Pyrrole

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Ion clustering data, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Quantity Value Units Method Reference Comment
Δfgas34.23kcal/molN/AZaheeruddin and Lodhi, 1991Value computed using ΔfHliquid° value of 98.0 kj/mol from Zaheeruddin and Lodhi, 1991 and ΔvapH° value of 45.2 kj/mol from Scott, Berg, et al., 1967.; DRB
Δfgas25.88 ± 0.12kcal/molCcbScott, Berg, et al., 1967ALS

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Ion clustering data, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfliquid  CcbZaheeruddin and Lodhi, 1991uncertain value: 23.43 kcal/mol; ALS
Δfliquid15.1 ± 0.1kcal/molCcbScott, Berg, et al., 1967ALS
Quantity Value Units Method Reference Comment
Δcliquid  CcbZaheeruddin and Lodhi, 1991uncertain value: -570.425 kcal/mol; ALS
Δcliquid-562.07 ± 0.08kcal/molCcbScott, Berg, et al., 1967ALS
Δcliquid-561.6kcal/molCcbZimmerman and Geisenfelder, 1961ALS
Quantity Value Units Method Reference Comment
liquid37.390cal/mol*KN/AScott, Berg, et al., 1967DH

Constant pressure heat capacity of liquid

Cp,liquid (cal/mol*K) Temperature (K) Reference Comment
30.531298.15Scott, Berg, et al., 1967T = 11 to 365 K.; DH

Phase change data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Ion clustering data, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
AC - William E. Acree, Jr., James S. Chickos
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Tboil403. ± 1.KAVGN/AAverage of 15 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus250.15KN/ARosso and Carbonnel, 1973Uncertainty assigned by TRC = 0.6 K; TRC
Tfus254.7KN/ATimmermans and Hennaut-Roland, 1955Uncertainty assigned by TRC = 0.5 K; TRC
Tfus249.7KN/AAnonymous, 1942Uncertainty assigned by TRC = 0.2 K; TRC
Tfus238.8KN/AMilazzo, 1941Uncertainty assigned by TRC = 0.4 K; TRC
Quantity Value Units Method Reference Comment
Ttriple249.7300KN/AScott, Berg, et al., 1967, 2Uncertainty assigned by TRC = 0.07 K; by extrapolation of 1/f to zero; TRC
Ttriple249.74KN/AHelm, Lanum, et al., 1958Uncertainty assigned by TRC = 0.03 K; measured in calorimeter at U.S. Bur. Mines, Bartlesville, OK; TRC
Ttriple249.74KN/AMcCullough and Waddington, 1957Uncertainty assigned by TRC = 0.06 K; IPTS-48, from freezing curve; TRC
Ttriple249.74KN/AMcCullough and Waddington, 1957Uncertainty assigned by TRC = 0.06 K; IPTS-48, from heating curve; TRC
Quantity Value Units Method Reference Comment
Tc639.8KN/AMajer and Svoboda, 1985 
Tc639.7KN/ACheng, McCoubrey, et al., 1962Uncertainty assigned by TRC = 1.5 K; extrapolated to zero time to correct for decomposition cal. vs NPL thermometer.; TRC
Tc625.15KN/AGlaser and Ruland, 1957Uncertainty assigned by TRC = 2. K; TRC
Quantity Value Units Method Reference Comment
Pc56.000atmN/AGlaser and Ruland, 1957Uncertainty assigned by TRC = 3.0000 atm; TRC
Quantity Value Units Method Reference Comment
Δvap10. ± 1.kcal/molAVGN/AAverage of 6 values; Individual data points

Enthalpy of vaporization

ΔvapH (kcal/mol) Temperature (K) Method Reference Comment
9.261403.N/AMajer and Svoboda, 1985 
10.2300.N/AKimizuka and Szydlowski, 1992Based on data from 285. to 329. K.; AC
10.2353.A,EB,IPStephenson and Malanowski, 1987Based on data from 338. to 440. K. See also Osborn and Douslin, 1968 and Scott, Berg, et al., 1967.; AC
10.0328.IEon, Pommier, et al., 1971Based on data from 313. to 373. K.; AC
10.0348.N/AStull, 1947Based on data from 333. to 373. K.; AC

Enthalpy of vaporization

ΔvapH = A exp(-βTr) (1 − Tr)β
    ΔvapH = Enthalpy of vaporization (at saturation pressure) (kcal/mol)
    Tr = reduced temperature (T / Tc)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A (kcal/mol) β Tc (K) Reference Comment
362. to 403.15.00.2964639.8Majer and Svoboda, 1985 

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (atm)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
333.4 to 373.55.315202074.447-9.186Eon, Pommier, et al., 1971Coefficents calculated by NIST from author's data.
338.82 to 439.264.421941506.877-62.155Osborn and Douslin, 1968 

Enthalpy of fusion

ΔfusH (kcal/mol) Temperature (K) Reference Comment
1.8900249.74Scott, Berg, et al., 1967DH
1.89249.7Domalski and Hearing, 1996AC

Entropy of fusion

ΔfusS (cal/mol*K) Temperature (K) Reference Comment
7.567249.74Scott, Berg, et al., 1967DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Ion clustering data, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
RCD - Robert C. Dunbar

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

pyrrolide anion + Hydrogen cation = Pyrrole

By formula: C4H4N- + H+ = C4H5N

Quantity Value Units Method Reference Comment
Δr359.54 ± 0.25kcal/molD-EAGianola, Ichino, et al., 2004gas phase; B
Δr358.6 ± 2.2kcal/molG+TSBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B
Δr359.6 ± 2.9kcal/molG+TSCumming and Kebarle, 1978gas phase; B
Δr358.6 ± 5.0kcal/molEIAEMuftakhov, Vasil'ev, et al., 1999gas phase; B
Quantity Value Units Method Reference Comment
Δr350.9 ± 2.0kcal/molIMREBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B
Δr351.8 ± 2.0kcal/molIMRECumming and Kebarle, 1978gas phase; B

CN- + Pyrrole = (CN- • Pyrrole)

By formula: CN- + C4H5N = (CN- • C4H5N)

Quantity Value Units Method Reference Comment
Δr23.4 ± 1.0kcal/molTDAsMeot-ner, 1988gas phase; B,M
Δr19.5 ± 3.5kcal/molIMRELarson and McMahon, 1987gas phase; B,M
Quantity Value Units Method Reference Comment
Δr27.1cal/mol*KPHPMSMeot-ner, 1988gas phase; M
Δr23.8cal/mol*KN/ALarson and McMahon, 1987gas phase; switching reaction,Thermochemical ladder(CN-)H2O, Entropy change calculated or estimated; Payzant, Yamdagni, et al., 1971; M
Quantity Value Units Method Reference Comment
Δr15.3 ± 1.0kcal/molTDAsMeot-ner, 1988gas phase; B
Δr12.3 ± 2.3kcal/molIMRELarson and McMahon, 1987gas phase; B,M

Fluorine anion + Pyrrole = (Fluorine anion • Pyrrole)

By formula: F- + C4H5N = (F- • C4H5N)

Quantity Value Units Method Reference Comment
Δr34.2 ± 2.0kcal/molIMRELarson and McMahon, 1983gas phase; B,M
Quantity Value Units Method Reference Comment
Δr25.5cal/mol*KN/ALarson and McMahon, 1983gas phase; switching reaction(F-)H2O, Entropy change calculated or estimated; Arshadi, Yamdagni, et al., 1970; M
Quantity Value Units Method Reference Comment
Δr26.6 ± 2.0kcal/molIMRELarson and McMahon, 1983gas phase; B,M

Chlorine anion + Pyrrole = (Chlorine anion • Pyrrole)

By formula: Cl- + C4H5N = (Cl- • C4H5N)

Quantity Value Units Method Reference Comment
Δr18.8 ± 2.0kcal/molIMRELarson and McMahon, 1984gas phase; B
Quantity Value Units Method Reference Comment
Δr11.8 ± 2.0kcal/molIMRELarson and McMahon, 1984gas phase; B
Δr14.00kcal/molTDEqFrench, Ikuta, et al., 1982gas phase; B

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
11.6421.PHPMSFrench, Ikuta, et al., 1982gas phase; M

HS- + Pyrrole = (HS- • Pyrrole)

By formula: HS- + C4H5N = (HS- • C4H5N)

Quantity Value Units Method Reference Comment
Δr23.0 ± 1.0kcal/molTDAsMeot-ner, 1988gas phase; B,M
Quantity Value Units Method Reference Comment
Δr24.4cal/mol*KPHPMSMeot-ner, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr15.7 ± 1.0kcal/molTDAsMeot-ner, 1988gas phase; B

pyrrolide anion + Pyrrole = (pyrrolide anion • Pyrrole)

By formula: C4H4N- + C4H5N = (C4H4N- • C4H5N)

Quantity Value Units Method Reference Comment
Δr26.5 ± 1.0kcal/molTDAsMeot-ner, 1988, 2gas phase; B,M
Quantity Value Units Method Reference Comment
Δr35.2cal/mol*KPHPMSMeot-ner, 1988, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr16.3 ± 1.0kcal/molTDAsMeot-ner, 1988, 2gas phase; B

MeCO2 anion + Pyrrole = (MeCO2 anion • Pyrrole)

By formula: C2H3O2- + C4H5N = (C2H3O2- • C4H5N)

Quantity Value Units Method Reference Comment
Δr24.0 ± 1.0kcal/molTDAsMeot-ner, 1988gas phase; B,M
Quantity Value Units Method Reference Comment
Δr25.1cal/mol*KPHPMSMeot-ner, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr16.5 ± 1.0kcal/molTDAsMeot-ner, 1988gas phase; B

(C4H5N+ • Pyrrole) + Pyrrole = (C4H5N+ • 2Pyrrole)

By formula: (C4H5N+ • C4H5N) + C4H5N = (C4H5N+ • 2C4H5N)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr13.8kcal/molPHPMSHiraoka, Takimoto, et al., 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr29.2cal/mol*KPHPMSHiraoka, Takimoto, et al., 1987gas phase; M

C4H5N+ + Pyrrole = (C4H5N+ • Pyrrole)

By formula: C4H5N+ + C4H5N = (C4H5N+ • C4H5N)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr16.5kcal/molPHPMSHiraoka, Takimoto, et al., 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr20.3cal/mol*KPHPMSHiraoka, Takimoto, et al., 1987gas phase; M

(C4H6N+ • Pyrrole) + Pyrrole = (C4H6N+ • 2Pyrrole)

By formula: (C4H6N+ • C4H5N) + C4H5N = (C4H6N+ • 2C4H5N)

Quantity Value Units Method Reference Comment
Δr12.3kcal/molPHPMSHiraoka, Takimoto, et al., 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr30.4cal/mol*KPHPMSHiraoka, Takimoto, et al., 1987gas phase; M

(pyrrolide anion • Pyrrole) + Pyrrole = (pyrrolide anion • 2Pyrrole)

By formula: (C4H4N- • C4H5N) + C4H5N = (C4H4N- • 2C4H5N)

