1987Based on data from 285. to 345. K.; AC
37.0350.AStephenson and Malanowski, 1987Based on data from 335. to 376. K.; AC
36.1388.AStephenson and Malanowski, 1987Based on data from 373. to 458. K.; AC
35.1468.AStephenson and Malanowski, 1987Based on data from 453. to 513. K.; AC
32.7373.CYerlett and Wormald, 1986AC
28.1423.CYerlett and Wormald, 1986AC
20.6473.CYerlett and Wormald, 1986AC
7.4510.CYerlett and Wormald, 1986AC
37.5331.EBCervenkova and Boublik, 1984Based on data from 316. to 336. K.; AC
38.3303.N/AGibbard and Creek, 1974Based on data from 288. to 337. K. See also Boublik, Fried, et al., 1984.; AC
35.2 ± 0.1338.CCounsell and Lee, 1973AC
35.6 ± 0.1331.CCounsell and Lee, 1973AC
36.2 ± 0.1321.CCounsell and Lee, 1973AC
37.0 ± 0.1306.CCounsell and Lee, 1973AC
36.7 ± 0.1313.CSvoboda, Veselý, et al., 1973AC
36.2 ± 0.1323.CSvoboda, Veselý, et al., 1973AC
35.6 ± 0.1333.CSvoboda, Veselý, et al., 1973AC
35.3 ± 0.1338.CSvoboda, Veselý, et al., 1973AC
34.7 ± 0.1343.CSvoboda, Veselý, et al., 1973AC
37.0352.N/AWilhoit and Zwolinski, 1973Based on data from 337. to 383. K.; AC
38.7290.EBBoublík and Aim, 1972Based on data from 275. to 336. K. See also Stephenson and Malanowski, 1987.; AC
38.3303.EBAmbrose and Sprake, 1970Based on data from 288. to 357. K.; AC
36.3368.N/AHirata, Suda, et al., 1967Based on data from 353. to 483. K.; AC
38.4293.N/AKlyueva, Mischenko, et al., 1960Based on data from 278. to 323. K.; AC

Enthalpy of vaporization

ΔvapH = A exp(-αTr) (1 − Tr)β
    ΔvapH = Enthalpy of vaporization (at saturation pressure) (kJ/mol)
    Tr = reduced temperature (T / Tc)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) 298. to 477.
A (kJ/mol) 45.3
α -0.31
β 0.4241
Tc (K) 512.6
ReferenceMajer and Svoboda, 1985

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (bar)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
353.5 to 512.635.158531569.613-34.846Ambrose, Sprake, et al., 1975Coefficents calculated by NIST from author's data.
288.1 to 356.835.204091581.341-33.50Ambrose and Sprake, 1970Coefficents calculated by NIST from author's data.
353. to 483.5.313011676.569-21.728Hirata and Suda, 1967Coefficents calculated by NIST from author's data.

Enthalpy of fusion

ΔfusH (kJ/mol) Temperature (K) Reference Comment
3.18175.3Domalski and Hearing, 1996AC
2.196176.Maass and Walbauer, 1925DH

Entropy of fusion

ΔfusS (J/mol*K) Temperature (K) Reference Comment
12.5176.Maass and Walbauer, 1925DH

Entropy of fusion

ΔfusS (J/mol*K) Temperature (K) Reference Comment
3.7161.1Domalski and Hearing, 1996CAL
18.1175.3
4.0157.3
18.3175.6

Enthalpy of phase transition

ΔHtrs (kJ/mol) Temperature (K) Initial Phase Final Phase Reference Comment
0.6360157.34crystaline, IIcrystaline, ICarlson and Westrum, 1971DH
3.2154175.59crystaline, IliquidCarlson and Westrum, 1971DH
1.540103.crystalineglassSugisaki, Suga, et al., 1968Glass transition.; DH
0.711157.8crystaline, IIcrystaline, IStaveley and Gupta, 1949DH
3.159175.4crystaline, IliquidStaveley and Gupta, 1949DH
0.6456157.4crystaline, IIcrystaline, IKelley, 1929DH
3.167175.2crystaline, IliquidKelley, 1929DH
0.590161.1crystaline, IIcrystaline, IParks, 1925DH
3.176175.3crystaline, IliquidParks, 1925DH

Entropy of phase transition

ΔStrs (J/mol*K) Temperature (K) Initial Phase Final Phase Reference Comment
4.04157.34crystaline, IIcrystaline, ICarlson and Westrum, 1971DH
18.31175.59crystaline, IliquidCarlson and Westrum, 1971DH
14.95103.crystalineglassSugisaki, Suga, et al., 1968Glass; DH
4.51157.8crystaline, IIcrystaline, IStaveley and Gupta, 1949DH
18.01175.4crystaline, IliquidStaveley and Gupta, 1949DH
4.10157.4crystaline, IIcrystaline, IKelley, 1929DH
18.08175.2crystaline, IliquidKelley, 1929DH
3.66161.1crystaline, IIcrystaline, IParks, 1925DH
18.12175.3crystaline, IliquidParks, 1925DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Phase change data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin Japan AIST/NIMC Database- Spectrum MS-NW- 72
NIST MS number 229809

