Carbon monoxide
- Formula: CO
- Molecular weight: 28.0101
- IUPAC Standard InChIKey: UGFAIRIUMAVXCW-UHFFFAOYSA-N
- CAS Registry Number: 630-08-0
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: Carbon oxide (CO); CO; Exhaust gas; Flue gas; Carbonic oxide; Carbon oxide; Carbone (oxyde de); Carbonio (ossido di); Kohlenmonoxid; Kohlenoxyd; Koolmonoxyde; NA 9202; Oxyde de carbone; UN 1016; Wegla tlenek; Carbon monooxide
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Phase change data, Reaction thermochemistry data, Ion clustering data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | -110.53 ± 0.17 | kJ/mol | Review | Cox, Wagman, et al., 1984 | CODATA Review value |
ΔfH°gas | -110.53 | kJ/mol | Review | Chase, 1998 | Data last reviewed in September, 1965 |
Quantity | Value | Units | Method | Reference | Comment |
S°gas,1 bar | 197.660 ± 0.004 | J/mol*K | Review | Cox, Wagman, et al., 1984 | CODATA Review value |
S°gas,1 bar | 197.66 | J/mol*K | Review | Chase, 1998 | Data last reviewed in September, 1965 |
Gas Phase Heat Capacity (Shomate Equation)
Cp° = A + B*t + C*t2 + D*t3 +
E/t2
H° − H°298.15= A*t + B*t2/2 +
C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 −
E/(2*t2) + G
Cp = heat capacity (J/mol*K)
H° = standard enthalpy (kJ/mol)
S° = standard entropy (J/mol*K)
t = temperature (K) / 1000.
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | 298. to 1300. | 1300. to 6000. |
---|---|---|
A | 25.56759 | 35.15070 |
B | 6.096130 | 1.300095 |
C | 4.054656 | -0.205921 |
D | -2.671301 | 0.013550 |
E | 0.131021 | -3.282780 |
F | -118.0089 | -127.8375 |
G | 227.3665 | 231.7120 |
H | -110.5271 | -110.5271 |
Reference | Chase, 1998 | Chase, 1998 |
Comment | Data last reviewed in September, 1965 | Data last reviewed in September, 1965 |
Phase change data
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Ion clustering data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 81.63 | K | N/A | Mullins, Kirk, et al., 1963 | Uncertainty assigned by TRC = 0.05 K; TRC |
Tboil | 81.61 | K | N/A | Clayton and Giauque, 1932 | Uncertainty assigned by TRC = 0.07 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Ttriple | 67.95 | K | N/A | Gill and Morrison, 1966 | Crystal phase 1 phase; Uncertainty assigned by TRC = 0.06 K; TRC |
Ttriple | 68.12 | K | N/A | Mullins, Kirk, et al., 1963 | Crystal phase 1 phase; Uncertainty assigned by TRC = 0.05 K; TRC |
Ttriple | 68.09 | K | N/A | Clayton and Giauque, 1932 | Crystal phase 1 phase; Uncertainty assigned by TRC = 0.07 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Tc | 134.45 | K | N/A | Cardoso, 1915 | Uncertainty assigned by TRC = 0.4 K; 4 determinations with same result; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Pc | 34.9875 | bar | N/A | Cardoso, 1915 | Uncertainty assigned by TRC = 0.3039 bar; TRC |
Pc | 34.9875 | bar | N/A | Cardoso, 1915 | Uncertainty assigned by TRC = 0.3039 bar; TRC |
Pc | 35.1496 | bar | N/A | Cardoso, 1915 | Uncertainty assigned by TRC = 0.3039 bar; TRC |
Pc | 35.2104 | bar | N/A | Cardoso, 1915 | Uncertainty assigned by TRC = 0.3039 bar; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ρc | 11.1 | mol/l | N/A | Cardoso, 1915 | Uncertainty assigned by TRC = 0.04 mol/l; extrapolation of rectilinear diameter to Tc; TRC |
Enthalpy of vaporization
ΔvapH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
6.0 | 93. | A | Stephenson and Malanowski, 1987 | Based on data from 68. to 108. K.; AC |
6.0 | 81. | N/A | Clayton and Giauque, 1932, 2 | Based on data from 69. to 83. K.; AC |
6.0 | 81. | C | Clayton and Giauque, 1932, 2 | AC |
Enthalpy of sublimation
ΔsubH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
7.6 | 58. | N/A | Stephenson and Malanowski, 1987 | Based on data from 54. to 61. K.; AC |
8.1 | 60. | A | Stull, 1947 | Based on data from 51. to 68. K.; AC |
7.9 | 62. | A | Crommelin, Bijleveld, et al., 1931 | Based on data from 57. to 68. K.; AC |
Reaction thermochemistry data
Go To: Top, Gas phase thermochemistry data, Phase change data, Ion clustering data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
MS - José A. Martinho Simões
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
RCD - Robert C. Dunbar
B - John E. Bartmess
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Reactions 1 to 50
(solution) + (solution) = C14H21MnO2 (solution) + (solution)
By formula: C8H5MnO3 (solution) + C7H16 (solution) = C14H21MnO2 (solution) + CO (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 196. ± 7. | kJ/mol | AVG | N/A | Average of 18 values; Individual data points |
(solution) + (solution) = C12H16CrO5 (solution) + (solution)
By formula: C6CrO6 (solution) + C7H16 (solution) = C12H16CrO5 (solution) + CO (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 113. ± 3. | kJ/mol | AVG | N/A | Average of 13 values; Individual data points |
(solution) = C5CrO5 (solution) + (solution)
By formula: C6CrO6 (solution) = C5CrO5 (solution) + CO (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 168.2 ± 2.5 | kJ/mol | KinS | Graham and Angelici, 1967 | solvent: Decalin; The reaction enthalpy and entropy were identified with the enthalpy and entropy of activation for the reaction of Cr(CO)6(solution) with PBu3(solution).; MS |
ΔrH° | 159.4 | kJ/mol | KinS | Werner and Prinz, 1966 | solvent: n-Decane+cyclohexane mixture; The reaction enthalpy and entropy were identified with the enthalpy and entropy of activation for the reactions of Cr(CO)6(solution) with a phosphine and an amine. The results were quoted from Graham and Angelici, 1967.; MS |
(solution) = C5MoO5 (solution) + (solution)
By formula: C6MoO6 (solution) = C5MoO5 (solution) + CO (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 132.6 ± 5.9 | kJ/mol | KinS | Graham and Angelici, 1967 | solvent: Decalin; The reaction enthalpy and entropy were identified with the enthalpy and entropy of activation for the reaction of Mo(CO)6(solution) with PBu3(solution).; MS |
ΔrH° | 126.4 | kJ/mol | KinS | Werner and Prinz, 1966 | solvent: n-Decane+cyclohexane mixture; The reaction enthalpy and entropy were identified with the enthalpy and entropy of activation for the reactions of Mo(CO)6(solution) with a phosphine and an amine. The results were quoted from Graham and Angelici, 1967.; MS |
(solution) = C5O5W (solution) + (solution)
By formula: C6O6W (solution) = C5O5W (solution) + CO (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 166.9 ± 6.7 | kJ/mol | KinS | Graham and Angelici, 1967 | solvent: Decalin; The reaction enthalpy and entropy were identified with the enthalpy and entropy of activation for the reaction of W(CO)6(solution) with PBu3(solution).; MS |
ΔrH° | 163.2 | kJ/mol | KinS | Werner and Prinz, 1966 | solvent: n-Decane+cyclohexane mixture; The reaction enthalpy and entropy were identified with the enthalpy and entropy of activation for the reactions of W(CO)6(solution) with a phosphine and an amine. The results were quoted from Graham and Angelici, 1967.; MS |
C11H2O11Os (solution) + (solution) = (g) + (solution)
By formula: C11H2O11Os (solution) + CO (solution) = H2 (g) + C12O12Os3 (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -37.7 ± 9.6 | kJ/mol | ES/KS | Poë, Sampson, et al., 1993 | solvent: Decalin; Calculated from equilibrium and kinetic data Poë, Sampson, et al., 1993.; MS |
ΔrH° | -77.4 ± 9.7 | kJ/mol | N/A | Poë, Sampson, et al., 1993 | solvent: Decalin; Calculated from data for the reactions Os3(CO)10(H)2(solution) + CO(solution) = Os3(CO)11(H)2(solution) (hrxn [kJ/mol]=-39.7±1.3, srxn [J/(mol K)]=-80.3±3.8) and Os3(CO)11(H)2(solution) + CO(solution) = Os3(CO)12(solution) + H2(g) (hrxn [kJ/mol]=-37.7±9.6, srxn [J/(mol K)]=-32.6±27.6) Poë, Sampson, et al., 1993.; MS |
(g) = C4FeO4 (g) + (g)
By formula: C5FeO5 (g) = C4FeO4 (g) + CO (g)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 174. ± 13. | kJ/mol | LPHP | Lewis, Golden, et al., 1984 | Please also see Smith and Laine, 1981. Temperature range: 670-780 K. The reaction enthalpy at 298 K relies on an activation energy of 167.4 kJ/mol and assumes a negligible activation barrier for product recombination. The enthalpy of formation relies on -723.9 ± 6.7 kJ/mol for the enthalpy of formation of Fe(CO)5(g). At least two other estimates of the activation energy for the Fe(CO)4(g) + CO(g) recombination have been reported: 7.1 kJ/mol Miller and Grant, 1985 and 16.7 kJ/mol Walsh, 1986. In Lewis, Golden, et al., 1984 authors have considered that the Fe(CO)4(g) fragment is in its singlet excited state. However, it has also been suggested that the fragment is formed in its triplet ground state Ray, Brandow, et al., 1988 Sunderlin, Wang, et al., 1992; MS |
ΔrH° | 232. ± 48. | kJ/mol | N/A | Engelking and Lineberger, 1979 | Please also see Compton and Stockdale, 1976. Method: LPS and collision with low energy electrons.; MS |
(g) = C5MoO5 (g) + (g)
By formula: C6MoO6 (g) = C5MoO5 (g) + CO (g)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 146. ± 21. | kJ/mol | KinG | Ganske and Rosenfeld, 1990 | MS |
ΔrH° | 170. ± 13. | kJ/mol | LPHP | Lewis, Golden, et al., 1984 | The reaction enthalpy at 298 K relies on an activation energy of 163.2 kJ/mol and assumes a negligible activation barrier for product recombination. The enthalpy of formation relies on -915.3 ± 2.1 kJ/mol for the enthalpy of formation of Mo(CO)6(g); MS |
ΔrH° | 126.4 | kJ/mol | KinG | Cetini and Gambino, 1963 | Please also see Graham and Angelici, 1967. The reaction enthalpy and entropy were identified with the enthalpy and entropy of activation for the reaction of Mo(CO)6(g) with CO(g) Cetini and Gambino, 1963. The results were quoted from Graham and Angelici, 1967.; MS |