Quantity Value Units Method Reference Comment
Δr17.1kcal/molPHPMSMeot-ner, 1988, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr31.2cal/mol*KPHPMSMeot-ner, 1988, 2gas phase; M

C4H6N+ + Pyrrole = (C4H6N+ • Pyrrole)

By formula: C4H6N+ + C4H5N = (C4H6N+ • C4H5N)

Quantity Value Units Method Reference Comment
Δr16.8kcal/molPHPMSHiraoka, Takimoto, et al., 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr24.7cal/mol*KPHPMSHiraoka, Takimoto, et al., 1987gas phase; M

(MeCO2 anion • Pyrrole) + Pyrrole = (MeCO2 anion • 2Pyrrole)

By formula: (C2H3O2- • C4H5N) + C4H5N = (C2H3O2- • 2C4H5N)

Quantity Value Units Method Reference Comment
Δr17.9kcal/molPHPMSMeot-ner, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr24.2cal/mol*KPHPMSMeot-ner, 1988gas phase; M

CH6N+ + Pyrrole = (CH6N+ • Pyrrole)

By formula: CH6N+ + C4H5N = (CH6N+ • C4H5N)

Quantity Value Units Method Reference Comment
Δr18.6kcal/molPHPMSDeakyne and Meot-Ner (Mautner), 1985gas phase; M
Quantity Value Units Method Reference Comment
Δr21.0cal/mol*KPHPMSDeakyne and Meot-Ner (Mautner), 1985gas phase; M

CH3CONHCH(CH3)COOCH3 + Pyrrole = (CH3CONHCH(CH3)COOCH3 • Pyrrole)

By formula: C6H11NO3 + C4H5N = (C6H11NO3 • C4H5N)

Quantity Value Units Method Reference Comment
Δr24.0kcal/molPHPMSMeot-Ner (Mautner), 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr32.1cal/mol*KPHPMSMeot-Ner (Mautner), 1988gas phase; M

(Iron ion (1+) • Pyrrole) + Pyrrole = (Iron ion (1+) • 2Pyrrole)

By formula: (Fe+ • C4H5N) + C4H5N = (Fe+ • 2C4H5N)

Quantity Value Units Method Reference Comment
Δr41.6kcal/molRAKGapeev and Yang, 2000RCD

(Chromium ion (1+) • Pyrrole) + Pyrrole = (Chromium ion (1+) • 2Pyrrole)

By formula: (Cr+ • C4H5N) + C4H5N = (Cr+ • 2C4H5N)

Quantity Value Units Method Reference Comment
Δr34.9kcal/molRAKGapeev and Yang, 2000RCD

(Manganese ion (1+) • Pyrrole) + Pyrrole = (Manganese ion (1+) • 2Pyrrole)

By formula: (Mn+ • C4H5N) + C4H5N = (Mn+ • 2C4H5N)

Quantity Value Units Method Reference Comment
Δr27.0kcal/molRAKGapeev and Yang, 2000RCD

(Nickel ion (1+) • Pyrrole) + Pyrrole = (Nickel ion (1+) • 2Pyrrole)

By formula: (Ni+ • C4H5N) + C4H5N = (Ni+ • 2C4H5N)

Quantity Value Units Method Reference Comment
Δr47.0kcal/molRAKGapeev and Yang, 2000RCD

(Cobalt ion (1+) • Pyrrole) + Pyrrole = (Cobalt ion (1+) • 2Pyrrole)

By formula: (Co+ • C4H5N) + C4H5N = (Co+ • 2C4H5N)

Quantity Value Units Method Reference Comment
Δr46.4kcal/molRAKGapeev and Yang, 2000RCD

(Copper ion (1+) • Pyrrole) + Pyrrole = (Copper ion (1+) • 2Pyrrole)

By formula: (Cu+ • C4H5N) + C4H5N = (Cu+ • 2C4H5N)

Quantity Value Units Method Reference Comment
Δr44.0kcal/molRAKGapeev and Yang, 2000RCD

Lithium ion (1+) + Pyrrole = (Lithium ion (1+) • Pyrrole)

By formula: Li+ + C4H5N = (Li+ • C4H5N)

Quantity Value Units Method Reference Comment
Δr42.3 ± 4.0kcal/molCIDTHuang and Rodgers, 2002RCD

Sodium ion (1+) + Pyrrole = (Sodium ion (1+) • Pyrrole)

By formula: Na+ + C4H5N = (Na+ • C4H5N)

Quantity Value Units Method Reference Comment
Δr24.3 ± 1.1kcal/molCIDTHuang and Rodgers, 2002RCD

Potassium ion (1+) + Pyrrole = (Potassium ion (1+) • Pyrrole)

By formula: K+ + C4H5N = (K+ • C4H5N)

Quantity Value Units Method Reference Comment
Δr20.0 ± 1.0kcal/molCIDTHuang and Rodgers, 2002RCD

Vanadium ion (1+) + Pyrrole = (Vanadium ion (1+) • Pyrrole)

By formula: V+ + C4H5N = (V+ • C4H5N)

Quantity Value Units Method Reference Comment
Δr>41.kcal/molRAKGapeev and Yang, 2000RCD

Nickel ion (1+) + Pyrrole = (Nickel ion (1+) • Pyrrole)

By formula: Ni+ + C4H5N = (Ni+ • C4H5N)

Quantity Value Units Method Reference Comment
Δr>68.kcal/molRAKGapeev and Yang, 2000RCD

Tungsten ion (1+) + Pyrrole = (Tungsten ion (1+) • Pyrrole)

By formula: W+ + C4H5N = (W+ • C4H5N)

Quantity Value Units Method Reference Comment
Δr>50.kcal/molRAKGapeev and Yang, 2000RCD

Cobalt ion (1+) + Pyrrole = (Cobalt ion (1+) • Pyrrole)

By formula: Co+ + C4H5N = (Co+ • C4H5N)

Quantity Value Units Method Reference Comment
Δr>66.kcal/molRAKGapeev and Yang, 2000RCD

Molybdenum ion (1+) + Pyrrole = (Molybdenum ion (1+) • Pyrrole)

By formula: Mo+ + C4H5N = (Mo+ • C4H5N)

Quantity Value Units Method Reference Comment
Δr>69.kcal/molRAKGapeev and Yang, 2000RCD

Iron ion (1+) + Pyrrole = (Iron ion (1+) • Pyrrole)

By formula: Fe+ + C4H5N = (Fe+ • C4H5N)

Quantity Value Units Method Reference Comment
Δr54.0kcal/molRAKGapeev and Yang, 2000RCD

Chromium ion (1+) + Pyrrole = (Chromium ion (1+) • Pyrrole)

By formula: Cr+ + C4H5N = (Cr+ • C4H5N)

Quantity Value Units Method Reference Comment
Δr42.5kcal/molRAKGapeev and Yang, 2000RCD

Manganese ion (1+) + Pyrrole = (Manganese ion (1+) • Pyrrole)

By formula: Mn+ + C4H5N = (Mn+ • C4H5N)

Quantity Value Units Method Reference Comment
Δr42.3kcal/molRAKGapeev and Yang, 2000RCD

Magnesium ion (1+) + Pyrrole = (Magnesium ion (1+) • Pyrrole)

By formula: Mg+ + C4H5N = (Mg+ • C4H5N)

Quantity Value Units Method Reference Comment
Δr44.0kcal/molRAKGapeev and Yang, 2000RCD

Aluminum ion (1+) + Pyrrole = (Aluminum ion (1+) • Pyrrole)

By formula: Al+ + C4H5N = (Al+ • C4H5N)

Quantity Value Units Method Reference Comment
Δr44.0kcal/molRAKGapeev and Yang, 2000RCD

Copper ion (1+) + Pyrrole = (Copper ion (1+) • Pyrrole)

By formula: Cu+ + C4H5N = (Cu+ • C4H5N)

Quantity Value Units Method Reference Comment
Δr59.0kcal/molRAKGapeev and Yang, 2000RCD

Ion clustering data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
RCD - Robert C. Dunbar
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
B - John E. Bartmess

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.

Clustering reactions

Aluminum ion (1+) + Pyrrole = (Aluminum ion (1+) • Pyrrole)

By formula: Al+ + C4H5N = (Al+ • C4H5N)

Quantity Value Units Method Reference Comment
Δr44.0kcal/molRAKGapeev and Yang, 2000RCD

CH6N+ + Pyrrole = (CH6N+ • Pyrrole)

By formula: CH6N+ + C4H5N = (CH6N+ • C4H5N)

Quantity Value Units Method Reference Comment
Δr18.6kcal/molPHPMSDeakyne and Meot-Ner (Mautner), 1985gas phase; M
Quantity Value Units Method Reference Comment
Δr21.0cal/mol*KPHPMSDeakyne and Meot-Ner (Mautner), 1985gas phase; M

CN- + Pyrrole = (CN- • Pyrrole)

By formula: CN- + C4H5N = (CN- • C4H5N)

Quantity Value Units Method Reference Comment
Δr23.4 ± 1.0kcal/molTDAsMeot-ner, 1988gas phase; B,M
Δr19.5 ± 3.5kcal/molIMRELarson and McMahon, 1987gas phase; B,M
Quantity Value Units Method Reference Comment
Δr27.1cal/mol*KPHPMSMeot-ner, 1988gas phase; M
Δr23.8cal/mol*KN/ALarson and McMahon, 1987gas phase; switching reaction,Thermochemical ladder(CN-)H2O, Entropy change calculated or estimated; Payzant, Yamdagni, et al., 1971; M
Quantity Value Units Method Reference Comment
Δr15.3 ± 1.0kcal/molTDAsMeot-ner, 1988gas phase; B
Δr12.3 ± 2.3kcal/molIMRELarson and McMahon, 1987gas phase; B,M

MeCO2 anion + Pyrrole = (MeCO2 anion • Pyrrole)

By formula: C2H3O2- + C4H5N = (C2H3O2- • C4H5N)

Quantity Value Units Method Reference Comment
Δr24.0 ± 1.0kcal/molTDAsMeot-ner, 1988gas phase; B,M
Quantity Value Units Method Reference Comment
Δr25.1cal/mol*KPHPMSMeot-ner, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr16.5 ± 1.0kcal/molTDAsMeot-ner, 1988gas phase; B

(MeCO2 anion • Pyrrole) + Pyrrole = (MeCO2 anion • 2Pyrrole)

By formula: (C2H3O2- • C4H5N) + C4H5N = (C2H3O2- • 2C4H5N)

Quantity Value Units Method Reference Comment
Δr17.9kcal/molPHPMSMeot-ner, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr24.2cal/mol*KPHPMSMeot-ner, 1988gas phase; M

pyrrolide anion + Pyrrole = (pyrrolide anion • Pyrrole)

By formula: C4H4N- + C4H5N = (C4H4N- • C4H5N)

Quantity Value Units Method Reference Comment
Δr26.5 ± 1.0kcal/molTDAsMeot-ner, 1988, 2gas phase; B,M
Quantity Value Units Method Reference Comment
Δr35.2cal/mol*KPHPMSMeot-ner, 1988, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr16.3 ± 1.0kcal/molTDAsMeot-ner, 1988, 2gas phase; B

