Styrene
- Formula: C8H8
- Molecular weight: 104.1491
- IUPAC Standard InChIKey: PPBRXRYQALVLMV-UHFFFAOYSA-N
- CAS Registry Number: 100-42-5
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
View 3d structure (requires JavaScript / HTML 5) - Other names: Benzene, ethenyl-; Bulstren K-525-19; Cinnamene; Phenethylene; Phenylethene; Phenylethylene; Styrol (German); Styrole; Styrolene; Styropol SO; Vinylbenzene; Vinylbenzol; Ethenylbenzene; Cinnaminol; Cinnamol; Styrol; Benzene, vinyl-; Cinnamenol; Ethylene, phenyl-; NCI-C02200; Stirolo; Styreen; Styren; Styrene monomer; Vinylbenzen; Annamene; NSC 62785; ethenylbenzene (styrene); Vinylbenzene (styrene)
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Condensed phase thermochemistry data, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | 35.11 ± 0.24 | kcal/mol | Ccb | Prosen and Rossini, 1945 | ALS |
ΔfH°gas | 36.21 | kcal/mol | N/A | Landrieu, Baylocq, et al., 1929 | Value computed using ΔfHliquid° value of 108.0 kj/mol from Landrieu, Baylocq, et al., 1929 and ΔvapH° value of 43.5 kj/mol from Prosen and Rossini, 1945.; DRB |
ΔfH°gas | 31.43 ± 0.96 | kcal/mol | Ccb | N/A | Value computed using ΔfHliquid° from missing citation and ΔvapH° value of 10.5 kcal/mol from Pitzer, Guttman, et al., 1946. recalculated with modern CO2,H2O thermo; estimated uncertainty (NOTE all values in source also have wrong sign); DRB |
ΔfH°gas | -3.61 | kcal/mol | N/A | Moureu and Andre, 1914 | Value computed using ΔfHliquid° value of -58.6 kj/mol from Moureu and Andre, 1914 and ΔvapH° value of 43.5 kj/mol from Prosen and Rossini, 1945.; DRB |
Quantity | Value | Units | Method | Reference | Comment |
S°gas | 82.48 ± 0.50 | cal/mol*K | N/A | Pitzer K.S., 1946 | S(298.16 K)=343.38 J/mol*K was obtained from earlier experimental data [ Guttman L., 1943].; GT |
Constant pressure heat capacity of gas
Cp,gas (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
36.16 ± 0.18 | 373.15 | Scott R.B., 1945 | GT |
Constant pressure heat capacity of gas
Cp,gas (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
10.94 | 50. | Thermodynamics Research Center, 1997 | p=1 bar. Recommended values agree with other statistically calculated values of S(T) and Cp(T) [ Beckett C.W., 1946] within 0.8 and 1.9 J/mol*K, respectively.; GT |
12.95 | 100. | ||
15.73 | 150. | ||
19.54 | 200. | ||
26.298 | 273.15 | ||
28.726 | 298.15 | ||
28.905 | 300. | ||
38.191 | 400. | ||
46.030 | 500. | ||
52.34 | 600. | ||
57.46 | 700. | ||
61.66 | 800. | ||
65.20 | 900. | ||
68.16 | 1000. | ||
70.70 | 1100. | ||
72.87 | 1200. | ||
74.74 | 1300. | ||
76.34 | 1400. | ||
77.72 | 1500. |
Condensed phase thermochemistry data
Go To: Top, Gas phase thermochemistry data, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°liquid | 24.72 ± 0.22 | kcal/mol | Ccb | Prosen and Rossini, 1945 | ALS |
ΔfH°liquid | 25.8 | kcal/mol | Ccb | Landrieu, Baylocq, et al., 1929 | ALS |
ΔfH°liquid | 20.9 ± 0.96 | kcal/mol | Ccb | N/A | recalculated with modern CO2,H2O thermo; estimated uncertainty (NOTE all values in source also have wrong sign); DRB |
ΔfH°liquid | -14.0 | kcal/mol | Ccb | Moureu and Andre, 1914 | ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°liquid | -1050. ± 10. | kcal/mol | AVG | N/A | Average of 9 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
S°liquid | 57.48 | cal/mol*K | N/A | Warfield and Petree, 1961 | DH |
S°liquid | 56.781 | cal/mol*K | N/A | Pitzer, Guttman, et al., 1946, 2 | DH |
S°liquid | 56.79 | cal/mol*K | N/A | Guttman and Westrum, 1943 | DH |
Constant pressure heat capacity of liquid
Cp,liquid (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
43.79 | 298.15 | Lebedev, Lebedev, et al., 1985 | DH |
43.64 | 298.16 | Warfield and Petree, 1961 | T = 10 to 300 K.; DH |
56.31 | 298. | Kurbatov, 1950 | T = 21 to 139 C.; DH |
43.700 | 298.15 | Pitzer, Guttman, et al., 1946, 2 | T = 15 to 300 K.; DH |
43.00 | 298.5 | Smith and Andrews, 1931 | T = 102 to 299 K. Value is unsmoothed experimental datum.; DH |
Mass spectrum (electron ionization)
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
Due to licensing restrictions, this spectrum cannot be downloaded.