(g) = C5O5W (g) + (g)
By formula: C6O6W (g) = C5O5W (g) + CO (g)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 193. ± 13. | kJ/mol | LPHP | Lewis, Golden, et al., 1984 | The reaction enthalpy at 298 K relies on an activation energy of 186.2 kJ/mol and assumes a negligible activation barrier for product recombination. The enthalpy of formation relies on -883.9 ± 2.7 kJ/mol for the enthalpy of formation of W(CO)6(g); MS |
ΔrH° | 166.5 | kJ/mol | KinG | Cetini and Gambino, 1963, 2 | Please also see Graham and Angelici, 1967. The reaction enthalpy and entropy were identified with the enthalpy and entropy of activation for the reaction of W(CO)6(g) with CO(g) Cetini and Gambino, 1963, 2. The results were quoted from Graham and Angelici, 1967.; MS |
(g) = C5CrO5 (g) + (g)
By formula: C6CrO6 (g) = C5CrO5 (g) + CO (g)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 155. ± 21. | kJ/mol | KinG | Fletcher and Rosenfeld, 1988 | MS |
ΔrH° | 154. ± 13. | kJ/mol | LPHP | Lewis, Golden, et al., 1984 | Temperature range: 740-820 K. The reaction enthalpy at 298 K relies on an activation energy of 147.7 kJ/mol and assumes a negligible activation barrier for product recombination.; MS |
ΔrH° | 161.9 | kJ/mol | KinG | Pajaro, Calderazzo, et al., 1960 | Please also see Graham and Angelici, 1967. The reaction enthalpy and entropy were identified with the enthalpy and entropy of activation for the reaction of Cr(CO)6(g) with CO(g) Pajaro, Calderazzo, et al., 1960. The results were quoted from Graham and Angelici, 1967.; MS |
C10H5CrNO5 (solution) + (solution) = (solution) + (solution)
By formula: C10H5CrNO5 (solution) + CO (solution) = C6CrO6 (solution) + C4H4N2 (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -61.9 | kJ/mol | KinS | Wovkulich and Atwood, 1980 | solvent: Hexane; The data rely on the enthalpy and entropy of activation for the forward reaction, 106.3 ± 4.6 kJ/mol and 13.0±14.6 J/(mol K) Dennenberg and Darensbourg, 1972, and also on the enthalpy and entropy of activation for the Cr-CO dissociation in Cr(CO)6, 168.2 ± 2.5 kJ/mol and 94.6±6.3 J/(mol K) Graham and Angelici, 1967. The latter data were obtained in decalin; MS |
By formula: CO+ + CO = (CO+ • CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 67. | kJ/mol | PIPECO | Norwood, Guo, et al., 1988 | gas phase; CO+ in state B, ΔrH>; M |
ΔrH° | 93.7 | kJ/mol | PI | Linn, Ono, et al., 1981 | gas phase; M |
ΔrH° | 120. ± 30. | kJ/mol | EI | Munson and Franlin, 1962 | gas phase; from IP'switching reaction and heats of formation; M |
ΔrH° | 106. | kJ/mol | PHPMS | Meot-Ner (Mautner) and Field, 1974 | gas phase; ΔrH>, DG>; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 84. | J/mol*K | PHPMS | Meot-Ner (Mautner) and Field, 1974 | gas phase; ΔrH>, DG>; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
21. | 340. | HPMS | Chong and Franklin, 1971 | gas phase; equilibrium uncertain; M |
48.1 | 695. | PHPMS | Meot-Ner (Mautner) and Field, 1974 | gas phase; ΔrH>, DG>; M |
By formula: C6O6W (cr) = 6CO (g) + W (cr)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 298.8 ± 4.7 | kJ/mol | TD-HFC, HAL-HFC | Al-Takhin, Connor, et al., 1984 | The reaction enthalpy corresponds to the TD experiments and leads to -962.0 ± 4.8 kJ/mol for the enthalpy of formation. The value -960±3 was recommended by the authors Al-Takhin, Connor, et al., 1984. Other values for the enthalpy of sublimation have been reported: 73. ± 1. kJ/mol Adedeji, Brown, et al., 1975, 74.1 ± 4.2 kJ/mol Hieber and Romberg, 1935, 69.9 ± 4.2 kJ/mol Rezukhina and Shvyrev, 1952, and 78.9 ± 1.1 kJ/mol Daamen, Ernsting, et al., 1979 Boxhoorn, Ernsting, et al., 1980. See also Pilcher, Ware, et al., 1975; MS |
ΔrH° | 296.1 ± 1.8 | kJ/mol | TD-HZC | Barnes, Pilcher, et al., 1974 | Please also see Pedley and Rylance, 1977 and Tel'noi and Rabinovich, 1977.; MS |
(solution) + 3 (solution) = 3C5O5Ru (solution)
By formula: C12O12Ru3 (solution) + 3CO (solution) = 3C5O5Ru (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -13.0 ± 1.1 | kJ/mol | EqS | Koelliker and Bor, 1991 | solvent: Isooctane; Temperature range: 373-448 K; MS |
ΔrH° | -27.1 ± 1.9 | kJ/mol | EqS | Bor, 1986 | solvent: n-Hexane; Temperature range: ca. 348-448 K; MS |
(solution) = C7Co2O7 (solution) + (solution)
By formula: C8Co2O8 (solution) = C7Co2O7 (solution) + CO (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 92.7 | kJ/mol | KinS | Ungváry and Markó, 1974 | solvent: Heptane; Temperature range: 298-328 K; MS |
ΔrH° | 87.9 | kJ/mol | KinS | Ungváry, 1972 | solvent: Heptane; Temperature range: 307-337 K; MS |
(cr) + (l) = C10H5NO5W (cr) + (g)
By formula: C6O6W (cr) + C4H4N2 (l) = C10H5NO5W (cr) + CO (g)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 34.6 | kJ/mol | N/A | Nakashima and Adamson, 1982 | The reaction enthalpy was calculated from the enthalpy of the reaction W(CO)6(solution) + py(solution) = W(CO)5(py)(solution) + CO(solution) in cyclohexane, 27.4 ± 2.9 kJ/mol, together with the enthalpies of solution of W(CO)6(cr), W(CO)5(py)(cr), and py(l), 35.7, 36.4, and 7.9 kJ/mol, respectively Nakashima and Adamson, 1982.; MS |
By formula: CHO+ + CO = (CHO+ • CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 45.2 | kJ/mol | PHPMS | Jennings, Headley, et al., 1982 | gas phase; M |
ΔrH° | 53.6 | kJ/mol | PHPMS | Hiraoka, Saluja, et al., 1979 | gas phase; M |
ΔrH° | 49.0 | kJ/mol | PHPMS | Meot-Ner (Mautner) and Field, 1974 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 94.1 | J/mol*K | PHPMS | Jennings, Headley, et al., 1982 | gas phase; M |
ΔrS° | 100. | J/mol*K | PHPMS | Hiraoka, Saluja, et al., 1979 | gas phase; M |
ΔrS° | 87.4 | J/mol*K | PHPMS | Meot-Ner (Mautner) and Field, 1974 | gas phase; M |
By formula: Co+ + CO = (Co+ • CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 174. ± 7.1 | kJ/mol | CIDT | Rodgers and Armentrout, 2000 | RCD |
ΔrH° | 160. ± 10. | kJ/mol | MKER | Carpenter, van Koppen, et al., 1995 | gas phase; M |
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
174. (+6.7,-0.) | CID | Goebel, Haynes, et al., 1995 | gas phase; guided ion beam CID; M | |
163. (+20.,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; guided ion beam CID; M |
(solution) + (solution) = C12H16MoO5 (solution) + (solution)
By formula: C6MoO6 (solution) + C7H16 (solution) = C12H16MoO5 (solution) + CO (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 135. ± 12. | kJ/mol | PAC | Johnson, Popov, et al., 1991 | solvent: Heptane; The reaction enthalpy relies on 0.67 for the quantum yield of CO dissociation.; MS |
ΔrH° | 133.1 ± 5.4 | kJ/mol | PAC | Morse, Parker, et al., 1989 | solvent: Heptane; The reaction enthalpy relies on 0.67 for the quantum yield of CO dissociation; MS |
By formula: C2FeO2 (g) = CO (g) + CFeO (g)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 154. ± 15. | kJ/mol | FA-SIFT | Sunderlin, Wang, et al., 1992 | MS |
ΔrH° | >113. | kJ/mol | N/A | Venkataraman, Bandukwalla, et al., 1989 | Method: Velocity distributions of photofragments from Fe(CO)5.; MS |
ΔrH° | 100. ± 29. | kJ/mol | N/A | Engelking and Lineberger, 1979 | Please also see Compton and Stockdale, 1976. Method: LPS and collision with low energy electrons.; MS |
By formula: C4NiO4 (g) = 4CO (g) + Ni (cr)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 160.4 ± 2.5 | kJ/mol | EqG | Monteil, Raffin, et al., 1988 | The reaction enthalpy is the average of several 2nd and 3rd law results Monteil, Raffin, et al., 1988; MS |
By formula: Ni+ + CO = (Ni+ • CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 160. ± 10. | kJ/mol | MKER | Carpenter, van Koppen, et al., 1995 | gas phase; determined from MKER and theory; M |
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
174. (+10.,-0.) | CID | Khan, Steele, et al., 1995 | gas phase; guided ion beam CID; M | |
178. (+9.2,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; guided ion beam CID; M |
By formula: C3FeO3 (g) = CO (g) + C2FeO2 (g)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 122. ± 24. | kJ/mol | FA-SIFT | Sunderlin, Wang, et al., 1992 | MS |
ΔrH° | 105. | kJ/mol | N/A | Venkataraman, Bandukwalla, et al., 1989 | Method: Velocity distributions of photofragments from Fe(CO)5.; MS |
ΔrH° | 137. ± 29. | kJ/mol | N/A | Engelking and Lineberger, 1979 | Please also see Compton and Stockdale, 1976. Method: LPS and collision with low energy electrons.; MS |
CFeO (g) = (g) + (g)
By formula: CFeO (g) = CO (g) + Fe (g)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 35. ± 15. | kJ/mol | FA-SIFT | Sunderlin, Wang, et al., 1992 | MS |
ΔrH° | <163. | kJ/mol | N/A | Venkataraman, Bandukwalla, et al., 1989 | Method: Velocity distributions of photofragments from Fe(CO)5.; MS |
ΔrH° | 87. ± 29. | kJ/mol | N/A | Engelking and Lineberger, 1979 | Please also see Compton and Stockdale, 1976. Method: LPS and collision with low energy electrons.; MS |
By formula: C4FeO4 (g) = C3FeO3 (g) + CO (g)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 117. ± 36. | kJ/mol | FA-SIFT | Sunderlin, Wang, et al., 1992 | MS |
ΔrH° | 42. | kJ/mol | N/A | Venkataraman, Bandukwalla, et al., 1989 | Method: Velocity distributions of photofragments from Fe(CO)5.; MS |
ΔrH° | 19. ± 39. | kJ/mol | N/A | Engelking and Lineberger, 1979 | Please also see Compton and Stockdale, 1976. Method: LPS and collision with low energy electrons.; MS |
(solution) = C3NiO3 (solution) + (solution)