(pyrrolide anion • Pyrrole) + Pyrrole = (pyrrolide anion • 2Pyrrole)

By formula: (C4H4N- • C4H5N) + C4H5N = (C4H4N- • 2C4H5N)

Quantity Value Units Method Reference Comment
Δr17.1kcal/molPHPMSMeot-ner, 1988, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr31.2cal/mol*KPHPMSMeot-ner, 1988, 2gas phase; M

C4H5N+ + Pyrrole = (C4H5N+ • Pyrrole)

By formula: C4H5N+ + C4H5N = (C4H5N+ • C4H5N)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr16.5kcal/molPHPMSHiraoka, Takimoto, et al., 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr20.3cal/mol*KPHPMSHiraoka, Takimoto, et al., 1987gas phase; M

(C4H5N+ • Pyrrole) + Pyrrole = (C4H5N+ • 2Pyrrole)

By formula: (C4H5N+ • C4H5N) + C4H5N = (C4H5N+ • 2C4H5N)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr13.8kcal/molPHPMSHiraoka, Takimoto, et al., 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr29.2cal/mol*KPHPMSHiraoka, Takimoto, et al., 1987gas phase; M

C4H6N+ + Pyrrole = (C4H6N+ • Pyrrole)

By formula: C4H6N+ + C4H5N = (C4H6N+ • C4H5N)

Quantity Value Units Method Reference Comment
Δr16.8kcal/molPHPMSHiraoka, Takimoto, et al., 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr24.7cal/mol*KPHPMSHiraoka, Takimoto, et al., 1987gas phase; M

(C4H6N+ • Pyrrole) + Pyrrole = (C4H6N+ • 2Pyrrole)

By formula: (C4H6N+ • C4H5N) + C4H5N = (C4H6N+ • 2C4H5N)

Quantity Value Units Method Reference Comment
Δr12.3kcal/molPHPMSHiraoka, Takimoto, et al., 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr30.4cal/mol*KPHPMSHiraoka, Takimoto, et al., 1987gas phase; M

Chlorine anion + Pyrrole = (Chlorine anion • Pyrrole)

By formula: Cl- + C4H5N = (Cl- • C4H5N)

Quantity Value Units Method Reference Comment
Δr18.8 ± 2.0kcal/molIMRELarson and McMahon, 1984gas phase; B
Quantity Value Units Method Reference Comment
Δr11.8 ± 2.0kcal/molIMRELarson and McMahon, 1984gas phase; B
Δr14.00kcal/molTDEqFrench, Ikuta, et al., 1982gas phase; B

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
11.6421.PHPMSFrench, Ikuta, et al., 1982gas phase; M

Cobalt ion (1+) + Pyrrole = (Cobalt ion (1+) • Pyrrole)

By formula: Co+ + C4H5N = (Co+ • C4H5N)

Quantity Value Units Method Reference Comment
Δr>66.kcal/molRAKGapeev and Yang, 2000RCD

(Cobalt ion (1+) • Pyrrole) + Pyrrole = (Cobalt ion (1+) • 2Pyrrole)

By formula: (Co+ • C4H5N) + C4H5N = (Co+ • 2C4H5N)

Quantity Value Units Method Reference Comment
Δr46.4kcal/molRAKGapeev and Yang, 2000RCD

Chromium ion (1+) + Pyrrole = (Chromium ion (1+) • Pyrrole)

By formula: Cr+ + C4H5N = (Cr+ • C4H5N)

Quantity Value Units Method Reference Comment
Δr42.5kcal/molRAKGapeev and Yang, 2000RCD

(Chromium ion (1+) • Pyrrole) + Pyrrole = (Chromium ion (1+) • 2Pyrrole)

By formula: (Cr+ • C4H5N) + C4H5N = (Cr+ • 2C4H5N)

Quantity Value Units Method Reference Comment
Δr34.9kcal/molRAKGapeev and Yang, 2000RCD

Copper ion (1+) + Pyrrole = (Copper ion (1+) • Pyrrole)

By formula: Cu+ + C4H5N = (Cu+ • C4H5N)

Quantity Value Units Method Reference Comment
Δr59.0kcal/molRAKGapeev and Yang, 2000RCD

(Copper ion (1+) • Pyrrole) + Pyrrole = (Copper ion (1+) • 2Pyrrole)

By formula: (Cu+ • C4H5N) + C4H5N = (Cu+ • 2C4H5N)

Quantity Value Units Method Reference Comment
Δr44.0kcal/molRAKGapeev and Yang, 2000RCD

Fluorine anion + Pyrrole = (Fluorine anion • Pyrrole)

By formula: F- + C4H5N = (F- • C4H5N)

Quantity Value Units Method Reference Comment
Δr34.2 ± 2.0kcal/molIMRELarson and McMahon, 1983gas phase; B,M
Quantity Value Units Method Reference Comment
Δr25.5cal/mol*KN/ALarson and McMahon, 1983gas phase; switching reaction(F-)H2O, Entropy change calculated or estimated; Arshadi, Yamdagni, et al., 1970; M
Quantity Value Units Method Reference Comment
Δr26.6 ± 2.0kcal/molIMRELarson and McMahon, 1983gas phase; B,M

Iron ion (1+) + Pyrrole = (Iron ion (1+) • Pyrrole)

By formula: Fe+ + C4H5N = (Fe+ • C4H5N)

Quantity Value Units Method Reference Comment
Δr54.0kcal/molRAKGapeev and Yang, 2000RCD

(Iron ion (1+) • Pyrrole) + Pyrrole = (Iron ion (1+) • 2Pyrrole)

By formula: (Fe+ • C4H5N) + C4H5N = (Fe+ • 2C4H5N)

Quantity Value Units Method Reference Comment
Δr41.6kcal/molRAKGapeev and Yang, 2000RCD

HS- + Pyrrole = (HS- • Pyrrole)

By formula: HS- + C4H5N = (HS- • C4H5N)

Quantity Value Units Method Reference Comment
Δr23.0 ± 1.0kcal/molTDAsMeot-ner, 1988gas phase; B,M
Quantity Value Units Method Reference Comment
Δr24.4cal/mol*KPHPMSMeot-ner, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr15.7 ± 1.0kcal/molTDAsMeot-ner, 1988gas phase; B

Potassium ion (1+) + Pyrrole = (Potassium ion (1+) • Pyrrole)

By formula: K+ + C4H5N = (K+ • C4H5N)

Quantity Value Units Method Reference Comment
Δr20.0 ± 1.0kcal/molCIDTHuang and Rodgers, 2002RCD

Lithium ion (1+) + Pyrrole = (Lithium ion (1+) • Pyrrole)

By formula: Li+ + C4H5N = (Li+ • C4H5N)

Quantity Value Units Method Reference Comment
Δr42.3 ± 4.0kcal/molCIDTHuang and Rodgers, 2002RCD

Magnesium ion (1+) + Pyrrole = (Magnesium ion (1+) • Pyrrole)

By formula: Mg+ + C4H5N = (Mg+ • C4H5N)

Quantity Value Units Method Reference Comment
Δr44.0kcal/molRAKGapeev and Yang, 2000RCD

Manganese ion (1+) + Pyrrole = (Manganese ion (1+) • Pyrrole)

By formula: Mn+ + C4H5N = (Mn+ • C4H5N)

Quantity Value Units Method Reference Comment
Δr42.3kcal/molRAKGapeev and Yang, 2000RCD

(Manganese ion (1+) • Pyrrole) + Pyrrole = (Manganese ion (1+) • 2Pyrrole)

By formula: (Mn+ • C4H5N) + C4H5N = (Mn+ • 2C4H5N)

Quantity Value Units Method Reference Comment
Δr27.0kcal/molRAKGapeev and Yang, 2000RCD

Molybdenum ion (1+) + Pyrrole = (Molybdenum ion (1+) • Pyrrole)

By formula: Mo+ + C4H5N = (Mo+ • C4H5N)

Quantity Value Units Method Reference Comment
Δr>69.kcal/molRAKGapeev and Yang, 2000RCD

Sodium ion (1+) + Pyrrole = (Sodium ion (1+) • Pyrrole)

By formula: Na+ + C4H5N = (Na+ • C4H5N)

Quantity Value Units Method Reference Comment
Δr24.3 ± 1.1kcal/molCIDTHuang and Rodgers, 2002RCD

Nickel ion (1+) + Pyrrole = (Nickel ion (1+) • Pyrrole)

By formula: Ni+ + C4H5N = (Ni+ • C4H5N)

Quantity Value Units Method Reference Comment
Δr>68.kcal/molRAKGapeev and Yang, 2000RCD

(Nickel ion (1+) • Pyrrole) + Pyrrole = (Nickel ion (1+) • 2Pyrrole)

By formula: (Ni+ • C4H5N) + C4H5N = (Ni+ • 2C4H5N)

Quantity Value Units Method Reference Comment
Δr47.0kcal/molRAKGapeev and Yang, 2000RCD

Vanadium ion (1+) + Pyrrole = (Vanadium ion (1+) • Pyrrole)

By formula: V+ + C4H5N = (V+ • C4H5N)

Quantity Value Units Method Reference Comment
Δr>41.kcal/molRAKGapeev and Yang, 2000RCD

Tungsten ion (1+) + Pyrrole = (Tungsten ion (1+) • Pyrrole)

By formula: W+ + C4H5N = (W+ • C4H5N)

Quantity Value Units Method Reference Comment
Δr>50.kcal/molRAKGapeev and Yang, 2000RCD

Gas Chromatography

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Ion clustering data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Kovats' RI, non-polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
CapillaryOV-101110.747.Zhuravleva, 200050. m/0.3 mm/0.4 μm, He
CapillaryOV-101110.747.Golovnya, Kuz'menko, et al., 199950. m/0.3 mm/0.4 μm, He
PackedPMS-100130.706.Anderson, Jurel, et al., 1973He, Celite 545 (44-60 mesh); Column length: 3. m
PackedSE-30110.740.Tibor and Anna, 1971N2, Chromosorb W-AW; Column length: 2. m
PackedSE-3090.733.Tibor and Anna, 1971N2, Chromosorb W-AW; Column length: 2. m

Kovats' RI, polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
PackedCarbowax 20M160.1516.Kurbatova, Finkelstein, et al., 2004Chromaton N-AW; Column length: 1. m
PackedPEG-2000150.1492.Anderson, Jurel, et al., 1973He, Celite 545 (44-60 mesh); Column length: 3. m
PackedPEG-2000152.1520.Anderson, Jurel, et al., 1973He, Celite 545 (44-60 mesh); Column length: 3. m
PackedPEG-2000179.1530.Anderson, Jurel, et al., 1973He, Celite 545 (44-60 mesh); Column length: 3. m
PackedPEG-2000180.1514.Anderson, Jurel, et al., 1973He, Celite 545 (44-60 mesh); Column length: 3. m
PackedPEG-2000200.1520.Anderson, Jurel, et al., 1973He, Celite 545 (44-60 mesh); Column length: 3. m
PackedPEG-2000200.1545.Anderson, Jurel, et al., 1973He, Celite 545 (44-60 mesh); Column length: 3. m
PackedPEG-20M110.1502.Tibor and Anna, 1971N2, Chromosorb W-AW; Column length: 2. m
PackedPEG-20M90.1498.Tibor and Anna, 1971N2, Chromosorb W-AW; Column length: 2. m