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


References

Go To: Top, Gas phase thermochemistry data, Phase change data, Mass spectrum (electron ionization), Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Rossini, 1932
Rossini, F.D., The heats of combustion of methyl and ethyl alcohols, J. Res. NBS, 1932, 8, 119-139. [all data]

Thermodynamics Research Center, 1997
Thermodynamics Research Center, Selected Values of Properties of Chemical Compounds., Thermodynamics Research Center, Texas A&M University, College Station, Texas, 1997. [all data]

Ivash E.V., 1955
Ivash E.V., Thermodynamic properties of ideal gaseous methanol, J. Chem. Phys., 1955, 23, 1814-1818. [all data]

Zhuravlev E.Z., 1959
Zhuravlev E.Z., Isotopic effect on thermodynamic functions of some organic deuterocompounds in the ideal gas state, Tr. Khim. i Khim. Tekhnol., 1959, 2, 475-485. [all data]

Chen S.S., 1977
Chen S.S., Thermodynamic properties of normal and deuterated methanols, J. Phys. Chem. Ref. Data, 1977, 6, 105-112. [all data]

Chao J., 1986
Chao J., Ideal gas thermodynamic properties of simple alkanols, Int. J. Thermophys., 1986, 7, 431-442. [all data]

Gurvich, Veyts, et al., 1989
Gurvich, L.V.; Veyts, I.V.; Alcock, C.B., Thermodynamic Properties of Individual Substances, 4th ed.; Vols. 1 and 2, Hemisphere, New York, 1989. [all data]

Chao J., 1986, 2
Chao J., Thermodynamic properties of key organic oxygen compounds in the carbon range C1 to C4. Part 2. Ideal gas properties, J. Phys. Chem. Ref. Data, 1986, 15, 1369-1436. [all data]

Stromsoe E., 1970
Stromsoe E., Heat capacity of alcohol vapors at atmospheric pressure, J. Chem. Eng. Data, 1970, 15, 286-290. [all data]

Halford J.O., 1957
Halford J.O., Standard heat capacities of gaseous methanol, ethanol, methane and ethane at 279 K by thermal conductivity, J. Phys. Chem., 1957, 61, 1536-1539. [all data]

De Vries T., 1941
De Vries T., The heat capacity of organic vapors. I. Methyl alcohol, J. Am. Chem. Soc., 1941, 63, 1343-1346. [all data]

Weltner W., 1951
Weltner W., Jr., Methyl alcohol: the entropy, heat capacity and polymerization equilibria in the vapor, and potential barrier to internal rotation, J. Am. Chem. Soc., 1951, 73, 2606-2610. [all data]

Gude and Teja, 1995
Gude, M.; Teja, A.S., Vapor-Liquid Critical Properties of Elements and Compounds. 4. Aliphatic Alkanols, J. Chem. Eng. Data, 1995, 40, 1025-1036. [all data]

Craven and de Reuck, 1986
Craven, R.J.B.; de Reuck, K.M., Ideal-Gas and Saturation Properties of Methanol, Int. J. Thermophys., 1986, 7, 541. [all data]

Francesconi, Lentz, et al., 1981
Francesconi, A.Z.; Lentz, H.; Franck, E.U., Phase Equilibriums and PVT Data for the Methane-Methanol System to 300 MPa and 240 degree C, J. Phys. Chem., 1981, 85, 3303. [all data]

Zubarev and Bagdonas, 1969
Zubarev, V.N.; Bagdonas, A., Saturation Curve Properties and Specific Volumes of Methanol, Teploenergetika (Moscow), 1969, 16, 88-91. [all data]

Majer and Svoboda, 1985
Majer, V.; Svoboda, V., Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Yerlett and Wormald, 1986
Yerlett, T.K.; Wormald, C.J., The enthalpy of methanol, The Journal of Chemical Thermodynamics, 1986, 18, 8, 719-726, https://doi.org/10.1016/0021-9614(86)90105-9 . [all data]

Cervenkova and Boublik, 1984
Cervenkova, Irena; Boublik, Tomas, Vapor pressure, refractive indexes and densities at 20.0.degree.C, and vapor-liquid equilibrium at 101.325 kPa in the tert-amyl methyl ether-methanol system, J. Chem. Eng. Data, 1984, 29, 4, 425-427, https://doi.org/10.1021/je00038a017 . [all data]

Gibbard and Creek, 1974
Gibbard, H. Frank; Creek, Jefferson L., Vapor pressure of methanol from 288.15 to 337.65.deg.K, J. Chem. Eng. Data, 1974, 19, 4, 308-310, https://doi.org/10.1021/je60063a013 . [all data]