By formula: C4NiO4 (solution) = C3NiO3 (solution) + CO (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 94.6 | kJ/mol | KinS | Turner, Simpson, et al., 1983 | solvent: Liquid krypton; The reaction enthalpy relies on the experimental value for the activation enthalpy, 94.6 kJ/mol, and on the assumption that the activation enthalpy for product recombination is negligible Turner, Simpson, et al., 1983.; MS |
(CAS Reg. No. 71564-27-7 • 4294967295) + = CAS Reg. No. 71564-27-7
By formula: (CAS Reg. No. 71564-27-7 • 4294967295CO) + CO = CAS Reg. No. 71564-27-7
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 145. ± 40. | kJ/mol | N/A | Nakajima, Taguwa, et al., 1994 | gas phase; Vertical Detachment Energy: 3.02±0.13 eV; B |
ΔrH° | 150. ± 50. | kJ/mol | N/A | Engelking and Lineberger, 1979 | gas phase; B |
ΔrH° | 174. ± 10. | kJ/mol | CIDT | Sunderlin, Wang, et al., 1992 | gas phase; Affinity: CO..Fe(CO)3-; B |
By formula: C15H10O = C14H10 + CO
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -28. ± 5.0 | kJ/mol | Cpha | Hung and Grabowski, 1992 | liquid phase; solvent: Alkane; ALS |
ΔrH° | 18. ± 10. | kJ/mol | Cpha | Herman and Goodman, 1989 | solid phase; solvent: Acetonitrile/water; ALS |
ΔrH° | -41. ± 12. | kJ/mol | Cpha | Grabowski, Simon, et al., 1984 | liquid phase; solvent: Benzene; ALS |
By formula: (CHO+ • 2CO) + CO = (CHO+ • 3CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 19. ± 1. | kJ/mol | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
ΔrH° | 26. | kJ/mol | PHPMS | Hiraoka, Saluja, et al., 1979 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 66.1 | J/mol*K | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
ΔrS° | 110. | J/mol*K | PHPMS | Hiraoka, Saluja, et al., 1979 | gas phase; M |
By formula: (CHO+ • 3CO) + CO = (CHO+ • 4CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 19. ± 1. | kJ/mol | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
ΔrH° | 26. | kJ/mol | PHPMS | Hiraoka, Saluja, et al., 1979 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 76.1 | J/mol*K | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
ΔrS° | 120. | J/mol*K | PHPMS | Hiraoka, Saluja, et al., 1979 | gas phase; M |
By formula: (CHO+ • 4CO) + CO = (CHO+ • 5CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 18. ± 1. | kJ/mol | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
ΔrH° | 24. | kJ/mol | PHPMS | Hiraoka, Saluja, et al., 1979 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 95.8 | J/mol*K | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
ΔrS° | 130. | J/mol*K | PHPMS | Hiraoka, Saluja, et al., 1979 | gas phase; M |
By formula: (CHO+ • CO) + CO = (CHO+ • 2CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 20. ± 1. | kJ/mol | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
ΔrH° | 28. | kJ/mol | PHPMS | Hiraoka, Saluja, et al., 1979 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 62.8 | J/mol*K | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
ΔrS° | 100. | J/mol*K | PHPMS | Hiraoka, Saluja, et al., 1979 | gas phase; M |
CNiO (g) = (g) + (g)
By formula: CNiO (g) = CO (g) + Ni (g)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 170. ± 24. | kJ/mol | FA-SIFT | Sunderlin, Wang, et al., 1992 | MS |
ΔrH° | 108. | kJ/mol | N/A | McQuaid, Morris, et al., 1988 | Method: Chemiluminescence spectroscopy.; MS |
ΔrH° | 121. ± 63. | kJ/mol | N/A | Stevens, Feigerle, et al., 1982 | Please also see Compton and Stockdale, 1976. Method: LPS and collision with low energy electrons.; MS |
By formula: (Co+ • CO) + CO = (Co+ • 2CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 153. ± 9.2 | kJ/mol | CIDT | Rodgers and Armentrout, 2000 | RCD |
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
152. (+8.8,-0.) | CID | Goebel, Haynes, et al., 1995 | gas phase; guided ion beam CID; M | |
138. (+20.,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; guided ion beam CID; M |
By formula: Fe+ + CO = (Fe+ • CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 129. ± 4.2 | kJ/mol | CIDT | Rodgers and Armentrout, 2000 | RCD |
ΔrH° | 130. ± 10. | kJ/mol | MKER | Carpenter, van Koppen, et al., 1995 | gas phase; determined from MKER and theory; M |
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
131. (+7.9,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; guided ion beam CID; M |
(solution) + (solution) = (solution)
By formula: C6H3MnO5 (solution) + CO (solution) = C7H3MnO6 (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -56.1 ± 4.2 | kJ/mol | RSC | Nolan, López de la Vega, et al., 1986 | solvent: Tetrahydrofuran; MS |
ΔrH° | -52.7 | kJ/mol | EqS | Calderazzo, 1977 | solvent: 2,2'-diethoxydiethyl ether; MS |
By formula: C4HCoO4 (g) = 0.5H2 (g) + 4CO (g) + Co (cr)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 127.1 ± 2.1 | kJ/mol | EqG | Bronshstein, Gankin, et al., 1966 | Please also see Pedley and Rylance, 1977 and Cox and Pilcher, 1970. Temperature range: ca. 423-533 K; MS |
By formula: (Na+ • CO) + CO = (Na+ • 2CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 24. ± 3. | kJ/mol | CIDT | Rodgers and Armentrout, 2000 | RCD |
ΔrH° | 24. ± 3. | kJ/mol | CIDT | Walter, Sievers, et al., 1998 | RCD |
ΔrH° | 31. | kJ/mol | HPMS | Castleman, Peterson, et al., 1983 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 63.2 | J/mol*K | HPMS | Castleman, Peterson, et al., 1983 | gas phase; M |
(solution) + (solution) = C10H5NO5W (solution) + (solution)
By formula: C6O6W (solution) + C4H4N2 (solution) = C10H5NO5W (solution) + CO (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 27.4 ± 2.9 | kJ/mol | PC | Nakashima and Adamson, 1982 | solvent: Cyclohexane; MS |
ΔrH° | 24.9 ± 2.9 | kJ/mol | PC | Nakashima and Adamson, 1982 | solvent: Benzene; MS |
ΔrH° | 18.4 ± 0.4 | kJ/mol | PC | Nakashima and Adamson, 1982 | solvent: Tetrahydrofuran; MS |
By formula: Na+ + CO = (Na+ • CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 32. ± 7.9 | kJ/mol | CIDT | Rodgers and Armentrout, 2000 | RCD |
ΔrH° | 32. ± 7.9 | kJ/mol | CIDT | Walter, Sievers, et al., 1998 | RCD |
ΔrH° | 52.7 | kJ/mol | HPMS | Castleman, Peterson, et al., 1983 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 85.4 | J/mol*K | HPMS | Castleman, Peterson, et al., 1983 | gas phase; M |
(g) = C3NiO3 (g) + (g)
By formula: C4NiO4 (g) = C3NiO3 (g) + CO (g)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 104. ± 8. | kJ/mol | N/A | Stevens, Feigerle, et al., 1982 | Please also see Compton and Stockdale, 1976. The enthalpy of formation relies on -602.5 ± 2.6 kJ/mol for the enthalpy of formation of Ni(CO)4(g) Method: LPS and collision with low energy electrons.; MS |
By formula: (CO+ • 2CO) + CO = (CO+ • 3CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 30.2 | kJ/mol | PHPMS | Hiraoka and Mori, 1991 | gas phase; two isomers, at low and high temperatures; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 103. | J/mol*K | PHPMS | Hiraoka and Mori, 1991 | gas phase; two isomers, at low and high temperatures; M |
By formula: (CO+ • 5CO) + CO = (CO+ • 6CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 11.3 | kJ/mol | PHPMS | Hiraoka and Mori, 1991 | gas phase; two isomers, at low and high temperatures; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 79.9 | J/mol*K | PHPMS | Hiraoka and Mori, 1991 | gas phase; two isomers, at low and high temperatures; M |
C34H52OTh (solution) + (solution) = C35H52O2Th (solution)
By formula: C34H52OTh (solution) + CO (solution) = C35H52O2Th (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -24.7 ± 6.3 | kJ/mol | EqS | Moloy and Marks, 1984 | solvent: Toluene; Temperature range: ca. 180-200 K; MS |
C29H50OTh (solution) + (solution) = C30H50O2Th (solution)
By formula: C29H50OTh (solution) + CO (solution) = C30H50O2Th (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -18.8 ± 3.8 | kJ/mol | EqS | Moloy and Marks, 1984 | solvent: Toluene; Temperature range: ca. 180-220 K; MS |
By formula: C6MoO6 (cr) = 6CO (g) + Mo (cr)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 325.9 ± 1.5 | kJ/mol | TD-HZC | Barnes, Pilcher, et al., 1974, 2 | Please also see Pedley and Rylance, 1977 and Tel'noi and Rabinovich, 1977.; MS |
ΔrH° | 297.1 ± 4.2 | kJ/mol | TD-HFC | Connor, Skinner, et al., 1972 | Please also see Pedley and Rylance, 1977 and Tel'noi and Rabinovich, 1977.; MS |
By formula: (CHO+ • 14CO) + CO = (CHO+ • 15CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 7.36 | kJ/mol | PHPMS | Hiraoka and Mori, 1989 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 96. | J/mol*K | N/A | Hiraoka and Mori, 1989 | gas phase; Entropy change calculated or estimated; M |
(solution) + (solution) = C11H10CrO (solution)
By formula: C10H10Cr (solution) + CO (solution) = C11H10CrO (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -78.7 ± 2.1 | kJ/mol | EqS | Wong and Brintzinger, 1975 | solvent: Toluene; Temperature range: 280-308 K; MS |
By formula: C6CrO6 (cr) = 6CO (g) + Cr (cr)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 266. ± 4. | kJ/mol | TD-HFC | Al-Takhin, Connor, et al., 1984, 2 | MS |
ΔrH° | 314.9 ± 0.9 | kJ/mol | TD-HZC | Pittam, Pilcher, et al., 1975 | Please also see Pedley and Rylance, 1977 and Tel'noi and Rabinovich, 1977.; MS |
ΔrH° | 269.4 ± 4.7 | kJ/mol | TD-HFC | Connor, Skinner, et al., 1972 | MS |
2 (solution) = C12Co4O12 (solution) + 4 (solution)
By formula: 2C8Co2O8 (solution) = C12Co4O12 (solution) + 4CO (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 123.4 ± 2.1 | kJ/mol | EqS | Bor and Dietler, 1980 | solvent: Hexane; Temperature range: 378-418 K; MS |
Ion clustering data
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
B - John E. Bartmess
RCD - Robert C. Dunbar
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.