Van Den Dool and Kratz RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-5751.Methven L., Tsoukka M., et al., 200760. m/0.32 mm/1. μm, 40. C @ 2. min, 4. K/min, 260. C @ 10. min
CapillaryHP-5771.Solina, Baumgartner, et al., 200525. m/0.2 mm/1. μm, He, 5. K/min, 280. C @ 5. min; Tstart: 40. C
CapillaryHP-5771.Solina, Baumgartner, et al., 200525. m/0.2 mm/1. μm, He, 5. K/min, 280. C @ 5. min; Tstart: 40. C
CapillarySPB-5757.Pino, Marbot, et al., 200430. m/0.25 mm/0.25 μm, He, 60. C @ 2. min, 4. K/min, 250. C @ 20. min
CapillarySPB-5751.Pino, Marbot, et al., 2004, 230. m/0.25 mm/0.25 μm, He, 60. C @ 2. min, 4. K/min, 250. C @ 20. min
CapillaryBPX-5774.Bredie, Mottram, et al., 200250. m/0.32 mm/0.5 μm, 60. C @ 5. min, 4. K/min, 250. C @ 20. min
CapillaryBPX-5744.Ames, Guy, et al., 200150. m/0.32 mm/0.5 μm, He, 60. C @ 5. min, 4. K/min, 250. C @ 10. min
CapillaryBPX-5760.Ames, Guy, et al., 2001, 250. m/0.32 mm/0.25 μm, He, 60. C @ 5. min, 4. K/min, 250. C @ 10. min
CapillaryDB-1731.Kim, 200160. m/0.32 mm/1. μm, He, 40. C @ 5. min, 2. K/min; Tend: 220. C
CapillaryDB-1733.Izzo and Ho, 199150. m/0.32 mm/1.05 μm, He, 2. K/min, 260. C @ 40. min; Tstart: 40. C
PackedSE-30739.Peng, Ding, et al., 1988He, Supelcoport and Chromosorb, 40. C @ 4. min, 10. K/min, 250. C @ 60. min; Column length: 3.05 m
CapillaryDB-1727.Zhang, Chien, et al., 198860. m/0.25 mm/0.25 μm, He, 2. K/min, 220. C @ 10. min; Tstart: 40. C

Van Den Dool and Kratz RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryCP-Sil 8CB-MS759.Elmore, Mottram, et al., 200060. m/0.25 mm/0.25 μm, He; Program: 0C(5min) => 40C/min => 40C (2min) => 4C/min => 280C
CapillaryDB-5765.Parker, Hassell, et al., 200050. m/0.32 mm/0.5 μm, He; Program: oC(5min) => 60C/min => 60C (5min) => 4C/min => 250C

Van Den Dool and Kratz RI, polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-Wax1521.Lopez-Galilea I., Fournier N., et al., 200630. m/0.32 mm/0.5 μm, He, 5. K/min, 240. C @ 10. min; Tstart: 40. C
CapillaryCP-Wax 52CB1507.Mahadevan and Farmer, 200660. C @ 5. min, 4. K/min, 220. C @ 30. min; Column length: 50. m; Column diameter: 0.32 mm
CapillarySupelcowax-101523.Chung, Yung, et al., 200260. m/0.25 mm/0.25 μm, He, 35. C @ 5. min, 2. K/min, 195. C @ 90. min
CapillarySupelcowax-101523.Chung, Yung, et al., 200160. m/0.25 mm/0.25 μm, He, 35. C @ 5. min, 2. K/min, 195. C @ 90. min
CapillaryDB-Wax1513.Kim, 200160. m/0.25 mm/0.25 μm, He, 40. C @ 5. min, 2. K/min, 200. C @ 30. min
CapillarySupelcowax-101524.Chung, 200060. m/0.25 mm/0.25 μm, He, 2. K/min, 195. C @ 90. min; Tstart: 35. C
CapillarySupelcowax-101525.Chung, 199960. m/0.25 mm/0.25 μm, He, 35. C @ 5. min, 2. K/min, 195. C @ 90. min
CapillaryFFAP1547.Ott, Fay, et al., 199730. m/0.25 mm/0.25 μm, He, 20. C @ 1. min, 4. K/min, 200. C @ 1. min
CapillaryPEG-20M1505.Shimoda, Nakada, et al., 199760. m/0.25 mm/0.25 μm, He, 2. K/min, 230. C @ 60. min; Tstart: 50. C
CapillaryDB-Wax1505.Shimoda, Shiratsuchi, et al., 199660. m/0.25 mm/0.25 μm, He, 2. K/min, 230. C @ 60. min; Tstart: 50. C
CapillaryDB-Wax1490.Shimoda, Shigematsu, et al., 199560. m/0.25 mm/0.25 μm, 2. K/min; Tstart: 50. C; Tend: 230. C
CapillaryDB-Wax1538.Chung, Eiserich, et al., 1994He, 60. C @ 4. min, 3. K/min, 220. C @ 30. min; Column length: 60. m; Column diameter: 0.25 mm
CapillaryDB-Wax1512.Shiratsuchi, Shimoda, et al., 199460. m/0.25 mm/0.25 μm, 2. K/min, 230. C @ 60. min; Tstart: 50. C
CapillaryDB-Wax1512.Shiratsuchi, Shimoda, et al., 1994, 260. m/0.25 mm/0.25 μm, He, 2. K/min, 230. C @ 60. min; Tstart: 50. C
CapillarySupelcowax-101514.Chung and Cadwallader, 199360. m/0.25 mm/0.25 μm, He, 40. C @ 5. min, 2. K/min, 195. C @ 40. min
CapillarySupelcowax-101530.Matiella and Hsieh, 199060. m/0.25 mm/0.25 μm, 40. C @ 5. min, 2. K/min, 175. C @ 20. min
CapillarySupelcowax-101521.Tanchotikul and Hsieh, 198960. m/0.25 mm/0.25 μm, 40. C @ 5. min, 2. K/min, 175. C @ 20. min
CapillarySupelcowax-101523.Tanchotikul and Hsieh, 198960. m/0.25 mm/0.25 μm, 40. C @ 5. min, 2. K/min, 175. C @ 20. min
CapillarySupelcowax-101524.Vejaphan, Hsieh, et al., 198860. m/0.25 mm/0.25 μm, 40. C @ 5. min, 2. K/min, 175. C @ 20. min
CapillarySupelcowax-101526.Vejaphan, Hsieh, et al., 198860. m/0.25 mm/0.25 μm, 40. C @ 5. min, 2. K/min, 175. C @ 20. min

Van Den Dool and Kratz RI, polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillarySupelcowax-101525.Bianchi, Careri, et al., 200730. m/0.25 mm/0.25 μm, He; Program: 35C(8min) => 4C/min => 60C => 6C/min => 160C => 20C/min => 200C(1min)
CapillaryCP-Wax 52CB1513.Alasalvar, Shahidi, et al., 200360. m/0.25 mm/0.25 μm, He; Program: 40C => 5C/min => 60C => 2.5C/min => 155C
CapillarySupelcowax-101514.Baek and Cadwallader, 199660. m/0.25 mm/0.25 μm; Program: 40C => (6C/min) => 80C(6min) => (15C/min) => 200C(10min)

Normal alkane RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryVF-5 MS750.Leffingwell and Alford, 201160. m/0.32 mm/0.25 μm, Helium, 2. K/min, 260. C @ 28. min; Tstart: 30. C
CapillaryVF-5 MS757.Leffingwell and Alford, 201160. m/0.32 mm/0.25 μm, Helium, 2. K/min, 260. C @ 28. min; Tstart: 30. C
CapillaryHP-5755.Piyachaiseth, Jirapakkul, et al., 201160. m/0.25 mm/0.25 μm, Helium, 35. C @ 1. min, 10. K/min, 220. C @ 15. min
CapillaryZB-5751.Harrison and Priest, 200930. m/0.25 mm/0.25 μm, Helium, 40. C @ 1. min, 6. K/min, 280. C @ 9. min
CapillarySLB-5MS768.Risticevic, Carasek, et al., 200810. m/0.18 mm/0.18 μm, Helium, 40. C @ 1.5 min, 10. K/min; Tend: 295. C
CapillaryMDN-5748.van Loon, Linssen, et al., 200560. m/0.25 mm/0.25 μm, He, 40. C @ 4. min, 4. K/min, 270. C @ 5. min
CapillaryMDN-5755.van Loon, Linssen, et al., 200560. m/0.25 mm/0.25 μm, He, 40. C @ 4. min, 4. K/min, 270. C @ 5. min
CapillaryRTX-5750.Sies A., Hirsch R., et al., 200220. m/0.18 mm/0.4 μm, He, 20. C @ 3.5 min, 40. K/min, 290. C @ 0.5 min
CapillarySPB-5755.Poligné, Collignan, et al., 200160. m/0.32 mm/1. μm, He, 3. K/min; Tstart: 40. C; Tend: 200. C
CapillaryDB-1725.Buttery, Ling, et al., 199730. C @ 25. min, 4. K/min, 200. C @ 20. min; Column length: 60. m; Column diameter: 0.25 mm
CapillarySE-54765.Bellesia, Pinetti, et al., 199625. m/0.2 mm/0.5 μm, He, 35. C @ 2. min, 5. K/min; Tend: 250. C
CapillaryDB-1730.Buttery and Ling, 1995He, 30. C @ 25. min, 4. K/min, 200. C @ 20. min; Column length: 60. m; Column diameter: 0.25 mm
CapillaryDB-5762.Macku and Shibamoto, 1991He, 40. C @ 5. min, 2. K/min; Column length: 60. m; Column diameter: 0.25 mm; Tend: 160. C
CapillaryDB-5762.Macku and Shibamoto, 1991, 2He, 40. C @ 5. min, 2. K/min; Column length: 60. m; Column diameter: 0.25 mm; Tend: 160. C
CapillaryOV-101768.del Rosario, de Lumen, et al., 1984He, 0. C @ 1. min, 3. K/min; Column length: 50. m; Column diameter: 0.31 mm; Tend: 225. C