Boublik, Fried, et al., 1984
Boublik, T.; Fried, V.; Hala, E., The Vapour Pressures of Pure Substances: Selected Values of the Temperature Dependence of the Vapour Pressures of Some Pure Substances in the Normal and Low Pressure Region, 2nd ed., Elsevier, New York, 1984, 972. [all data]

Counsell and Lee, 1973
Counsell, J.F.; Lee, D.A., Thermodynamic properties of organic oxygen compounds 31. Vapour heat capacity and enthalpy of vaporization of methanol, The Journal of Chemical Thermodynamics, 1973, 5, 4, 583-589, https://doi.org/10.1016/S0021-9614(73)80107-7 . [all data]

Svoboda, Veselý, et al., 1973
Svoboda, V.; Veselý, F.; Holub, R.; Pick, J., Enthalpy data of liquids. II. The dependence of heats of vaporization of methanol, propanol, butanol, cyclohexane, cyclohexene, and benzene on temperature, Collect. Czech. Chem. Commun., 1973, 38, 12, 3539-3543, https://doi.org/10.1135/cccc19733539 . [all data]

Wilhoit and Zwolinski, 1973
Wilhoit, R.C.; Zwolinski, B.J., Physical and thermodynamic properties of aliphatic alcohols, J. Phys. Chem. Ref. Data Suppl., 1973, 1, 2, 1. [all data]

Boublík and Aim, 1972
Boublík, T.; Aim, K., Heats of vaporization of simple non-spherical molecule compounds, Collect. Czech. Chem. Commun., 1972, 37, 11, 3513-3521, https://doi.org/10.1135/cccc19723513 . [all data]

Ambrose and Sprake, 1970
Ambrose, D.; Sprake, C.H.S., Thermodynamic properties of organic oxygen compounds XXV. Vapour pressures and normal boiling temperatures of aliphatic alcohols, The Journal of Chemical Thermodynamics, 1970, 2, 5, 631-645, https://doi.org/10.1016/0021-9614(70)90038-8 . [all data]

Hirata, Suda, et al., 1967
Hirata, Mitsuho; Suda, Seijiro; Onodera, Yutaka, Vapor Pressure of Methanol in High Pressure Regions, Chemical engineering, 1967, 31, 4, 339-342,a1, https://doi.org/10.1252/kakoronbunshu1953.31.339 . [all data]

Klyueva, Mischenko, et al., 1960
Klyueva, M.L.; Mischenko, K.P.; Fedorov, M.K., Zh. Prikl. Khim. (S.-Peterburg), 1960, 3, 473. [all data]

Ambrose, Sprake, et al., 1975
Ambrose, D.; Sprake, C.H.S.; Townsend, R., Thermodynamic Properties of Organic Oxygen Compounds. XXXVII. Vapour Pressures of Methanol, Ethanol, Pentan-1-ol, and Octan-1-ol from the Normal Boiling Temperature to the Critical Temperature, J. Chem. Thermodyn., 1975, 7, 2, 185-190, https://doi.org/10.1016/0021-9614(75)90267-0 . [all data]

Hirata and Suda, 1967
Hirata, M.; Suda, S., Vapor Pressure on Methanol in High Pressure Regions, Kagaku Kogaku, 1967, 31, 4, 339-342, https://doi.org/10.1252/kakoronbunshu1953.31.339 . [all data]

Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D., Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III, J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985 . [all data]

Maass and Walbauer, 1925
Maass, O.; Walbauer, L.J., The specific heats and latent heats of fusion of ice and of several organic compounds, J. Am. Chem. Soc., 1925, 47, 1-9. [all data]

Carlson and Westrum, 1971
Carlson, H.G.; Westrum, E.F., Jr., Methanol: heat capacity, enthalpies of transition and melting, and thermodynamic properties from 5-300K, J. Chem. Phys., 1971, 54, 1464-1471. [all data]

Sugisaki, Suga, et al., 1968
Sugisaki, M.; Suga, H.; Seki, S., Calorimetric study of the glassy state. III. Novel type calorimeter for study of glassy state and heat capacity of glassy methanol, Bull. Chem. Soc. Japan, 1968, 41, 2586-2591. [all data]

Staveley and Gupta, 1949
Staveley, L.A.K.; Gupta, A.K., A semi-micro low-temperature calorimeter, and a comparison of some thermodynamic properties of methyl alcohol and methyl deuteroxide, Trans. Faraday Soc., 1949, 45, 50-61. [all data]

Kelley, 1929
Kelley, K.K., The heat capacity of methyl alcohol from 16K to 298K and the corresponding entropy and free energy, J. Am. Chem. Soc., 1929, 51, 180-187. [all data]

Parks, 1925
Parks, G.S., Thermal data on organic compounds I. The heat capacities and free energies of methyl, ethyl and normal-butyl alcohols, J. Am. Chem. Soc., 1925, 47, 338-345. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Phase change data, Mass spectrum (electron ionization), References