Clustering reactions
By formula: Ag+ + CO = (Ag+ • CO)
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
88.7 (+5.0,-0.) | CID | Meyer, Chen, et al., 1995 | gas phase; guided ion beam CID; M |
By formula: (Ag+ • CO) + CO = (Ag+ • 2CO)
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
109. (+4.,-0.) | CID | Meyer, Chen, et al., 1995 | gas phase; guided ion beam CID; M |
By formula: (Ag+ • 2CO) + CO = (Ag+ • 3CO)
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
54.8 (+7.5,-0.) | CID | Meyer, Chen, et al., 1995 | gas phase; guided ion beam CID; M |
By formula: (Ag+ • 3CO) + CO = (Ag+ • 4CO)
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
45. (+4.,-0.) | CID | Meyer, Chen, et al., 1995 | gas phase; guided ion beam CID; M |
By formula: Ar+ + CO = (Ar+ • CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 80. ± 20. | kJ/mol | PIPECO | Norwood, Guo, et al., 1989 | gas phase; Ar+(2P3/2); M |
By formula: (Ar+ • CO) + CO = (Ar+ • 2CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 10. | kJ/mol | PIPECO | Norwood, Guo, et al., 1989 | gas phase; approximate value from Ar+(2P3/2) 2CO -> Ar+(2P3/2) + 2CO; M |
By formula: CF3+ + CO = (CF3+ • CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 66.9 | kJ/mol | PHPMS | Hiraoka, Nasu, et al., 1996 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 130. | J/mol*K | PHPMS | Hiraoka, Nasu, et al., 1996 | gas phase; M |
By formula: (CF3+ • CO) + CO = (CF3+ • 2CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 26. | kJ/mol | PHPMS | Hiraoka, Nasu, et al., 1996 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 84. | J/mol*K | PHPMS | Hiraoka, Nasu, et al., 1996 | gas phase; M |
By formula: (CF3+ • 2CO) + CO = (CF3+ • 3CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 24. | kJ/mol | PHPMS | Hiraoka, Nasu, et al., 1996 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 110. | J/mol*K | PHPMS | Hiraoka, Nasu, et al., 1996 | gas phase; M |
By formula: (CF3+ • 3CO) + CO = (CF3+ • 4CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 23. | kJ/mol | PHPMS | Hiraoka, Nasu, et al., 1996 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 120. | J/mol*K | PHPMS | Hiraoka, Nasu, et al., 1996 | gas phase; M |
By formula: (CF3+ • 4CO) + CO = (CF3+ • 5CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 13. | kJ/mol | PHPMS | Hiraoka, Nasu, et al., 1996 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 110. | J/mol*K | PHPMS | Hiraoka, Nasu, et al., 1996 | gas phase; M |
By formula: (CF3+ • 5CO) + CO = (CF3+ • 6CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 12. | kJ/mol | PHPMS | Hiraoka, Nasu, et al., 1996 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 120. | J/mol*K | PHPMS | Hiraoka, Nasu, et al., 1996 | gas phase; M |
By formula: (CF3+ • 6CO) + CO = (CF3+ • 7CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 11. | kJ/mol | PHPMS | Hiraoka, Nasu, et al., 1996 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 120. | J/mol*K | PHPMS | Hiraoka, Nasu, et al., 1996 | gas phase; M |
(CFeO- • 4294967295) + = CFeO-
By formula: (CFeO- • 4294967295CO) + CO = CFeO-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 146. ± 15. | kJ/mol | N/A | Villalta and Leopold, 1993 | gas phase; B |
ΔrH° | 141. ± 15. | kJ/mol | CIDT | Sunderlin, Wang, et al., 1992 | gas phase; B |
By formula: CHO+ + CO = (CHO+ • CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 45.2 | kJ/mol | PHPMS | Jennings, Headley, et al., 1982 | gas phase; M |
ΔrH° | 53.6 | kJ/mol | PHPMS | Hiraoka, Saluja, et al., 1979 | gas phase; M |
ΔrH° | 49.0 | kJ/mol | PHPMS | Meot-Ner (Mautner) and Field, 1974 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 94.1 | J/mol*K | PHPMS | Jennings, Headley, et al., 1982 | gas phase; M |
ΔrS° | 100. | J/mol*K | PHPMS | Hiraoka, Saluja, et al., 1979 | gas phase; M |
ΔrS° | 87.4 | J/mol*K | PHPMS | Meot-Ner (Mautner) and Field, 1974 | gas phase; M |
By formula: (CHO+ • CO) + CO = (CHO+ • 2CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 20. ± 1. | kJ/mol | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
ΔrH° | 28. | kJ/mol | PHPMS | Hiraoka, Saluja, et al., 1979 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 62.8 | J/mol*K | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
ΔrS° | 100. | J/mol*K | PHPMS | Hiraoka, Saluja, et al., 1979 | gas phase; M |
By formula: (CHO+ • 2CO) + CO = (CHO+ • 3CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 19. ± 1. | kJ/mol | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
ΔrH° | 26. | kJ/mol | PHPMS | Hiraoka, Saluja, et al., 1979 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 66.1 | J/mol*K | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
ΔrS° | 110. | J/mol*K | PHPMS | Hiraoka, Saluja, et al., 1979 | gas phase; M |
By formula: (CHO+ • 3CO) + CO = (CHO+ • 4CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 19. ± 1. | kJ/mol | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
ΔrH° | 26. | kJ/mol | PHPMS | Hiraoka, Saluja, et al., 1979 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 76.1 | J/mol*K | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
ΔrS° | 120. | J/mol*K | PHPMS | Hiraoka, Saluja, et al., 1979 | gas phase; M |
By formula: (CHO+ • 4CO) + CO = (CHO+ • 5CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 18. ± 1. | kJ/mol | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
ΔrH° | 24. | kJ/mol | PHPMS | Hiraoka, Saluja, et al., 1979 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 95.8 | J/mol*K | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
ΔrS° | 130. | J/mol*K | PHPMS | Hiraoka, Saluja, et al., 1979 | gas phase; M |
By formula: (CHO+ • 5CO) + CO = (CHO+ • 6CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 10. ± 1. | kJ/mol | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 79.5 | J/mol*K | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
By formula: (CHO+ • 6CO) + CO = (CHO+ • 7CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 9. ± 1. | kJ/mol | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 88.3 | J/mol*K | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
By formula: (CHO+ • 7CO) + CO = (CHO+ • 8CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 9. ± 1. | kJ/mol | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 92.0 | J/mol*K | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
By formula: (CHO+ • 8CO) + CO = (CHO+ • 9CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 9. ± 1. | kJ/mol | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 94.6 | J/mol*K | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
By formula: (CHO+ • 9CO) + CO = (CHO+ • 10CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 8. ± 1. | kJ/mol | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 93.3 | J/mol*K | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
By formula: (CHO+ • 10CO) + CO = (CHO+ • 11CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 8. ± 1. | kJ/mol | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 96.2 | J/mol*K | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
By formula: (CHO+ • 11CO) + CO = (CHO+ • 12CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 8. ± 1. | kJ/mol | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 97.1 | J/mol*K | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
By formula: (CHO+ • 12CO) + CO = (CHO+ • 13CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 8. ± 1. | kJ/mol | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 97.1 | J/mol*K | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
By formula: (CHO+ • 13CO) + CO = (CHO+ • 14CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 7. ± 1. | kJ/mol | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 96.7 | J/mol*K | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
By formula: (CHO+ • 14CO) + CO = (CHO+ • 15CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 7.36 | kJ/mol | PHPMS | Hiraoka and Mori, 1989 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 96. | J/mol*K | N/A | Hiraoka and Mori, 1989 | gas phase; Entropy change calculated or estimated; M |
By formula: (CHO- • 4294967295CO) + CO = CHO-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 22.7 ± 1.9 | kJ/mol | N/A | Murray, Miller, et al., 1986 | gas phase; B |
(CNiO- • 4294967295) + = CNiO-
By formula: (CNiO- • 4294967295CO) + CO = CNiO-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 138. ± 24. | kJ/mol | N/A | Stevens, Feigerle, et al., 1982 | gas phase; B |
ΔrH° | 136. ± 24. | kJ/mol | CIDT | Sunderlin, Wang, et al., 1992 | gas phase; Affinity: CO..Ni-; B |
By formula: CO+ + CO = (CO+ • CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 67. | kJ/mol | PIPECO | Norwood, Guo, et al., 1988 | gas phase; CO+ in state B, ΔrH>; M |
ΔrH° | 93.7 | kJ/mol | PI | Linn, Ono, et al., 1981 | gas phase; M |
ΔrH° | 120. ± 30. | kJ/mol | EI | Munson and Franlin, 1962 | gas phase; from IP'switching reaction and heats of formation; M |
ΔrH° | 106. | kJ/mol | PHPMS | Meot-Ner (Mautner) and Field, 1974 | gas phase; ΔrH>, DG>; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 84. | J/mol*K | PHPMS | Meot-Ner (Mautner) and Field, 1974 | gas phase; ΔrH>, DG>; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
21. | 340. | HPMS | Chong and Franklin, 1971 | gas phase; equilibrium uncertain; M |
48.1 | 695. | PHPMS | Meot-Ner (Mautner) and Field, 1974 | gas phase; ΔrH>, DG>; M |
By formula: (CO+ • CO) + CO = (CO+ • 2CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 52.3 | kJ/mol | PHPMS | Hiraoka and Mori, 1991 | gas phase; M |
ΔrH° | 15. | kJ/mol | PI | Linn, Ono, et al., 1981 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 149. | J/mol*K | PHPMS | Hiraoka and Mori, 1991 | gas phase; M |
By formula: (CO+ • 2CO) + CO = (CO+ • 3CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 30.2 | kJ/mol | PHPMS | Hiraoka and Mori, 1991 | gas phase; two isomers, at low and high temperatures; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 103. | J/mol*K | PHPMS | Hiraoka and Mori, 1991 | gas phase; two isomers, at low and high temperatures; M |
By formula: (CO+ • 3CO) + CO = (CO+ • 4CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 18.4 | kJ/mol | PHPMS | Hiraoka and Mori, 1991 | gas phase; two isomers; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 85.8 | J/mol*K | PHPMS | Hiraoka and Mori, 1991 | gas phase; two isomers; M |