Normal alkane RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillarySLB-5MS739.Risticevic, Carasek, et al., 200810. m/0.18 mm/0.18 μm, Helium; Program: not specified
CapillaryDB-5 MS758.Liu, Xu, et al., 200760. m/0.32 mm/1.0 μm, Helium; Program: 40 0C (2 min) 6 0C/min -> 100 0C 4 0C/min -> 180 0C 8 0C/min -> 250 0C (12 min)
CapillaryPolydimethyl siloxane with 5 % Ph groups751.Pino, Marbot, et al., 2005Program: not specified
CapillarySPB-5749.Begnaud, Pérès, et al., 200360. m/0.32 mm/1. μm; Program: not specified
CapillaryRTX-5 MS758.Machiels and Istasse, 200360. m/0.25 mm/0.5 μm, He; Program: 35C (3min) => 10C/min => 50C => 4C/min => 200C => 50C/min => 250C (10min)
CapillaryBPX-5749.Machiels, van Ruth, et al., 200360. m/0.32 mm/1. μm, He; Program: 40C (4min) => 2C/min => 90C => 4C/min => 130C => 8C/min => 250 C (10min)
CapillaryMethyl phenyl siloxane (not specified)752.Poligne, Collignan, et al., 2002Program: not specified
CapillaryDB-5 MS769.Luo and Agnew, 200130. m/0.25 mm/1.0 μm, Helium; Program: not specified
CapillaryMethyl Silicone723.Zenkevich, 1999Program: not specified
CapillarySPB-1733.Flanagan, Streete, et al., 199760. m/0.53 mm/5. μm, He; Program: 40C(6min) => 5C/min => 80C => 10C/min => 200C
CapillarySPB-1733.Strete, Ruprah, et al., 199260. m/0.53 mm/5.0 μm, Helium; Program: 40 0C (6 min) 5 0C/min -> 80 0C 10 0C/min -> 200 0C
CapillarySPB-1755.Strete, Ruprah, et al., 199260. m/0.53 mm/5.0 μm, Helium; Program: not specified
CapillaryDB-1727.Kawai, Ishida, et al., 199160. m/0.25 mm/0.25 μm; Program: not specified
CapillaryDB-1728.Kawai, Ishida, et al., 199160. m/0.25 mm/0.25 μm; Program: not specified
CapillaryOV-1755.Ramsey and Flanagan, 1982Program: not specified

Normal alkane RI, polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryHP-Innowax1488.Puvipirom and Chaisei, 201215. m/0.32 mm/0.50 μm, Helium, 3. K/min; Tstart: 40. C; Tend: 250. C
CapillaryFFAP1534.Budryn, Nebesny, et al., 201130. m/0.32 mm/0.50 μm, Nitrogen, 35. C @ 5. min, 4. K/min, 250. C @ 45. min
CapillaryFFAP1534.Nebesny, Budryn, et al., 200730. m/0.32 mm/0.5 μm, N2, 35. C @ 5. min, 4. K/min, 320. C @ 45. min
CapillaryHP-Wax1542.Sanz, Maeztu, et al., 200260. m/0.25 mm/0.5 μm, He, 40. C @ 6. min, 3. K/min; Tend: 190. C
CapillaryHP-Wax1542.Maeztu, Sanz, et al., 200160. m/0.25 mm/0.5 μm, He, 40. C @ 6. min, 3. K/min; Tend: 190. C
CapillaryHP-Wax1542.Sanz, Ansorena, et al., 200160. m/0.25 mm/0.5 μm, He, 40. C @ 6. min, 3. K/min; Tend: 190. C
CapillarySupelcowax-101526.Girard and Durance, 200060. m/0.25 mm/0.25 μm, He, 35. C @ 10. min, 4. K/min; Tend: 200. C
CapillaryDB-Wax1507.Buttery, Orts, et al., 199930. C @ 4. min, 2. K/min, 170. C @ 60. min; Column length: 60. m; Column diameter: 0.32 mm
CapillaryDB-Wax1507.Buttery and Ling, 199830. C @ 4. min, 2. K/min, 170. C @ 30. min; Column length: 60. m; Column diameter: 0.25 mm
CapillaryPEG-20M1477.Kubota, Matsujage, et al., 199650. m/0.25 mm/0.25 μm, Nitrogen, 2. K/min; Tstart: 60. C; Tend: 180. C
CapillaryDB-Wax1513.Umano, Hagi, et al., 1995He, 40. C @ 2. min, 2. K/min; Column length: 60. m; Column diameter: 0.25 mm; Tend: 200. C
CapillaryDB-Wax1470.Hatsuko, Kazuko, et al., 1992He, 60. C @ 10. min, 3. K/min; Column length: 30. m; Column diameter: 0.25 mm; Tend: 240. C
CapillaryDB-Wax1509.Wong and Bernhard, 1988He, 70. C @ 8. min, 2. K/min; Column length: 30. m; Column diameter: 0.25 mm; Tend: 160. C
CapillaryCarbowax 20M1504.Shibamoto and Russell, 19771. K/min; Column length: 100. m; Column diameter: 0.25 mm; Tstart: 70. C; Tend: 170. C
CapillaryCarbowax 20M1505.Shibamoto and Russell, 19771. K/min; Column length: 100. m; Column diameter: 0.25 mm; Tstart: 70. C; Tend: 170. C

Normal alkane RI, polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-Wax1498.Welke, Manfroi, et al., 201230. m/0.25 mm/0.25 μm, Helium; Program: not specified
CapillaryDB-Wax1507.Welke, Manfroi, et al., 201230. m/0.25 mm/0.25 μm, Helium; Program: not specified
CapillaryDB-Wax1518.Gonzalez-Rios, Suarez-Quiroz, et al., 200730. m/0.25 mm/0.25 μm, Hydrogen; Program: 44 0C 3 0C/min -> 170 0C 8 0C/min -> 250 0C
CapillaryDB-Wax1514.Kim. J.H., Ahn, et al., 200460. m/0.25 mm/0.25 μm, Helium; Program: 60 0C (3 min) 2 0C/min -> 150 0C 4 0C/min -> 200 0C
CapillaryCarbowax 20M1516.Finkelstein, Kurbatova, et al., 2002Program: not specified
CapillaryCP-Wax 52CB1532.Muresan, Eillebrecht, et al., 200050. m/0.32 mm/1.2 μm; Program: 40C(10min) => 3C/min => 190C => 10C/min => 250C(5min)
CapillarySupelcowax-101524.Chang, Seitz, et al., 199530. m/0.32 mm/0.25 μm, He; Program: 50C(2min) => 7C/min => 140C => 17.5C/min => 230C
CapillaryDB-Wax1508.Peng, Yang, et al., 1991Program: not specified
CapillaryDB-Wax1511.Peng, Yang, et al., 1991Program: not specified
CapillaryCarbowax 20M1472.Ramsey and Flanagan, 1982Program: not specified

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Ion clustering data, Gas Chromatography, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Zaheeruddin and Lodhi, 1991
Zaheeruddin, M.; Lodhi, Z.H., Enthalpies of formation of some cyclic compounds, Phys. Chem. (Peshawar Pak.), 1991, 10, 111-118. [all data]

Scott, Berg, et al., 1967
Scott, D.W.; Berg, W.T.; Hossenlopp, I.A.; Hubbard, W.N.; Messerly, J.F.; Todd, S.S.; Douslin, D.R.; McCullough, J.P.; Waddington, G., Pyrrole: Chemical thermodynamic properties, J. Phys. Chem., 1967, 71, 2263-2270. [all data]

Zimmerman and Geisenfelder, 1961
Zimmerman, H.; Geisenfelder, H., Uber die Mesomerieenergie von Azolen, Z. Electrochem., 1961, 65, 368-371. [all data]

Rosso and Carbonnel, 1973
Rosso, M.J.-C.; Carbonnel, L., Hydrates + cubic clathrates generated by the nitrogenous meterocycles: the binary systems water + propylene imine and water + pyrrole, C. R. Seances Acad. Sci., Ser. C, 1973, 277, 259. [all data]

Timmermans and Hennaut-Roland, 1955
Timmermans, J.; Hennaut-Roland, M., Work of the International Bureau of Physical-Chemical Standards. IX. The Physical Constants of Twenty Organic Compounds, J. Chim. Phys. Phys.-Chim. Biol., 1955, 52, 223. [all data]

Anonymous, 1942
Anonymous, R., , Am. Pet. Inst. Res. Proj. 6, Natl. Bur. Stand., 1942. [all data]

Milazzo, 1941
Milazzo, G., Boll. Sci. Facolta Chim. Ind. Bologna, 1941, 94. [all data]

Scott, Berg, et al., 1967, 2
Scott, D.W.; Berg, W.T.; Hossenlopp, I.A.; Hubbard, W.N.; Messerly, J.F.; Todd, S.S.; Douslin, D.R.; McCullough, J.P.; Waddington, G., Pyrrole: Chemical Thermodynamic Properties, J. Phys. Chem., 1967, 71, 2263. [all data]

Helm, Lanum, et al., 1958
Helm, R.V.; Lanum, W.J.; Cook, G.L.; Ball, J.S., Purification and Properties of Pyrrole, Pyrrolidine, Pyridine and 2-Methylpyridine, J. Phys. Chem., 1958, 62, 858. [all data]

McCullough and Waddington, 1957
McCullough, J.P.; Waddington, G., Melting-point purity determinations: limitations as evidenced by calorimetric studies in the melting region, Anal. Chim. Acta, 1957, 17, 80. [all data]

Majer and Svoboda, 1985
Majer, V.; Svoboda, V., Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]

Cheng, McCoubrey, et al., 1962
Cheng, D.C.H.; McCoubrey, J.C.; Phillips, D.G., Critical Temperatures of Some Organic Cyclic Compounds, Trans. Faraday Soc., 1962, 58, 224. [all data]

Glaser and Ruland, 1957
Glaser, F.; Ruland, H., Untersuchungsen über dampfdruckkurven und kritische daten einiger technisch wichtiger organischer substanzen, Chem. Ing. Techn., 1957, 29, 772. [all data]

Kimizuka and Szydlowski, 1992
Kimizuka, Wieslawa; Szydlowski, Jerzy, Vapor pressure isotope effect of n-deuterated pyrrole, Fluid Phase Equilibria, 1992, 77, 261-267, https://doi.org/10.1016/0378-3812(92)85107-J . [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Osborn and Douslin, 1968
Osborn, Ann G.; Douslin, Donald R., Vapor pressure relations of 13 nitrogen compounds related to petroleum, J. Chem. Eng. Data, 1968, 13, 4, 534-537, https://doi.org/10.1021/je60039a024 . [all data]

Eon, Pommier, et al., 1971
Eon, C.; Pommier, C.; Guiochon, G., Vapor pressures and second virial coefficients of some five-membered heterocyclic derivatives, J. Chem. Eng. Data, 1971, 16, 4, 408-410, https://doi.org/10.1021/je60051a008 . [all data]

Stull, 1947
Stull, Daniel R., Vapor Pressure of Pure Substances. Organic and Inorganic Compounds, Ind. Eng. Chem., 1947, 39, 4, 517-540, https://doi.org/10.1021/ie50448a022 . [all data]

Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D., Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III, J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985 . [all data]

Gianola, Ichino, et al., 2004
Gianola, A.J.; Ichino, T.; Hoenigman, R.L.; Kato, S.; Bierbaum, V.M.; Lineberger, W.C., Thermochemistry and electronic structure of the pyrrolyl radical, J. Phys. Chem. A, 2004, 108, 46, 10326-10335, https://doi.org/10.1021/jp047790+ . [all data]