Owner | NIST Mass Spectrometry Data Center Collection (C) 2014 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
---|---|
Origin | NIST Mass Spectrometry Data Center, 1998. |
NIST MS number | 290820 |
References
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Mass spectrum (electron ionization), Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Prosen and Rossini, 1945
Prosen, E.J.; Rossini, F.D.,
Heats of formation and combustion of 1,3-butadiene and styrene,
J. Res. NBS, 1945, 34, 59-63. [all data]
Landrieu, Baylocq, et al., 1929
Landrieu, P.; Baylocq, F.; Johnson, J.R.,
Etude thermochimique dans la serie furanique,
Bull. Soc. Chim. France, 1929, 45, 36-49. [all data]
Pitzer, Guttman, et al., 1946
Pitzer, K.S.; Guttman, L.; Westrum, E.F., Jr.,
The heat capacity, heats of fusion and vaporization, vapor pressure, entropy, vibration frequencies and barrier to internal rotation of styrene,
J. Am. Chem. Soc., 1946, 68, 2209-22. [all data]
Moureu and Andre, 1914
Moureu, C.; Andre, E.,
Thermochimie des composes acetyleniques,
Ann. Chim. Phys., 1914, 1, 113-145. [all data]
Pitzer K.S., 1946
Pitzer K.S., Jr.,
The heat capacity, heats of fusion and vaporization, vapor pressure, entropy, vibrational frequencies, and barrier to internal rotation of styrene,
J. Am. Chem. Soc., 1946, 68, 2209-2212. [all data]
Guttman L., 1943
Guttman L., Jr.,
The thermodynamics of styrene (phenylethylene), including equilibrium of formation from ethylbenzene,
J. Am. Chem. Soc., 1943, 65, 1246-1247. [all data]
Scott R.B., 1945
Scott R.B.,
Specific heats of gaseous 1,3-butadiene, isobutene, styrene, and ethylbenzene,
J. Res. Nat. Bur. Stand., 1945, 34, 243-254. [all data]
Thermodynamics Research Center, 1997
Thermodynamics Research Center,
Selected Values of Properties of Chemical Compounds., Thermodynamics Research Center, Texas A&M University, College Station, Texas, 1997. [all data]
Beckett C.W., 1946
Beckett C.W.,
The thermodynamics of styrene and its methyl derivatives,
J. Am. Chem. Soc., 1946, 68, 2213-2214. [all data]
Warfield and Petree, 1961
Warfield, R.W.; Petree, M.C.,
Thermodynamic properties of polystyrene and styrene,
J. Polymer Sci., 1961, 55, 497-505. [all data]
Pitzer, Guttman, et al., 1946, 2
Pitzer, K.S.; Guttman, L.; Westrum, E.F.,
Jr., The heat capacity, heats of fusion and vaporization, vapor pressure, entropy vibration frequencies and barrier to internal rotation of styrene,
J. Am. Chem. Soc., 1946, 68, 2209-2212. [all data]
Guttman and Westrum, 1943
Guttman, L.; Westrum, E.F.,
Jr., and Pitzer, K.S., The thermodynamics of styrene (phenylethylene), including equilibrium of formation from ethylbenzene,
J. Am. Chem. Soc., 1943, 65, 1246-1247. [all data]
Lebedev, Lebedev, et al., 1985
Lebedev, B.V.; Lebedev, N.K.; Smirnova, N.N.; Kozyreva, N.M.; Kirillin, A.I.; Korshak, V.V.,
The isotope effect in the thermodynamic parameters of polymerization of styrene,
Dokl. Akad. Nauk, 1985, SSSR 281, 379-383. [all data]
Kurbatov, 1950
Kurbatov, V.Ya.,
Specific heats of liquids. III. Specific heat of hydrocarbons with several noncondensed rings,
Zhur. Obshch. Khim., 1950, 20, 1139-1144. [all data]
Smith and Andrews, 1931
Smith, R.H.; Andrews, D.H.,
Thermal energy studies. I. Phenyl derivatives of methane,
ethane and some related compounds. J. Am. Chem. Soc., 1931, 53, 3644-3660. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Mass spectrum (electron ionization), References
- Symbols used in this document:
Cp,gas Constant pressure heat capacity of gas Cp,liquid Constant pressure heat capacity of liquid S°gas Entropy of gas at standard conditions S°liquid Entropy of liquid at standard conditions ΔcH°liquid Enthalpy of combustion of liquid at standard conditions ΔfH°gas Enthalpy of formation of gas at standard conditions ΔfH°liquid Enthalpy of formation of liquid at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.