By formula: (CO+ • 4CO) + CO = (CO+ • 5CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 17.8 | kJ/mol | PHPMS | Hiraoka and Mori, 1991 | gas phase; two isomers; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 102. | J/mol*K | PHPMS | Hiraoka and Mori, 1991 | gas phase; two isomers; M |
By formula: (CO+ • 5CO) + CO = (CO+ • 6CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 11.3 | kJ/mol | PHPMS | Hiraoka and Mori, 1991 | gas phase; two isomers, at low and high temperatures; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 79.9 | J/mol*K | PHPMS | Hiraoka and Mori, 1991 | gas phase; two isomers, at low and high temperatures; M |
By formula: (CO+ • 6CO) + CO = (CO+ • 7CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 9.41 | kJ/mol | PHPMS | Hiraoka and Mori, 1991 | gas phase; break in the van't Hoff plot; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 88.3 | J/mol*K | PHPMS | Hiraoka and Mori, 1991 | gas phase; break in the van't Hoff plot; M |
By formula: (CO+ • 7CO) + CO = (CO+ • 8CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 6.61 | kJ/mol | PHPMS | Hiraoka and Mori, 1991 | gas phase; break in the van't Hoff plot; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 51.9 | J/mol*K | PHPMS | Hiraoka and Mori, 1991 | gas phase; break in the van't Hoff plot; M |
By formula: (CO+ • 9CO) + CO = (CO+ • 10CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 7.74 | kJ/mol | PHPMS | Hiraoka and Mori, 1991 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 79.9 | J/mol*K | PHPMS | Hiraoka and Mori, 1991 | gas phase; M |
By formula: (CO+ • 11CO) + CO = (CO+ • 12CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 8.91 | kJ/mol | PHPMS | Hiraoka and Mori, 1991 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 113. | J/mol*K | PHPMS | Hiraoka and Mori, 1991 | gas phase; M |
By formula: (CO+ • 12CO) + CO = (CO+ • 13CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 8.79 | kJ/mol | PHPMS | Hiraoka and Mori, 1991 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 116. | J/mol*K | PHPMS | Hiraoka and Mori, 1991 | gas phase; M |
By formula: (CO+ • 13CO) + CO = (CO+ • 14CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 8.70 | kJ/mol | PHPMS | Hiraoka and Mori, 1991 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 120. | J/mol*K | PHPMS | Hiraoka and Mori, 1991 | gas phase; M |
By formula: (CO+ • 14CO) + CO = (CO+ • 15CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 8.03 | kJ/mol | PHPMS | Hiraoka and Mori, 1991 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 112. | J/mol*K | PHPMS | Hiraoka and Mori, 1991 | gas phase; M |
By formula: (CO+ • 15CO) + CO = (CO+ • 16CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 8.03 | kJ/mol | PHPMS | Hiraoka and Mori, 1991 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 115. | J/mol*K | PHPMS | Hiraoka and Mori, 1991 | gas phase; M |
By formula: (CO+ • 16CO) + CO = (CO+ • 17CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 7.87 | kJ/mol | PHPMS | Hiraoka and Mori, 1991 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 115. | J/mol*K | PHPMS | Hiraoka and Mori, 1991 | gas phase; M |
By formula: COPt3- + CO = C2O2Pt3-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 220. ± 50. | kJ/mol | N/A | Grushow and Ervin, 1997 | gas phase; B |
By formula: C2O2Pt3- + CO = C3O3Pt3-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 220. ± 22. | kJ/mol | N/A | Grushow and Ervin, 1997 | gas phase; B |
ΔrH° | 206. ± 14. | kJ/mol | PDis | Shi, Spasov, et al., 2001 | gas phase; B |
By formula: C3CrO3- + CO = (C3CrO3- • CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 166. ± 16. | kJ/mol | CIDT | Sunderlin, Wang, et al., 1993 | gas phase; B |
By formula: C3MnO3- + CO = C4MnO4-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 172. ± 13. | kJ/mol | CIDT | Sunderlin, Wang, et al., 1993 | gas phase; B |
By formula: C3O3Pt3- + CO = C4O4Pt3-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 102. ± 13. | kJ/mol | N/A | Grushow and Ervin, 1997 | gas phase; B |
By formula: C3O3V- + CO = C4O4V-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 169. ± 24. | kJ/mol | CIDT | Sunderlin, Wang, et al., 1993 | gas phase; B |
By formula: C4O4Pt3- + CO = C5O5Pt3-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 109. ± 18. | kJ/mol | N/A | Grushow and Ervin, 1997 | gas phase; B |
By formula: C4O4V- + CO = C5O5V-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 130. ± 13. | kJ/mol | CIDT | Sunderlin, Wang, et al., 1993 | gas phase; B |
By formula: C5O5Pt3- + CO = C6O6Pt3-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 174. ± 29. | kJ/mol | N/A | Grushow and Ervin, 1997 | gas phase; B |
ΔrH° | 166. ± 14. | kJ/mol | PDis | Shi, Spasov, et al., 2001 | gas phase; B |
By formula: C5O5V- + CO = C6O6V-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 129. ± 15. | kJ/mol | CIDT | Sunderlin, Wang, et al., 1993 | gas phase; B |
By formula: C6H5MnO- + CO = C6H5MnO-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 20.9 ± 2.1 | kJ/mol | N/A | Sunderlin and Squires, 1999 | gas phase; B |
By formula: C6H5MnO- + CO = C7H5MnO2-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 32.6 ± 2.5 | kJ/mol | N/A | Sunderlin and Squires, 1999 | gas phase; B |
By formula: C6O6Pt4- + CO = C8O8Pt4-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 77. ± 29. | kJ/mol | N/A | Grushow and Ervin, 1997 | gas phase; B |
By formula: C7H5CrO2- + CO = C8H5CrO3-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 36.4 ± 3.3 | kJ/mol | N/A | Sunderlin and Squires, 1999 | gas phase; B |
By formula: C7H5O2V- + CO = C7H5O2V-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 33.1 ± 2.9 | kJ/mol | N/A | Sunderlin and Squires, 1999 | gas phase; B |
By formula: C7H5O2V- + CO = C8H5O3V-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 31.8 ± 2.5 | kJ/mol | N/A | Sunderlin and Squires, 1999 | gas phase; B |
By formula: Co+ + CO = (Co+ • CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 174. ± 7.1 | kJ/mol | CIDT | Rodgers and Armentrout, 2000 | RCD |
ΔrH° | 160. ± 10. | kJ/mol | MKER | Carpenter, van Koppen, et al., 1995 | gas phase; M |
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
174. (+6.7,-0.) | CID | Goebel, Haynes, et al., 1995 | gas phase; guided ion beam CID; M | |
163. (+20.,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; guided ion beam CID; M |
By formula: (Co+ • CO) + CO = (Co+ • 2CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 153. ± 9.2 | kJ/mol | CIDT | Rodgers and Armentrout, 2000 | RCD |
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
152. (+8.8,-0.) | CID | Goebel, Haynes, et al., 1995 | gas phase; guided ion beam CID; M | |
138. (+20.,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; guided ion beam CID; M |
By formula: (Co+ • 2CO) + CO = (Co+ • 3CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 82. ± 12. | kJ/mol | CIDT | Rodgers and Armentrout, 2000 | RCD |
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
82. (+12.,-0.) | CID | Goebel, Haynes, et al., 1995 | gas phase; guided ion beam CID; M |
By formula: (Co+ • 3CO) + CO = (Co+ • 4CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 74.9 ± 5.9 | kJ/mol | CIDT | Rodgers and Armentrout, 2000 | RCD |
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
75.3 (+5.9,-0.) | CID | Goebel, Haynes, et al., 1995 | gas phase; guided ion beam CID; M |
By formula: (Co+ • 4CO) + CO = (Co+ • 5CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 74.9 ± 5.0 | kJ/mol | CIDT | Rodgers and Armentrout, 2000 | RCD |
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
75.3 (+5.0,-0.) | CID | Goebel, Haynes, et al., 1995 | gas phase; guided ion beam CID; M |
By formula: Cr+ + CO = (Cr+ • CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 90. ± 4. | kJ/mol | CIDT | Khan, Clemmer, et al., 1993 | RCD |
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
90.0 (+4.2,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; guided ion beam CID; M |
By formula: (Cr+ • CO) + CO = (Cr+ • 2CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 95. ± 3. | kJ/mol | CIDT | Khan, Clemmer, et al., 1993 | RCD |
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
95. (+3.,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; guided ion beam CID; M |
By formula: (Cr+ • 2CO) + CO = (Cr+ • 3CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 54.0 ± 5.9 | kJ/mol | CIDT | Khan, Clemmer, et al., 1993 | RCD |
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
54.0 (+5.9,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; guided ion beam CID; M |
By formula: (Cr+ • 3CO) + CO = (Cr+ • 4CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 51.0 ± 7.5 | kJ/mol | CIDT | Khan, Clemmer, et al., 1993 | RCD |
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
51.0 (+7.9,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; guided ion beam CID; M |
By formula: (Cr+ • 4CO) + CO = (Cr+ • 5CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 62. ± 3. | kJ/mol | CIDT | Khan, Clemmer, et al., 1993 | RCD |
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
62. (+3.,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; guided ion beam CID; M |
By formula: (Cr+ • 5CO) + CO = (Cr+ • 6CO)
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
130. (+7.9,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; guided ion beam CID; M |
By formula: Cu+ + CO = (Cu+ • CO)
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
149. (+6.7,-0.) | CID | Meyer, Chen, et al., 1995 | gas phase; guided ion beam CID; M |
By formula: (Cu+ • CO) + CO = (Cu+ • 2CO)
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
172. (+3.,-0.) | CID | Meyer, Chen, et al., 1995 | gas phase; guided ion beam CID; M |
By formula: (Cu+ • 2CO) + CO = (Cu+ • 3CO)
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
75. (+4.,-0.) | CID | Meyer, Chen, et al., 1995 | gas phase; guided ion beam CID; M |
By formula: (Cu+ • 3CO) + CO = (Cu+ • 4CO)
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
53. (+3.,-0.) | CID | Meyer, Chen, et al., 1995 | gas phase; guided ion beam CID; M |