Bartmess, Scott, et al., 1979
Bartmess, J.E.; Scott, J.A.; McIver, R.T., Jr., The gas phase acidity scale from methanol to phenol, J. Am. Chem. Soc., 1979, 101, 6047. [all data]

Cumming and Kebarle, 1978
Cumming, J.B.; Kebarle, P., Summary of gas phase measurements involving acids AH. Entropy changes in proton transfer reactions involving negative ions. Bond dissociation energies D(A-H) and electron affinities EA(A), Can. J. Chem., 1978, 56, 1. [all data]

Muftakhov, Vasil'ev, et al., 1999
Muftakhov, M.V.; Vasil'ev, Y.V.; Khatymov, R.V.; Mazunov, V.A.; Takhistov, V.V.; Travkin, O.V.; Yakovleva, E.V., Thermochemistry of negatively charged ions. II. Energetics of formation of negative ions from acridanone and some of its derivatives, Rapid Commun. Mass Spectrom., 1999, 13, 10, 912-923, https://doi.org/10.1002/(SICI)1097-0231(19990530)13:10<912::AID-RCM585>3.0.CO;2-W . [all data]

Meot-ner, 1988
Meot-ner, M., Ionic Hydrogen Bond and Ion Solvation. 6. Interaction Energies of the Acetate Ion with Organic Molecules. Comparison of CH3COO- with Cl-, CN-, and SH-, J. Am. Chem. Soc., 1988, 110, 12, 3854, https://doi.org/10.1021/ja00220a022 . [all data]

Larson and McMahon, 1987
Larson, J.W.; McMahon, T.B., Hydrogen bonding in gas phase anions. The energetics of interaction between cyanide ion and bronsted acids, J. Am. Chem. Soc., 1987, 109, 6230. [all data]

Payzant, Yamdagni, et al., 1971
Payzant, J.D.; Yamdagni, R.; Kebarle, P., Hydration of CN-, NO2-, NO3-, and HO- in the gas phase, Can. J. Chem., 1971, 49, 3308. [all data]

Larson and McMahon, 1983
Larson, J.W.; McMahon, T.B., Strong hydrogen bonding in gas-phase anions. An ion cyclotron resonance determination of fluoride binding energetics to bronsted acids from gas-phase fluoride exchange equilibria measurements, J. Am. Chem. Soc., 1983, 105, 2944. [all data]

Arshadi, Yamdagni, et al., 1970
Arshadi, M.; Yamdagni, R.; Kebarle, P., Hydration of Halide Negative Ions in the Gas Phase. II. Comparison of Hydration Energies for the Alkali Positive and Halide Negative Ions, J. Phys. Chem., 1970, 74, 7, 1475, https://doi.org/10.1021/j100702a014 . [all data]

Larson and McMahon, 1984
Larson, J.W.; McMahon, T.B., Hydrogen bonding in gas phase anions. An experimental investigation of the interaction between chloride ion and bronsted acids from ICR chloride exchange equilibria, J. Am. Chem. Soc., 1984, 106, 517. [all data]

French, Ikuta, et al., 1982
French, M.A.; Ikuta, S.; Kebarle, P., Hydrogen bonding of O-H and C-H hydrogen donors to Cl-. Results from mass spectrometric measurement of the ion-molecule equilibria RH + Cl- = RHCl-, Can. J. Chem., 1982, 60, 1907. [all data]

Meot-ner, 1988, 2
Meot-ner, M., The Ionic Hydrogen Bond and Solvation. 7. Interaction Energies of Carbanions with Solvent Molecules, J. Am. Chem. Soc., 1988, 110, 12, 3858, https://doi.org/10.1021/ja00220a022 . [all data]

Hiraoka, Takimoto, et al., 1987
Hiraoka, K.; Takimoto, H.; Yamabe, S., Stabilities and Structures in Cluster Ions of Five-Membered Heterocyclic Compounds Containing O, N and S Atoms, J. Am. Chem. Soc., 1987, 109, 24, 7346, https://doi.org/10.1021/ja00258a018 . [all data]

Deakyne and Meot-Ner (Mautner), 1985
Deakyne, C.A.; Meot-Ner (Mautner), M., Unconventional Ionic Hydrogen Bonds. 2. NH+ pi. Complexes of Onium Ions with Olefins and Benzene Derivatives, J. Am. Chem. Soc., 1985, 107, 2, 474, https://doi.org/10.1021/ja00288a034 . [all data]

Meot-Ner (Mautner), 1988
Meot-Ner (Mautner), M., Models for Strong Interactions in Proteins and Enzymes. 2. Interactions of Ions with the Peptide Link and Imidazole, J. Am. Chem. Soc., 1988, 110, 10, 3075, https://doi.org/10.1021/ja00218a014 . [all data]

Gapeev and Yang, 2000
Gapeev, A.; Yang, C.-N., Binding Energies of Gas-Phase Ions with Pyrrole. Experimental and Quantum Chemical Results, J. Phys. Chem. A, 2000, 104, 14, 3246, https://doi.org/10.1021/jp992627d . [all data]

Huang and Rodgers, 2002
Huang, H.; Rodgers, M.T., Sigma versus Pi interactions in alkali metal ion binding to azoles: Threshold collision-induced dissociation and ab initio theory studies, J. Phys. Chem. A, 2002, 106, 16, 4277, https://doi.org/10.1021/jp013630b . [all data]

Zhuravleva, 2000
Zhuravleva, I.L., Evaluation of the polarity and boiling points of nitrogen-containing heterocyclic compounds by gas chromatography, Russ. Chem. Bull. (Engl. Transl.), 2000, 49, 2, 325-328, https://doi.org/10.1007/BF02494682 . [all data]

Golovnya, Kuz'menko, et al., 1999
Golovnya, R.V.; Kuz'menko, T.E.; Zhuravleva, I.L., Gas chromatographic indicator of the ability of five- and six-membered heterocyclic nitrogen-containing compounds for self-association in pure liquids, Russ. Chem. Bull. (Engl. Transl.), 1999, 48, 4, 726-729, https://doi.org/10.1007/BF02496256 . [all data]

Anderson, Jurel, et al., 1973
Anderson, A.; Jurel, S.; Shymanska, M.; Golender, L., Gas-liquid chromatography of some aliphatic and heterocyclic mono- and pollyfunctional amines. VII. Retention indices of amines in some polar and unpolar stationary phases, Latv. PSR Zinat. Akad. Vestis Kim. Ser., 1973, 1, 51-63. [all data]

Tibor and Anna, 1971
Tibor, T.; Anna, B., Gázkromatográfiás retenció és a kémiai szerkezet, I., Magy. Kem. Foly., 1971, 77, 576-587. [all data]

Kurbatova, Finkelstein, et al., 2004
Kurbatova, S.V.; Finkelstein, E.E.; Kolosova, E.A.; Kartashev, A.V.; Rashkin, S.V., Structural analogy method in studies of adamantanes, J. Struct. Chem., 2004, 45, 1, 144-150, https://doi.org/10.1023/B:JORY.0000041513.82837.4e . [all data]

Methven L., Tsoukka M., et al., 2007
Methven L.; Tsoukka M.; Oruna-Concha M.J.; Parker J.K.; Mottram D.S., Influence of sulfur amino acids on the volatile and nonvolatile components of cooked salmon (Salmo salar), J. Agric. Food Chem., 2007, 55, 4, 1427-1436, https://doi.org/10.1021/jf0625611 . [all data]

Solina, Baumgartner, et al., 2005
Solina, M.; Baumgartner, P.; Johnson, R.L.; Whitfield, F.B., Volatile aroma components of soy protein isolate and acid-hydrolysed vegetable protein, Food Chem., 2005, 90, 4, 861-873, https://doi.org/10.1016/j.foodchem.2004.06.005 . [all data]

Pino, Marbot, et al., 2004
Pino, J.A.; Marbot, R.; Vazquez, C., Volatile components of tamarind (Tamarindus indica L.) grown in Cuba, J. Essent. Oil Res., 2004, 16, 4, 318-320, https://doi.org/10.1080/10412905.2004.9698731 . [all data]

Pino, Marbot, et al., 2004, 2
Pino, J.A.; Marbot, R.; Rosado, A.; Vázquez, C., Volatile constituents of Malay rose apple [Syzygium malaccense (L.) Merr. Perry], Flavour Fragr. J., 2004, 19, 1, 32-35, https://doi.org/10.1002/ffj.1269 . [all data]

Bredie, Mottram, et al., 2002
Bredie, W.L.P.; Mottram, D.S.; Guy, R.C.E., Effect of temperature and pH on the generation of flavor volatiles in extrusion cooking of wheat flour, J. Agric. Food Chem., 2002, 50, 5, 1118-1125, https://doi.org/10.1021/jf0111662 . [all data]

Ames, Guy, et al., 2001
Ames, J.M.; Guy, R.C.E.; Kipping, G.J., Effect of pH and temperature on the formation of volatile compounds in cysteine/reducing sugar/starch mixtures during extrusion cooking, J. Agric. Food Chem., 2001, 49, 4, 1885-1894, https://doi.org/10.1021/jf0012547 . [all data]

Ames, Guy, et al., 2001, 2
Ames, J.M.; Guy, R.C.E.; Kipping, G.J., Effect of pH, temperature, and moisture on the formation of volatile compounds in glycine/glucose model systems, J. Agric. Food Chem., 2001, 49, 9, 4315-4323, https://doi.org/10.1021/jf010198m . [all data]

Kim, 2001
Kim, J.S., Einfluss der Temperatur beim Rösten von Sesam auf Aroma und antioxidative Eigenschaften des Öls, PhD Thesis, Technischen Universität Berlin zur Erlangung des akademischen Grades, Berlin, 2001, 151. [all data]

Izzo and Ho, 1991
Izzo, H.V.; Ho, C.-T., Isolation and identification of the volatile components of an extruded autolyzed yeast extract, J. Agric. Food Chem., 1991, 39, 12, 2245-2248, https://doi.org/10.1021/jf00012a029 . [all data]

Peng, Ding, et al., 1988
Peng, C.T.; Ding, S.F.; Hua, R.L.; Yang, Z.C., Prediction of Retention Indexes I. Structure-Retention Index Relationship on Apolar Columns, J. Chromatogr., 1988, 436, 137-172, https://doi.org/10.1016/S0021-9673(00)94575-8 . [all data]

Zhang, Chien, et al., 1988
Zhang, Y.; Chien, M.; Ho.C.-T., Comparison of the volatile compounds obtained from thermal degradation of cysteine and glutathione in water, J. Agric. Food Chem., 1988, 36, 5, 992-996, https://doi.org/10.1021/jf00083a022 . [all data]

Elmore, Mottram, et al., 2000
Elmore, J.S.; Mottram, D.S.; Enser, M.; Wood, J.D., The effects of diet and breed on the volatile compounds of cooked lamb, Meat Sci., 2000, 55, 2, 149-159, https://doi.org/10.1016/S0309-1740(99)00137-0 . [all data]

Parker, Hassell, et al., 2000
Parker, J.K.; Hassell, G.M.E.; Mottram, D.S.; Guy, R.C.E., Sensory and instrumental analyses of volatiles generated during the extrusion cooking of oat flours, J. Agric. Food Chem., 2000, 48, 8, 3497-3506, https://doi.org/10.1021/jf991302r . [all data]

Lopez-Galilea I., Fournier N., et al., 2006
Lopez-Galilea I.; Fournier N.; Cid C.; Guichard E., Changes in headspace volatile concentrations of coffee brews caused by the roasting process and the brewing procedure, J. Agric. Food Chem., 2006, 54, 22, 8560-8566, https://doi.org/10.1021/jf061178t . [all data]

Mahadevan and Farmer, 2006
Mahadevan, K.; Farmer, L., Key Odor Impact Compounds in Three Yeast Extract Pastes, J. Agric. Food Chem., 2006, 54, 19, 7242-7250, https://doi.org/10.1021/jf061102x . [all data]

Chung, Yung, et al., 2002
Chung, H.-Y.; Yung, I.K.S.; Ma, W.C.J.; Kim, J.-S., Analysis of volatile components in frozen and dried scallops (Patinopecten yessoensis) by gas chromatography/mass spectrometry, Food Res. Int., 2002, 35, 1, 43-53, https://doi.org/10.1016/S0963-9969(01)00107-7 . [all data]

Chung, Yung, et al., 2001
Chung, H.Y.; Yung, I.K.S.; Kim, J.-S., Comparison of volatile components in dried scallops (Chlamys farreri and Patinopecten yessoensis) prepared by boiling and steaming methods, J. Agric. Food Chem., 2001, 49, 1, 192-202, https://doi.org/10.1021/jf000692a . [all data]

Chung, 2000
Chung, H.Y., Volatile flavor components in red fermented soybean (Glycine max) curds, J. Agric. Food Chem., 2000, 48, 5, 1803-1809, https://doi.org/10.1021/jf991272s . [all data]

Chung, 1999
Chung, H.Y., Volatile components in crabmeats of Charybdis feriatus, J. Agric. Food Chem., 1999, 47, 6, 2280-2287, https://doi.org/10.1021/jf981027t . [all data]

Ott, Fay, et al., 1997
Ott, A.; Fay, L.B.; Chaintreau, A., Determination and origin of the aroma impact compounds of yogurt flavor, J. Agric. Food Chem., 1997, 45, 3, 850-858, https://doi.org/10.1021/jf960508e . [all data]

Shimoda, Nakada, et al., 1997
Shimoda, M.; Nakada, Y.; Nakashima, M.; Osajima, Y., Quantitative comparison of volatile flavor compounds in deep-roasted and light-roasted sesame seed oil, J. Agric. Food Chem., 1997, 45, 8, 3193-3196, https://doi.org/10.1021/jf970172o . [all data]

Shimoda, Shiratsuchi, et al., 1996
Shimoda, M.; Shiratsuchi, H.; Nakada, Y.; Wu, Y.; Osajima, Y., Identification and sensory characterization of volatile flavor compounds in sesame seed oil, J. Agric. Food Chem., 1996, 44, 12, 3909-3912, https://doi.org/10.1021/jf960115f . [all data]

Shimoda, Shigematsu, et al., 1995
Shimoda, M.; Shigematsu, H.; Shiratsuchi, H.; Osajima, Y., Comparison of the odor concentrates by SDE and adsorptive column method from green tea infusion, J. Agric. Food Chem., 1995, 43, 6, 1616-1620, https://doi.org/10.1021/jf00054a037 . [all data]

Chung, Eiserich, et al., 1994
Chung, T.Y.; Eiserich, J.P.; Shibamoto, T., Volatile compounds produced from peanut oil heated with different amounts of cysteine, J. Agric. Food Chem., 1994, 42, 8, 1743-1746, https://doi.org/10.1021/jf00044a032 . [all data]

Shiratsuchi, Shimoda, et al., 1994
Shiratsuchi, H.; Shimoda, M.; Imayoshi, K.; Noda, K.; Osajima, Y., Off-flavor compounds in spray-dried skim milk powder, J. Agric. Food Chem., 1994, 42, 6, 1323-1327, https://doi.org/10.1021/jf00042a014 . [all data]

Shiratsuchi, Shimoda, et al., 1994, 2
Shiratsuchi, H.; Shimoda, M.; Imayoshi, K.; Noda, K.; Osajima, Y., Volatile flavor compounds in spray-dried skim milk powder, J. Agric. Food Chem., 1994, 42, 4, 984-988, https://doi.org/10.1021/jf00040a028 . [all data]

Chung and Cadwallader, 1993
Chung, H.Y.; Cadwallader, K.R., Volatile components in blue crab (Callinectes sapidus) meat and processing by-product, J. Food Sci., 1993, 58, 6, 1203-1207, https://doi.org/10.1111/j.1365-2621.1993.tb06148.x . [all data]

Matiella and Hsieh, 1990
Matiella, J.E.; Hsieh, T.C.-Y., Analysis of crabmeat volatile compounds, J. Food Sci., 1990, 55, 4, 962-966, https://doi.org/10.1111/j.1365-2621.1990.tb01575.x . [all data]

Tanchotikul and Hsieh, 1989
Tanchotikul, U.; Hsieh, T.C.-Y., Volatile Flavor Components in Crayfish Waste, J. Food Sci., 1989, 54, 6, 1515-1520, https://doi.org/10.1111/j.1365-2621.1989.tb05149.x . [all data]

Vejaphan, Hsieh, et al., 1988
Vejaphan, W.; Hsieh, T.C.Y.; Williams, S.S., Volatile flavor components from boiled crayfish (Procambarus clarkii) tail meat, J. Food Sci., 1988, 53, 6, 1666-1670, https://doi.org/10.1111/j.1365-2621.1988.tb07811.x . [all data]

Bianchi, Careri, et al., 2007
Bianchi, F.; Careri, M.; Mangia, A.; Musci, M., Retention indices in the analysis of food aroma volatile compounds in temperature-programmed gas chromatography: Database creation and evaluation of precision and robustness, J. Sep. Sci., 2007, 39, 4, 563-572, https://doi.org/10.1002/jssc.200600393 . [all data]

Alasalvar, Shahidi, et al., 2003
Alasalvar, C.; Shahidi, F.; Cadwallader, K.R., Comparison of natural and roasted Turkish Tombul hazelnut (Corylus avellana L.) volatiles and flavor by DHA/GC/MS and descriptive sensory analysis, J. Agric. Food Chem., 2003, 51, 17, 5067-5072, https://doi.org/10.1021/jf0300846 . [all data]

Baek and Cadwallader, 1996
Baek, H.H.; Cadwallader, K.R., Volatile compounds in flavor concentrates produced from crayfish-processing byproducts with and without protease treatment, J. Agric. Food Chem., 1996, 44, 10, 3262-3267, https://doi.org/10.1021/jf960023q . [all data]

Leffingwell and Alford, 2011
Leffingwell, J.; Alford, E.D., Volatile constituents of the giant pufball mushroom (Calvatia gigantea), Leffingwell Rep., 2011, 4, 1-17. [all data]

Piyachaiseth, Jirapakkul, et al., 2011
Piyachaiseth, T.; Jirapakkul, W.; Chaiseri, S., Aroma compounds of flash-fried rice, Kasetsart J. (Nat. Sci.), 2011, 45, 717-729. [all data]

Harrison and Priest, 2009
Harrison, B.M.; Priest, F.G., Composition of peaks used in the preparation of malt for Scotch Whisky production - influence of geographical source and extraction depth, J. Agric. Food Chem., 2009, 57, 6, 2385-2391, https://doi.org/10.1021/jf803556y . [all data]

Risticevic, Carasek, et al., 2008
Risticevic, S.; Carasek, E.; Pawliszyn, J., Headspace solid-phase microextraction-gas chromatographic-time-of-flight mass spectrometric methodology for geographical origin verification of coffee, Anal. Chim. Acta, 2008, 617, 1-2, 72-84, https://doi.org/10.1016/j.aca.2008.04.009 . [all data]

van Loon, Linssen, et al., 2005
van Loon, W.A.M.; Linssen, J.P.H.; Legger, A.; Posthumus, M.A.; Voragen, A.G.J., Identification and olfactometry of French fries flavour extracted at mouth conditions, Food Chem., 2005, 90, 3, 417-425, https://doi.org/10.1016/j.foodchem.2004.05.005 . [all data]

Sies A., Hirsch R., et al., 2002
Sies A.; Hirsch R.; Löscher R.; Tablack P.; Guth H., Direct thermal desorption and Fast-GC-TOF-MS for a rapid quality control of hazelnuts, 10th Weurman Flavour Research Symposium, 24 - 28 June 2002, Beaune, France, 2002. [all data]

Poligné, Collignan, et al., 2001
Poligné, I.; Collignan, A.; Trystram, G., Characterization of traditional processing of pork meat into boucané, Meat Sci., 2001, 59, 4, 377-389, https://doi.org/10.1016/S0309-1740(01)00090-0 . [all data]

Buttery, Ling, et al., 1997
Buttery, R.G.; Ling, L.C.; Stern, D.J., Studies on popcorn aroma and flavor volatiles, J. Agric. Food Chem., 1997, 45, 3, 837-843, https://doi.org/10.1021/jf9604807 . [all data]

Bellesia, Pinetti, et al., 1996
Bellesia, F.; Pinetti, A.; Bianchi, A.; Tirillini, B., Volatile compounds of the white truffle (Tuber magnaturn Pico) from middle Italy, Flavour Fragr. J., 1996, 11, 4, 239-243, https://doi.org/10.1002/(SICI)1099-1026(199607)11:4<239::AID-FFJ573>3.0.CO;2-A . [all data]

Buttery and Ling, 1995
Buttery, R.G.; Ling, L.C., Volatile flavor components of corn tortillas and related products, J. Agric. Food Chem., 1995, 43, 7, 1878-1882, https://doi.org/10.1021/jf00055a023 . [all data]

Macku and Shibamoto, 1991
Macku, C.; Shibamoto, T., Headspace volatile compounds formed from heated corn oil and corn oil with glycine, J. Agric. Food Chem., 1991, 39, 7, 1265-1269, https://doi.org/10.1021/jf00007a014 . [all data]

Macku and Shibamoto, 1991, 2
Macku, C.; Shibamoto, T., Volatile sulfur-containing compounds generated from the thermal interaction of corn oil and cysteine, J. Agric. Food Chem., 1991, 39, 11, 1987-1989, https://doi.org/10.1021/jf00011a021 . [all data]

del Rosario, de Lumen, et al., 1984
del Rosario, R.; de Lumen, B.O.; Habu, T.; Flath, R.A.; Mon, T.R.; Teranishi, R., Comparison of headspace volatiles from winged beans and soybeans, J. Agric. Food Chem., 1984, 32, 5, 1011-1015, https://doi.org/10.1021/jf00125a015 . [all data]