By formula: Fe+ + CO = (Fe+ • CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 129. ± 4.2 | kJ/mol | CIDT | Rodgers and Armentrout, 2000 | RCD |
ΔrH° | 130. ± 10. | kJ/mol | MKER | Carpenter, van Koppen, et al., 1995 | gas phase; determined from MKER and theory; M |
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
131. (+7.9,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; guided ion beam CID; M |
By formula: (Fe+ • CO) + CO = (Fe+ • 2CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 148. ± 5.0 | kJ/mol | CIDT | Rodgers and Armentrout, 2000 | RCD |
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
151. (+14.,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; guided ion beam CID; M |
By formula: (Fe+ • 2CO) + CO = (Fe+ • 3CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 69.0 ± 5.9 | kJ/mol | CIDT | Rodgers and Armentrout, 2000 | RCD |
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
66.1 (+5.0,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; guided ion beam CID; M |
By formula: (Fe+ • 3CO) + CO = (Fe+ • 4CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 97.9 ± 5.9 | kJ/mol | CIDT | Rodgers and Armentrout, 2000 | RCD |
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
103. (+7.1,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; guided ion beam CID; M |
By formula: (Fe+ • 4CO) + CO = (Fe+ • 5CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 97.1 ± 4.2 | kJ/mol | CIDT | Rodgers and Armentrout, 2000 | RCD |
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
112. (+4.2,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; guided ion beam CID; M |
By formula: (Fe+ • 3CO • 2Fe) + CO = (Fe+ • 4CO • 2Fe)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 238. | kJ/mol | PDiss | Tecklenberg, Bricker, et al., 1988 | gas phase; ΔrH<; M |
By formula: (Fe+ • Fe) + CO = (Fe+ • CO • Fe)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 245. | kJ/mol | PDiss | Tecklenberg, Bricker, et al., 1988 | gas phase; ΔrH<; M |
By formula: K+ + CO = (K+ • CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 18. ± 5.0 | kJ/mol | CIDT | Rodgers and Armentrout, 2000 | RCD |
By formula: Kr+ + CO = (Kr+ • CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 103. ± 7.5 | kJ/mol | SIFT | Praxmarer, Jordan, et al., 1993 | gas phase; switching reaction(Kr+)Kr; Wadt, 1978, Radzig and Smirnov, 1985; M |
By formula: Li+ + CO = (Li+ • CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 55. ± 13. | kJ/mol | CIDT | Rodgers and Armentrout, 2000 | RCD |
ΔrH° | 55. ± 12. | kJ/mol | CIDT | Walter, Sievers, et al., 1998 | RCD |
By formula: (Li+ • CO) + CO = (Li+ • 2CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 36. ± 4.2 | kJ/mol | CIDT | Rodgers and Armentrout, 2000 | RCD |
ΔrH° | 36. ± 4.2 | kJ/mol | CIDT | Walter, Sievers, et al., 1998 | RCD |
By formula: (Li+ • 2CO) + CO = (Li+ • 3CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 35. ± 4.2 | kJ/mol | CIDT | Rodgers and Armentrout, 2000 | RCD |
ΔrH° | 35. ± 4.2 | kJ/mol | CIDT | Walter, Sievers, et al., 1998 | RCD |
By formula: Mg+ + CO = (Mg+ • CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 41. ± 5.9 | kJ/mol | CIDT | Andersen, Muntean, et al., 2000 | RCD |
By formula: (Mg+ • CO) + CO = (Mg+ • 2CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 38. ± 3. | kJ/mol | CIDT | Andersen, Muntean, et al., 2000 | RCD |
By formula: Mn+ + CO = (Mn+ • CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 30. | kJ/mol | KERDS | Dearden, Hayashibara, et al., 1989 | gas phase; ΔrH>; M |
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
25. (+10.,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; guided ion beam CID; M |
By formula: (Mn+ • CO) + CO = (Mn+ • 2CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 100. | kJ/mol | KERDS | Dearden, Hayashibara, et al., 1989 | gas phase; ΔrH<; M |
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
63. (+10.,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; guided ion beam CID; M |
By formula: (Mn+ • 2CO) + CO = (Mn+ • 3CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 130. ± 30. | kJ/mol | KERDS | Dearden, Hayashibara, et al., 1989 | gas phase; M |
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
74. (+10.,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; guided ion beam CID; M |
By formula: (Mn+ • 3CO) + CO = (Mn+ • 4CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 80. ± 10. | kJ/mol | KERDS | Dearden, Hayashibara, et al., 1989 | gas phase; M |
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
65. (+10.,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; guided ion beam CID; M |
By formula: (Mn+ • 4CO) + CO = (Mn+ • 5CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 70. ± 10. | kJ/mol | KERDS | Dearden, Hayashibara, et al., 1989 | gas phase; M |
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
121. (+10.,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; guided ion beam CID; M |
By formula: (Mn+ • 5CO) + CO = (Mn+ • 6CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 130. ± 20. | kJ/mol | KERDS | Dearden, Hayashibara, et al., 1989 | gas phase; M |
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
142. (+10.,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; guided ion beam CID; M |
By formula: Na+ + CO = (Na+ • CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 32. ± 7.9 | kJ/mol | CIDT | Rodgers and Armentrout, 2000 | RCD |
ΔrH° | 32. ± 7.9 | kJ/mol | CIDT | Walter, Sievers, et al., 1998 | RCD |
ΔrH° | 52.7 | kJ/mol | HPMS | Castleman, Peterson, et al., 1983 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 85.4 | J/mol*K | HPMS | Castleman, Peterson, et al., 1983 | gas phase; M |
By formula: (Na+ • CO) + CO = (Na+ • 2CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 24. ± 3. | kJ/mol | CIDT | Rodgers and Armentrout, 2000 | RCD |
ΔrH° | 24. ± 3. | kJ/mol | CIDT | Walter, Sievers, et al., 1998 | RCD |
ΔrH° | 31. | kJ/mol | HPMS | Castleman, Peterson, et al., 1983 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 63.2 | J/mol*K | HPMS | Castleman, Peterson, et al., 1983 | gas phase; M |
By formula: Ni+ + CO = (Ni+ • CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 160. ± 10. | kJ/mol | MKER | Carpenter, van Koppen, et al., 1995 | gas phase; determined from MKER and theory; M |
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
174. (+10.,-0.) | CID | Khan, Steele, et al., 1995 | gas phase; guided ion beam CID; M | |
178. (+9.2,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; guided ion beam CID; M |
By formula: (Ni+ • CO) + CO = (Ni+ • 2CO)
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
168. (+10.,-0.) | CID | Khan, Steele, et al., 1995 | gas phase; guided ion bema CID; M | |
169. (+9.2,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; guided ion beam CID; M |
By formula: (Ni+ • 2CO) + CO = (Ni+ • 3CO)
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
91.6 (+5.9,-0.) | CID | Khan, Steele, et al., 1995 | gas phase; guided ion beam CID; M | |
95.0 (+4.2,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; guided ion beam CID; M |
By formula: (Ni+ • 3CO) + CO = (Ni+ • 4CO)
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
72. (+3.,-0.) | CID | Khan, Steele, et al., 1995 | gas phase; guided ion beam CID; M | |
72.0 (+5.0,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; guided ion beam CID; M |
By formula: O2- + CO = (O2- • CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | <56.90 | kJ/mol | IMRB | Adams and Bohme, 1970 | gas phase; CO..O2- + O2 -> O4- + CO. G3MP2B3 calculations indicate a HOF(A-) ca. -38 kcal/mol; B |
By formula: Pt+ + CO = (Pt+ • CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 212. ± 10. | kJ/mol | CIDT | Zhang and Armentrout, 2001 | RCD |
By formula: (Pt+ • CO) + CO = (Pt+ • 2CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 193. ± 10. | kJ/mol | CIDT | Zhang and Armentrout, 2001 | RCD |
By formula: (Pt+ • 2CO) + CO = (Pt+ • 3CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 97.9 ± 5.0 | kJ/mol | CIDT | Zhang and Armentrout, 2001 | RCD |
By formula: (Pt+ • 3CO) + CO = (Pt+ • 4CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 53.1 ± 5.0 | kJ/mol | CIDT | Zhang and Armentrout, 2001 | RCD |
By formula: Pt3- + CO = COPt3-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 222. ± 29. | kJ/mol | N/A | Grushow and Ervin, 1997 | gas phase; B |
By formula: Pt4- + CO = (Pt4- • CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 251. ± 38. | kJ/mol | N/A | Grushow and Ervin, 1997 | gas phase; B |
By formula: Pt5- + CO = (Pt5- • CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 241. ± 38. | kJ/mol | N/A | Grushow and Ervin, 1997 | gas phase; B |
By formula: Ti+ + CO = (Ti+ • CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 118. ± 5.9 | kJ/mol | CIDT | Meyer and Armentrout, 1996 | RCD |
By formula: (Ti+ • CO) + CO = (Ti+ • 2CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 113. ± 4.2 | kJ/mol | CIDT | Meyer and Armentrout, 1996 | RCD |
By formula: (Ti+ • 2CO) + CO = (Ti+ • 3CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 100. ± 4.2 | kJ/mol | CIDT | Meyer and Armentrout, 1996 | RCD |
By formula: (Ti+ • 3CO) + CO = (Ti+ • 4CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 87.0 ± 4.2 | kJ/mol | CIDT | Meyer and Armentrout, 1996 | RCD |
By formula: (Ti+ • 4CO) + CO = (Ti+ • 5CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 69.9 ± 4.2 | kJ/mol | CIDT | Meyer and Armentrout, 1996 | RCD |
By formula: (Ti+ • 5CO) + CO = (Ti+ • 6CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 74. ± 3. | kJ/mol | CIDT | Meyer and Armentrout, 1996 | RCD |
By formula: (Ti+ • 6CO) + CO = (Ti+ • 7CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 51.9 ± 7.1 | kJ/mol | CIDT | Meyer and Armentrout, 1996 | RCD |
By formula: V+ + CO = (V+ • CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 120. ± 14. | kJ/mol | CID | Armentrout and Kickel, 1994 | gas phase; ΔrH(0 K0, guided ion beam CID; M |
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
113. (+3.,-0.) | CID | Sievers and Armentrout, 1995 | gas phase; guided ion beam CID; M |
By formula: (V+ • CO) + CO = (V+ • 2CO)
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
91. (+3.,-0.) | CID | Sievers and Armentrout, 1995 | gas phase; guided ion beam CID; M | |
106. (+7.9,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; guided ion beam CID; M |
By formula: (V+ • 2CO) + CO = (V+ • 3CO)
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
69. (+4.,-0.) | CID | Sievers and Armentrout, 1995 | gas phase; guided ion beam CID; M | |
61. (+12.,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; guided ion beam CID; M |
By formula: (V+ • 3CO) + CO = (V+ • 4CO)
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
85.8 (+9.6,-0.) | CID | Sievers and Armentrout, 1995 | gas phase; guided ion beam CID; M | |
95. (+14.,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; guided ion beam CID; M |
By formula: (V+ • 4CO) + CO = (V+ • 5CO)
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
91. (+3.,-0.) | CID | Sievers and Armentrout, 1995 | gas phase; guided ion beam CID; M | |
92.9 (+7.9,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; guided ion beam CID; M |
By formula: (V+ • 5CO) + CO = (V+ • 6CO)
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
99.6 (+6.7,-0.) | CID | Sievers and Armentrout, 1995 | gas phase; guided ion beam CID; M | |
124. (+7.9,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; guided ion beam CID; M |
By formula: (V+ • 6CO) + CO = (V+ • 7CO)
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
50.2 (+8.8,-0.) | CID | Sievers and Armentrout, 1995 | gas phase; guided ion beam CID; M |
References
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Ion clustering data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Cox, Wagman, et al., 1984
Cox, J.D.; Wagman, D.D.; Medvedev, V.A.,
CODATA Key Values for Thermodynamics, Hemisphere Publishing Corp., New York, 1984, 1. [all data]
Chase, 1998
Chase, M.W., Jr.,
NIST-JANAF Themochemical Tables, Fourth Edition,
J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]
Mullins, Kirk, et al., 1963
Mullins, J.C.; Kirk, B.S.; Ziegler, W.T.,
, U. S. A. E. C. NP-13862, 1963. [all data]
Clayton and Giauque, 1932
Clayton, J.O.; Giauque, W.F.,
The Heat Capacity and Entropy of Carbon Monoxide. Heat of Vaporization Vapor Pressure of Solid and Liquid. Free Energy to 5000 K from Spectroscopic Data,
J. Am. Chem. Soc., 1932, 54, 2610. [all data]
Gill and Morrison, 1966
Gill, E.K.; Morrison, J.A.,
Thermodynamic Properties of Condensed CO,
J. Chem. Phys., 1966, 45, 1585. [all data]
Cardoso, 1915
Cardoso, E.,
Study of the Critical Point of Several Difficultly LIquifiable Gases: Nitrogen, Carbon Monoxide, Oxygen and Methane,
J. Chim. Phys. Phys.-Chim. Biol., 1915, 13, 312. [all data]
Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw,
Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2
. [all data]
Clayton and Giauque, 1932, 2
Clayton, J.O.; Giauque, W.F.,
The heat capacity and entropy of carbon monoxide. Heat of vaporization. Vapor pressures of solid and liquid. Free energy to 5000°K. From spectroscopic data,
J. Am. Chem. Soc., 1932, 54, 2610-2626. [all data]
Stull, 1947
Stull, Daniel R.,
Vapor Pressure of Pure Substances. Organic and Inorganic Compounds,
Ind. Eng. Chem., 1947, 39, 4, 517-540, https://doi.org/10.1021/ie50448a022
. [all data]
Crommelin, Bijleveld, et al., 1931
Crommelin, C.A.; Bijleveld, W.J.; Brown, E.G.,
Proc. R. Acad. Sci. Amsterdam, 1931, 34, 1314. [all data]
Graham and Angelici, 1967
Graham, J.R.; Angelici, R.J.,
Inorg. Chem., 1967, 6, 2082. [all data]
Werner and Prinz, 1966
Werner, H.; Prinz, R.,
Chem. Ber., 1966, 99, 3582. [all data]
Poë, Sampson, et al., 1993
Poë, A.J.; Sampson, C.N.; Smith, R.T.; Zheng, Y.,
J. Am. Chem. Soc., 1993, 115, 3174. [all data]
Lewis, Golden, et al., 1984
Lewis, K.E.; Golden, D.M.; Smith, G.P.,
Organometallic bond dissociation energies: Laser pyrolysis of Fe(CO)5, Cr(CO)6, Mo(CO)6, and W(CO)6,
J. Am. Chem. Soc., 1984, 106, 3905. [all data]
Smith and Laine, 1981
Smith, G.P.; Laine, R.M.,
Organometallic bond dissociation energies. Laser pyrolysis of Fe(CO)5,
J. Phys. Chem., 1981, 85, 1620. [all data]
Miller and Grant, 1985
Miller, M.E.; Grant, E.R.,
J. Am. Chem. Soc., 1985, 107, 3386. [all data]
Walsh, 1986
Walsh, R.,
NATO Advanced Workshop on the Design, Activation and Transformation of Organometallics into Common and Exotic Materials, Montpellier, France, 1986. [all data]
Ray, Brandow, et al., 1988
Ray, U.; Brandow, S.L.; Bandukwalla, G.; Venkataraman, B.K.; Zhang, Z.; Vernon, M.,
J. Chem. Phys., 1988, 89, 4092. [all data]
Sunderlin, Wang, et al., 1992
Sunderlin, L.S.; Wang, D.; Squires, R.R.,
Metal Carbonyl Bond Strengths in Fe(CO)n- and Ni(CO)n-,
J. Am. Chem. Soc., 1992, 114, 8, 2788, https://doi.org/10.1021/ja00034a004
. [all data]
Engelking and Lineberger, 1979
Engelking, P.C.; Lineberger, W.C.,
Laser photoelectron spectrometry of the negative ions of iron and iron carbonyls. Electron affinity determination for the series Fe(CO)n,n=0,1,2,3,4,
J. Am. Chem. Soc., 1979, 101, 5569. [all data]
Compton and Stockdale, 1976
Compton, R.N.; Stockdale, J.A.D.,
Formation of gas phase negative ions in Fe(CO)5 and Ni(CO)4,
Int. J. Mass Spectrom. Ion Phys., 1976, 22, 47. [all data]
Ganske and Rosenfeld, 1990
Ganske, J.A.; Rosenfeld, R.N.,
J. Phys. Chem., 1990, 94, 4315. [all data]
Cetini and Gambino, 1963
Cetini, G.; Gambino, O.,
Atti Accad. Sci. Torino, Classe Sci. Fis. Mat. Nat., 1963, 97, 757. [all data]
Cetini and Gambino, 1963, 2
Cetini, G.; Gambino, O.,
Atti Accad. Sci. Torino, Classe Sci. Fis. Mat. Nat., 1963, 97, 1197. [all data]
Fletcher and Rosenfeld, 1988
Fletcher, R.T.; Rosenfeld, R.N.,
Recombination of Cr(CO)n with CO: Kinetics and Bond Dissociation Energies,
J. Am. Chem. Soc., 1988, 110, 7, 2097, https://doi.org/10.1021/ja00215a014
. [all data]
Pajaro, Calderazzo, et al., 1960
Pajaro, G.; Calderazzo, F.; Ercoli, R.,
Gazz. Chim. Ital., 1960, 90, 1486. [all data]
Wovkulich and Atwood, 1980
Wovkulich, M.J.; Atwood, J.D.,
J. Organometal. Chem., 1980, 184, 77. [all data]
Dennenberg and Darensbourg, 1972
Dennenberg, R.J.; Darensbourg, D.J.,
Inorg. Chem., 1972, 11, 72. [all data]
Norwood, Guo, et al., 1988
Norwood, K.; Guo, J.H.; Luo, G.; Ng, C.Y.,
A Photoion - Photoelectron Coincidence Study of (CO)2,
J. Chem. Phys., 1988, 88, 6, 4098, https://doi.org/10.1063/1.453814
. [all data]
Linn, Ono, et al., 1981
Linn, S.H.; Ono, Y.; Ng, C.Y.,
Molecular Beam Photoionization Study of CO, N2, and NO Dimers and Clusters,
J. Chem. Phys., 1981, 74, 6, 3342, https://doi.org/10.1063/1.441486
. [all data]
Munson and Franlin, 1962
Munson, M.S.B. Field; Franlin, J.L.,
High-Pressure Mass Spectrometric Study of Reactions of Rare Gases with N2 and CO,
J. Chem. Phys., 1962, 37, 8, 1790, https://doi.org/10.1063/1.1733370
. [all data]
Meot-Ner (Mautner) and Field, 1974
Meot-Ner (Mautner), M.; Field, F.H.,
Kinetics and Thermodynamics of the Association of CO+ with CO and of N2+ with N2 between 120 and 650 K,
J. Chem. Phys., 1974, 61, 9, 3742, https://doi.org/10.1063/1.1682560
. [all data]
Chong and Franklin, 1971
Chong, S.L.; Franklin, J.L.,
High-Pressure Ion-Molecule Reactions in Carbon Monoxide and Carbon Monoxide - Methane Mixtures,
J. Chem. Phys., 1971, 54, 4, 1487, https://doi.org/10.1063/1.1675043
. [all data]
Al-Takhin, Connor, et al., 1984
Al-Takhin, G.; Connor, J.A.; Pilcher, G.; Skinner, H.A.,
J. Organomet. Chem., 1984, 265, 263. [all data]
Adedeji, Brown, et al., 1975
Adedeji, F.A.; Brown, D.L.S.; Connor, J.A.; Leung, M.; Paz-Andrade, I.M.; Skinner, H.A.,
J. Organometal. Chem., 1975, 97, 221. [all data]
Hieber and Romberg, 1935
Hieber, W.; Romberg, E.,
Z. Anorg. Allg. Chem., 1935, 221, 321. [all data]
Rezukhina and Shvyrev, 1952
Rezukhina, T.N.; Shvyrev, V.V.,
Vestn. Moskov. Univ., 1952, 7, 41. [all data]
Daamen, Ernsting, et al., 1979
Daamen, H.; Ernsting, J.M.; Oskam, A.,
Thermochim. Acta, 1979, 33, 217. [all data]
Boxhoorn, Ernsting, et al., 1980
Boxhoorn, G.; Ernsting, J.M.; Stufkens, D.J.; Oskam, A.,
Thermochim. Acta, 1980, 42, 315. [all data]
Pilcher, Ware, et al., 1975
Pilcher, G.; Ware, M.J.; Pittam, D.A.,
J. Less-Common Met., 1975, 42, 223. [all data]
Barnes, Pilcher, et al., 1974
Barnes, D.S.; Pilcher, G.; Pittam, D.A.; Skinner, H.A.; Todd, D.,
J. Less-Common Met., 1974, 38, 53. [all data]
Pedley and Rylance, 1977
Pedley, J.B.; Rylance, J.,
Computer Analysed Thermochemical Data: Organic and Organometallic Compounds, University of Sussex, Brigton, 1977. [all data]
Tel'noi and Rabinovich, 1977
Tel'noi, V.I.; Rabinovich, I.B.,
Russ. Chem. Rev., 1977, 46, 689. [all data]
Koelliker and Bor, 1991
Koelliker, R.; Bor, G.,
J. Organometal. Chem., 1991, 417, 439. [all data]
Bor, 1986
Bor, G.,
Pure & Appl. Chem., 1986, 58, 543. [all data]
Ungváry and Markó, 1974
Ungváry, F.; Markó, L.,
J. Organometal. Chem., 1974, 71, 283. [all data]
Ungváry, 1972
Ungváry, F.,
J. Organometal. Chem., 1972, 36, 363. [all data]
Nakashima and Adamson, 1982
Nakashima, M.; Adamson, A.W.,
J. Phys. Chem., 1982, 86, 2905. [all data]
Jennings, Headley, et al., 1982
Jennings, K.R.; Headley, J.V.; Mason, R.S.,
The Temperature Dependence of Ion - Molecule Association Reactions,
Int. J. Mass. Spectrom. Ion Phys, 1982, 45, 315. [all data]
Hiraoka, Saluja, et al., 1979
Hiraoka, K.; Saluja, P.P.S.; Kebarle, P.,
Stabilities of Complexes (N2)nH+, (CO)nH+ and (O2)nH+ for n = 1 to 7 Based on Gas Phase Ion Equilibrium Measurements,
Can. J. Chem., 1979, 57, 16, 2159, https://doi.org/10.1139/v79-346
. [all data]
Rodgers and Armentrout, 2000
Rodgers, M.T.; Armentrout, P.B.,
Noncovalent Metal-Ligand Bond Energies as Studied by Threshold Collision-Induced Dissociation,
Mass Spectrom. Rev., 2000, 19, 4, 215, https://doi.org/10.1002/1098-2787(200007)19:4<215::AID-MAS2>3.0.CO;2-X
. [all data]
Carpenter, van Koppen, et al., 1995
Carpenter, C.J.; van Koppen, P.A.M.; Bowers, M.T.,
Details of Potential Energy Surfaces Involving C-C Bond Activation: Reactions of Fe+, Co+ and Ni+ with Acetone,
J. Am. Chem. Soc., 1995, 117, 44, 10976, https://doi.org/10.1021/ja00149a021
. [all data]
Goebel, Haynes, et al., 1995
Goebel, S.; Haynes, C.L.; Khan, F.A.; Armentrout, P.B.,
Collision-Induced Dissociation Studies of Co(CO)x, x = 1-5: Sequential Bond Energies and the Heat of Formation of Co(CO)4,
J. Am. Chem. Soc., 1995, 117, 26, 6994, https://doi.org/10.1021/ja00131a023
. [all data]
Armentrout and Kickel, 1994