Liu, Xu, et al., 2007
Liu, Y.; Xu, X.-L.; Zhou, G.-H., Comparative study of volatile compounds in traditional Chinese Nanjing marinated duck by different extraction techniques, Int. J. Food Sci. Technol., 2007, 42, 5, 543-550, https://doi.org/10.1111/j.1365-2621.2006.01264.x . [all data]

Pino, Marbot, et al., 2005
Pino, J.A.; Marbot, R.; Rosado, A.; Vázquez, C., Volatile constituents of Malay rose apple [Syzygium malaccense (L.) Merr. Perry], Flavour Fragr. J., 2005, 20, 98-100. [all data]

Begnaud, Pérès, et al., 2003
Begnaud, F.; Pérès, C.; Berdagué, J.-L., Characterization of volatile effluents of livestock buildings by solid-phase microextraction, Int. J. Environ. Anal. Chem., 2003, 83, 10, 837-849, https://doi.org/10.1080/03067310310001603349 . [all data]

Machiels and Istasse, 2003
Machiels, D.; Istasse, L., Evaluation of two commercial solid-phase microextraction fibres for the analysis of target aroma compounds in cooked beef meat, Talanta, 2003, 61, 4, 529-537, https://doi.org/10.1016/S0039-9140(03)00319-9 . [all data]

Machiels, van Ruth, et al., 2003
Machiels, D.; van Ruth, S.M.; Posthumus, M.A.; Istasse, L., Gas chromatography-olfactometry analysis of the volatile compounds of two commercial Irish beef meats, Talanta, 2003, 60, 4, 755-764, https://doi.org/10.1016/S0039-9140(03)00133-4 . [all data]

Poligne, Collignan, et al., 2002
Poligne, I.; Collignan, A.; Trystram, G., Effects of salting, drying, cooking, and smoking operations on volatile compound formation and collor patterns in pork, Food Eng. Physical Properties, 2002, 67, 8, 2976-2986. [all data]

Luo and Agnew, 2001
Luo, J.; Agnew, M.P., Gas characteristics before and after biofiltration treating odorous emissions from animal rendering processes, Environ. Technol., 2001, 22, 9, 1091-1103, https://doi.org/10.1080/09593332208618220 . [all data]

Zenkevich, 1999
Zenkevich, I.G., Precalculation of Gas Chromatographic Retention Indices of Organic Compounds from Boiling Points of their Structural Analogues, Zh. Struct. Khim., 1999, 40, 1, 121-130. [all data]

Flanagan, Streete, et al., 1997
Flanagan, R.J.; Streete, P.J.; Ramsey, J.D., Volatile Substance Abuse, UNODC Technical Series, No 5, United Nations, Office on Drugs and Crime, Vienna International Centre, PO Box 500, A-1400 Vienna, Austria, 1997, 56, retrieved from http://www.odccp.org/pdf/technicalseries1997-01-011.pdf. [all data]

Strete, Ruprah, et al., 1992
Strete, P.J.; Ruprah, M.; Ramsey, J.D.; Flanagan, R.J., Detection and identification of volatile substances by headspace capillary gas chromatography to aid the diagnosis of acute poisoning, Analyst, 1992, 117, 7, 1111-1127, https://doi.org/10.1039/an9921701111 . [all data]

Kawai, Ishida, et al., 1991
Kawai, T.; Ishida, Y.; Kakiuchi, H.; Ikeda, N.; Higashida, T.; Nakamura, S., Flavor components of dried squid, J. Agric. Food Chem., 1991, 39, 4, 770-777, https://doi.org/10.1021/jf00004a031 . [all data]

Ramsey and Flanagan, 1982
Ramsey, J.D.; Flanagan, R.J., Detection and Identification of Volatile Organic Compounds in Blood by Headspace Gas Chromatography as an Aid to the Diagnosis of Solvent Abuse, J. Chromatogr., 1982, 240, 2, 423-444, https://doi.org/10.1016/S0021-9673(00)99622-5 . [all data]

Puvipirom and Chaisei, 2012
Puvipirom, J.; Chaisei, S., Contribution of roasted grains and seeds in aroma of oleang (Thai coffee drink), Int. Food Res. J., 2012, 19, 2, 583-588. [all data]

Budryn, Nebesny, et al., 2011
Budryn, G.; Nebesny, E.; Kula, J.; Majda, T.; Krysiak, W., HS-SPME/GC/MS Profiles of convectively and microwave roasted Ivory Coast Robusta coffee brews, Czech. J. Food Sci., 2011, 29, 2, 151-160. [all data]

Nebesny, Budryn, et al., 2007
Nebesny, E.; Budryn, G.; Kula, J.; Majda, T., The effect of roasting method on headspace composition of robusta coffee bean aroma, Eur. Food Res. Technol., 2007, 225, 1, 9-19, https://doi.org/10.1007/s00217-006-0375-0 . [all data]

Sanz, Maeztu, et al., 2002
Sanz, C.; Maeztu, L.; Zapelena, M.J.; Bello, J.; Cid, C., Profiles of volatile compounds and sensory analysis of three blends of coffee: influence of different proportions of Arabica and Robusta and influence of roasting coffee with sugar, J. Sci. Food Agric., 2002, 82, 8, 840-847, https://doi.org/10.1002/jsfa.1110 . [all data]

Maeztu, Sanz, et al., 2001
Maeztu, L.; Sanz, C.; Andueza, S.; de Peña, M.P.; Bello, J.; Cid, C., Characterization of espresso coffee aroma by static headspace GC-MS and sensory flavor profile, J. Agric. Food Chem., 2001, 49, 11, 5437-5444, https://doi.org/10.1021/jf0107959 . [all data]

Sanz, Ansorena, et al., 2001
Sanz, C.; Ansorena, D.; Bello, J.; Cid, C., Optimizing headspace temperature and time sampling for identification of volatile compounds in ground roasted Arabica coffee, J. Agric. Food Chem., 2001, 49, 3, 1364-1369, https://doi.org/10.1021/jf001100r . [all data]

Girard and Durance, 2000
Girard, B.; Durance, T., Headspace volatiles of sockeye and pink salmon as affected by retort process, Food Chem. Toxicol., 2000, 65, 1, 34-39. [all data]

Buttery, Orts, et al., 1999
Buttery, R.G.; Orts, W.J.; Takeoka, G.R.; Nam, Y., Volatile flavor components of rice cakes, J. Agric. Food Chem., 1999, 47, 10, 4353-4356, https://doi.org/10.1021/jf990140w . [all data]

Buttery and Ling, 1998
Buttery, R.G.; Ling, L.C., Additional studies on flavor components of corn tortilla chips, J. Agric. Food Chem., 1998, 46, 7, 2764-2769, https://doi.org/10.1021/jf980125b . [all data]

Kubota, Matsujage, et al., 1996
Kubota, K.; Matsujage, Y.; Sekiwa, Y.; Kobayashi, A., Identification of the characteristic volatile flavor compounds formed by cooking squid (Todarodes pacificus Steenstrup), Food Sci. Technol., 1996, 2, 3, 163-166. [all data]

Umano, Hagi, et al., 1995
Umano, K.; Hagi, Y.; Nakahara, K.; Shyoji, A.; Shibamoto, T., Volatile chemicals formed in the headspace of a heated D-glucose/L-cysteine Maillard model system, J. Agric. Food Chem., 1995, 43, 8, 2212-2218, https://doi.org/10.1021/jf00056a046 . [all data]

Hatsuko, Kazuko, et al., 1992
Hatsuko, S.; Kazuko, H.; Masayoshi, K.; Yoshiaki, I., Improvement of quality of likorine extract by heat treatment, J. Food Sci. Technol., 1992, 39, 11, 976-983, https://doi.org/10.3136/nskkk1962.39.976 . [all data]

Wong and Bernhard, 1988
Wong, J.M.; Bernhard, R.A., Effect of nitrogen source on pyrazine formation, J. Agric. Food Chem., 1988, 36, 1, 123-129, https://doi.org/10.1021/jf00079a032 . [all data]

Shibamoto and Russell, 1977
Shibamoto, T.; Russell, G.F., A study of the volatiles isolated from a D-glucose-hydrogen sulfide-ammonia model system, J. Agric. Food Chem., 1977, 25, 1, 109-112, https://doi.org/10.1021/jf60209a054 . [all data]

Welke, Manfroi, et al., 2012
Welke, J.E.; Manfroi, V.; Zanus, M.; Lazarotto, M.; Zini, C.A., Characterization of the volatile profile of Brazilian merlot wines through comprehensive two dimensional gas chromatography time-of-flight mass spectrometric detection, J. Chromatogr. A, 2012, 1226, 124-139, https://doi.org/10.1016/j.chroma.2012.01.002 . [all data]

Gonzalez-Rios, Suarez-Quiroz, et al., 2007
Gonzalez-Rios, O.; Suarez-Quiroz, M.L.; Boulanger, R.; Barel, M.; Guyot, B.; Guiraud, J.-P.; Schorr-Galindo, S., Impact of ecological post-harvest processing of coffee aroma: II Roasted coffee., J. Food Composition Analysis, 2007, 20, 3-4, 297-307, https://doi.org/10.1016/j.jfca.2006.12.004 . [all data]

Kim. J.H., Ahn, et al., 2004
Kim. J.H.; Ahn, H.J.; Yook, H.S.; Kim, K.S.; Rhee, M.S.; Ryu, G.H.; Byun, M.W., Color, flavor, and sensory characteristics of gamma-irradiated salted and fermented anchovy sauce, Radiation Phys. Chem., 2004, 69, 2, 179-187, https://doi.org/10.1016/S0969-806X(03)00400-6 . [all data]

Finkelstein, Kurbatova, et al., 2002
Finkelstein, E.E.; Kurbatova, S.V.; Kolosova, E.A., Study of biological activity of structure analogies of adamantane, Proc. Samara State Univ., 2002, 26, 4, 121-128. [all data]

Muresan, Eillebrecht, et al., 2000
Muresan, S.; Eillebrecht, M.A.J.L.; de Rijk, T.C.; de Jonge, H.G.; Leguijt, T.; Nijhuis, H.H., Aroma profile development of intermediate chocolate products. I. Volatile constituents of block-milk, Food Chem., 2000, 68, 2, 167-174, https://doi.org/10.1016/S0308-8146(99)00171-5 . [all data]

Chang, Seitz, et al., 1995
Chang, C.-Y.; Seitz, L.M.; Chambers, E., IV, Volatile Flavor Components of Breads Made from Hard Red Winter Wheat and Hard White Winter Wheat, Cereal Chem., 1995, 72, 3, 237-242. [all data]

Peng, Yang, et al., 1991
Peng, C.T.; Yang, Z.C.; Ding, S.F., Prediction of rentention idexes. II. Structure-retention index relationship on polar columns, J. Chromatogr., 1991, 586, 1, 85-112, https://doi.org/10.1016/0021-9673(91)80028-F . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Ion clustering data, Gas Chromatography, References