Armentrout, P.B.; Kickel, B.L.,
Gas Phase Thermochemistry of Transition Metal Ligand Systems: Reassessment of Values and Periodic Trends, in Organometallic Ion Chemistry, B. S. Freiser, ed, 1994. [all data]
Johnson, Popov, et al., 1991
Johnson, F.P.A.; Popov, V.K.; George, M.W.; Bagratashvili, V.N.; Poliakoff, M.; Turner, J.J.,
Mendeleev Commun., 1991, 145.. [all data]
Morse, Parker, et al., 1989
Morse, J.M., Jr.; Parker, G.H.; Burkey, T.J.,
Organometallics, 1989, 8, 2471. [all data]
Venkataraman, Bandukwalla, et al., 1989
Venkataraman, B.K.; Bandukwalla, G.; Zhang, Z.; Vernon, M.,
J. Chem. Phys., 1989, 90, 5510. [all data]
Monteil, Raffin, et al., 1988
Monteil, Y.; Raffin, P.; Bouix, J.,
Thermochim. Acta, 1988, 125, 327. [all data]
Khan, Steele, et al., 1995
Khan, F.A.; Steele, D.L.; Armentrout, P.B.,
Ligand effects in organometallic thermochemistry: The sequential bond energies of Ni(CO)x+ and Ni(N2)x+ (x = 1-4) and Ni(NO)x+ (x = 1-3) [Data derived from reported bond energies taking value of 8.273±0.046 eV for IE[Ni(CO)4]],
J. Phys. Chem., 1995, 99, 7819. [all data]
Turner, Simpson, et al., 1983
Turner, J.J.; Simpson, M.B.; Poliakoff, M.; Maier II, W.B.,
J. Am. Chem. Soc., 1983, 105, 3898. [all data]
Nakajima, Taguwa, et al., 1994
Nakajima, A.; Taguwa, T.; Kaya, K.,
Photoelectron Spectroscopy of Iron Carbonyl Cluster Anions (Fen(CO)m(-), n=1-4),
Chem. Phys. Lett., 1994, 221, 5-6, 436, https://doi.org/10.1016/0009-2614(94)00301-7
. [all data]
Hung and Grabowski, 1992
Hung, R.R.; Grabowski, J.J.,
Enthalpy measurements in organic solvents by photoacoustic calorimetry: a solution to the reaction volume problem,
J. Am. Chem. Soc., 1992, 114, 351-353. [all data]
Herman and Goodman, 1989
Herman, M.S.; Goodman, J.L.,
Determination of the enthalpy and reaction volume changes of organic photoreactions using photoacoustic calorimetry,
J. Am. Chem. Soc., 1989, 111, 1849-1854. [all data]
Grabowski, Simon, et al., 1984
Grabowski, J.J.; Simon, J.D.; Peters, K.S.,
Heat of formation of diphenylcyclopropenone by photoacoustic calorimetry,
J. Am. Chem. Soc., 1984, 106, 4615-4616. [all data]
Hiraoka and Mori, 1989
Hiraoka, K.; Mori, T.,
Gas Phase Stabilities of the Cluster Ions H+(CO)2(CO)n, H+(N2)2(N2)n and H+(O2)2(O2)n with n = 1 - 14,
Chem. Phys., 1989, 137, 1-3, 345, https://doi.org/10.1016/0301-0104(89)87119-8
. [all data]
McQuaid, Morris, et al., 1988
McQuaid, M.J.; Morris, K.; Gole, J.L.,
J. Am. Chem. Soc., 1988, 110, 5280. [all data]
Stevens, Feigerle, et al., 1982
Stevens, A.E.; Feigerle, C.S.; Lineberger, W.C.,
Laser Photoelectron Spectrometry of Ni(CO)n-, n=1-3,
J. Am. Chem. Soc., 1982, 104, 19, 5026, https://doi.org/10.1021/ja00383a004
. [all data]
Nolan, López de la Vega, et al., 1986
Nolan, S.P.; López de la Vega, R.; Hoff, C.D.,
J. Am. Chem. Soc., 1986, 108, 7852. [all data]
Calderazzo, 1977
Calderazzo, F.,
Angew. Chem. Int. Ed. Engl., 1977, 16, 299. [all data]
Bronshstein, Gankin, et al., 1966
Bronshstein, Yu.E.; Gankin, V.Yu.; Krinkin, D.P.; Rudkovskii, D.M.,
Russ. J. Phys. Chem., 1966, 40, 802. [all data]
Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G.,
Thermochemistry of Organic and Organometallic Compounds
in Academic Press, New York, 1970. [all data]
Walter, Sievers, et al., 1998
Walter, D.; Sievers, M.R.; Armentrout, P.B.,
Alkali Ion Carbonyls: Sequential Bond Energies of Li+(CO)x (x=1-3), Na+(CO)x (x=1, 2), and K+(CO),
Int. J. Mass Spectrom., 1998, 175, 1-2, 93, https://doi.org/10.1016/S0168-1176(98)00109-8
. [all data]
Castleman, Peterson, et al., 1983
Castleman, A.W.; Peterson, K.I.; Upschulte, B.L.; Schelling, F.J.,
Energetics and Structure of Na+ Cluster Ions,
Int. J. Mass Spectrom. Ion Phys., 1983, 47, 203, https://doi.org/10.1016/0020-7381(83)87171-X
. [all data]
Hiraoka and Mori, 1991
Hiraoka, K.; Mori, T.,
On the formation of the Isomeric Cluster Ions (CO)n+,
J. Chem. Phys., 1991, 94, 4, 2697, https://doi.org/10.1063/1.459844
. [all data]
Moloy and Marks, 1984
Moloy, K.G.; Marks, T.J.,
J. Am. Chem. Soc., 1984, 106, 7051. [all data]
Barnes, Pilcher, et al., 1974, 2
Barnes, D.S.; Pilcher, G.; Pittam, D.A.; Skinner, H.A.; Todd, D.; Virmani, Y.,
J. Less-Common Met., 1974, 36, 177. [all data]
Connor, Skinner, et al., 1972
Connor, J.A.; Skinner, H.A.; Virmani, Y.,
Microcalorimetric studies. Thermal decomposition and iodination of metal carbonyls,
J. Chem. Soc., Faraday Trans. 1, 1972, 68, 0, 1754, https://doi.org/10.1039/f19726801754
. [all data]
Wong and Brintzinger, 1975
Wong, K.L.T.; Brintzinger, H.H.,
J. Am. Chem. Soc., 1975, 97, 5143. [all data]
Al-Takhin, Connor, et al., 1984, 2
Al-Takhin, G.; Connor, J.A.; Skinner, H.A.; Zaharani-Moettar, M.T.,
J. Organomet. Chem., 1984, 260, 189. [all data]
Pittam, Pilcher, et al., 1975
Pittam, D.A.; Pilcher, G.; Barnes, D.S.; Skinner, H.A.; Todd, D.,
J. Less-Common Met., 1975, 42, 217. [all data]
Bor and Dietler, 1980
Bor, G.; Dietler, U.K.,
J. Organometal. Chem., 1980, 191, 295. [all data]
Meyer, Chen, et al., 1995
Meyer, F.; Chen, Y.M.; Armentrout, P.B.,
Sequential Bond Energies of Cu(CO)x+ and Ag(CO)x+ (x = 1-4),
J. Am. Chem. Soc., 1995, 117, 14, 4071, https://doi.org/10.1021/ja00119a023
. [all data]
Norwood, Guo, et al., 1989
Norwood, K.; Guo, J.H.; Luo, G.; Ng, C.Y.,
A Study of Intramolecular Charge Transfer in Mixed Ar/Co Dimer and Trimer Ions Using the Photoion - Photoelectron Coincidence Method,
Chem. Phys., 1989, 129, 1, 109, https://doi.org/10.1016/0301-0104(89)80023-0
. [all data]
Hiraoka, Nasu, et al., 1996
Hiraoka, K.; Nasu, M.; Fujimaki, S.; Ignacio, E.W.; Yamabe, S.,
Gas-Phase Stability and Structure of the Cluster Ions CF3+(CO)n, CF3+(N2)n, CF3+((CF4)n, and CF4H+(CF4)n,
J. Phys. Chem., 1996, 100, 13, 5245, https://doi.org/10.1021/jp9530010
. [all data]
Villalta and Leopold, 1993
Villalta, P.W.; Leopold, D.G.,
A Study of FeCO- and the 3-Sigma(-) and 5-Sigma(-) States of FeCO by Negative Ion Photoelectron Spectroscopy,
J. Chem. Phys., 1993, 98, 10, 7730, https://doi.org/10.1063/1.464580
. [all data]
Murray, Miller, et al., 1986
Murray, K.K.; Miller, T.M.; Leopold, D.G.; Lineberger, W.C.,
Laser photoelectron spectroscopy of the Formylf anion,
J. Chem. Phys., 1986, 84, 2520. [all data]
Grushow and Ervin, 1997
Grushow, A.; Ervin, K.M.,
Ligand and Metal Binding Energies in Platinum Carbonyl Cluster Anions: Collision Induced Dissociation of PtM- and Ptm(CO)n-,
J. Chem. Phys., 1997, 106, 23, 9580, https://doi.org/10.1063/1.474116
. [all data]
Shi, Spasov, et al., 2001
Shi, Y.; Spasov, V.A.; Ervin, K.M.,
Photodesorption of carbonyl from Pt-3(CO)(n)(-) (n=1-6),
Int. J. Mass Spectrom., 2001, 204, 1-3, 197-208, https://doi.org/10.1016/S1387-3806(00)00364-X
. [all data]
Sunderlin, Wang, et al., 1993
Sunderlin, L.S.; Wang, D.N.; Squires, R.R.,
Bond Strengths in 1st-Row-Metal Carbonyl Anions,
J. Am. Chem. Soc., 1993, 115, 25, 12060, https://doi.org/10.1021/ja00078a051
. [all data]
Sunderlin and Squires, 1999
Sunderlin, L.S.; Squires, R.R.,
Bond strengths in cyclopentadienyl metal carbonyl anions,
Int. J. Mass Spectrom., 1999, 183, 149-161, https://doi.org/10.1016/S1387-3806(98)14230-6
. [all data]
Khan, Clemmer, et al., 1993
Khan, F.A.; Clemmer, D.E.; Schultz, R.H.; Armentrout, P.B.,
Sequential Bond Energies of Cr(CO)x+, x=1-6,
J. Phys. Chem., 1993, 97, 30, 7978, https://doi.org/10.1021/j100132a029
. [all data]
Tecklenberg, Bricker, et al., 1988
Tecklenberg, R.E.; Bricker, D.L.; Russel, D.H.,
Laser - Ion Beam Photodissociation Studies of Ionic Cluster Fragments of Iron Carbonyls: Fe(x)(CO)y+ (x = 1 - 3; y = 0 - 6),
Organometallics, 1988, 7, 12, 2506, https://doi.org/10.1021/om00102a013
. [all data]
Praxmarer, Jordan, et al., 1993
Praxmarer, C. Hansel; Jordan, A.; Kraus, H.; Lindinger, W.,
Reactions of Kr2+ with Various Neutrals,
Int.J. Mass Spectrom. Ion. Proc., 1993, 129, 121, https://doi.org/10.1016/0168-1176(93)87036-R
. [all data]
Wadt, 1978
Wadt, W.R.,
The Electronic States of Ar2+, Kr2+, Xe2+. I. Potential Curves with and without Spin-Orbit Coupling,
J. Chem. Phys., 1978, 68, 2, 402, https://doi.org/10.1063/1.435773
. [all data]
Radzig and Smirnov, 1985
Radzig, R.; Smirnov, B.M.,
Reference Data on Atoms in Molecules and Ions, Springer, Berlin, 1985. [all data]
Andersen, Muntean, et al., 2000
Andersen, A.; Muntean, F.; Walter, D.; Rue, C.; Armentrout, P.B.,
Collision-Induced Dissociation and Theoretical Studies of Mg+ Complexes with CO, CO2, NH3, CH4, CH3OH, and C6H6,
J. Phys. Chem. A, 2000, 104, 4, 692, https://doi.org/10.1021/jp993031t
. [all data]
Dearden, Hayashibara, et al., 1989
Dearden, D.V.; Hayashibara, K.; Beauchamp, J.L.; Kirschner, N.J.; Van Koppen, P.A.M.; Bowers, M.T.,
Fundamental Studies of the Energetics and Dynamics of Ligand Dissociation and Exchange Processes at Transition - Metal Centers in the Gas Phase: Mn(COx)+, x = 1 - 6,
J. Am. Chem. Soc., 1989, 111, 7, 2401, https://doi.org/10.1021/ja00189a005
. [all data]
Adams and Bohme, 1970
Adams, N.G.; Bohme, D.,
Flowing Afterglow Studies of Formation and Reactions of Cluster Ions of O2+, O2-, and O-,
J. Chem. Phys., 1970, 52, 6, 3133, https://doi.org/10.1063/1.1673449
. [all data]
Zhang and Armentrout, 2001
Zhang, X.-G.; Armentrout, P.B.,
Sequential Bond Energies of Pt(CO)x, (x=1-4) Determined by Collision-Induced Dissociation,
Organometallics, 2001, 20, 20, 4266, https://doi.org/10.1021/om010390d
. [all data]
Meyer and Armentrout, 1996
Meyer, F.; Armentrout, P.B.,
Sequential Bond Energies of Ti(CO)x+, x=1-7,
Molec. Phys., 1996, 88, 187. [all data]
Sievers and Armentrout, 1995
Sievers, M.R.; Armentrout, P.B.,
Collision-Induced Dissociation Studies of V(CO)x+, x = 1-7: Sequential Bond Energies and the Heat of Formation of V(CO)6,
J. Phys. Chem., 1995, 99, 20, 8135, https://doi.org/10.1021/j100020a041
. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Ion clustering data, References
- Symbols used in this document:
Pc Critical pressure S°gas,1 bar Entropy of gas at standard conditions (1 bar) T Temperature Tboil Boiling point Tc Critical temperature Ttriple Triple point temperature ΔfH°gas Enthalpy of formation of gas at standard conditions ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions ΔsubH Enthalpy of sublimation ΔvapH Enthalpy of vaporization ρc Critical density - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.