Sulfur dioxide
- Formula: O2S
- Molecular weight: 64.064
- IUPAC Standard InChIKey: RAHZWNYVWXNFOC-UHFFFAOYSA-N
- CAS Registry Number: 7446-09-5
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: Sulfurous acid anhydride; Fermenicide powder; Fermenticide liquid; Sulfur oxide (SO2); Sulfurous anhydride; Sulfurous oxide; SO2; Sulphur dioxide; Fermenicide liquid; Schwefeldioxyd; Siarki dwutlenek; Sulfur oxide; UN 1079; Sulfur dioxide (SO2); Sulfur superoxide
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Phase change data, Henry's Law data, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | -296.81 ± 0.20 | kJ/mol | Review | Cox, Wagman, et al., 1984 | CODATA Review value |
ΔfH°gas | -296.84 | kJ/mol | Review | Chase, 1998 | Data last reviewed in June, 1961 |
Quantity | Value | Units | Method | Reference | Comment |
S°gas,1 bar | 248.223 ± 0.050 | J/mol*K | Review | Cox, Wagman, et al., 1984 | CODATA Review value |
S°gas,1 bar | 248.21 | J/mol*K | Review | Chase, 1998 | Data last reviewed in June, 1961 |
Gas Phase Heat Capacity (Shomate Equation)
Cp° = A + B*t + C*t2 + D*t3 +
E/t2
H° − H°298.15= A*t + B*t2/2 +
C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 −
E/(2*t2) + G
Cp = heat capacity (J/mol*K)
H° = standard enthalpy (kJ/mol)
S° = standard entropy (J/mol*K)
t = temperature (K) / 1000.
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | 298. to 1200. | 1200. to 6000. |
---|---|---|
A | 21.43049 | 57.48188 |
B | 74.35094 | 1.009328 |
C | -57.75217 | -0.076290 |
D | 16.35534 | 0.005174 |
E | 0.086731 | -4.045401 |
F | -305.7688 | -324.4140 |
G | 254.8872 | 302.7798 |
H | -296.8422 | -296.8422 |
Reference | Chase, 1998 | Chase, 1998 |
Comment | Data last reviewed in June, 1961 | Data last reviewed in June, 1961 |
Phase change data
Go To: Top, Gas phase thermochemistry data, Henry's Law data, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tfus | 200.75 | K | N/A | Hoffman and Vanderwerf, 1946 | Uncertainty assigned by TRC = 0.5 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Ttriple | 197.64 | K | N/A | Giauque and Stephenson, 1938 | Uncertainty assigned by TRC = 0.05 K; Temp. Scale based on T0 = 273.10 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Ptriple | 0.0167 | bar | N/A | Giauque and Stephenson, 1938 | Uncertainty assigned by TRC = 0.000067 bar; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Tc | 430.34 | K | N/A | Travers and Usher, 1906 | Uncertainty assigned by TRC = 0.4 K; TRC |
Enthalpy of vaporization
ΔvapH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
24.9 | 263. | N/A | Giauque and Stephenson, 1938, 2 | Based on data from 200. to 263. K.; AC |
24.9 | 263. | C | Giauque and Stephenson, 1938, 2 | AC |
Antoine Equation Parameters
log10(P) = A − (B / (T + C))
P = vapor pressure (bar)
T = temperature (K)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A | B | C | Reference | Comment |
---|---|---|---|---|---|
177.7 to 263. | 3.48586 | 668.225 | -72.252 | Stull, 1947 | Coefficents calculated by NIST from author's data. |
263. to 414.9 | 4.37798 | 966.575 | -42.071 | Stull, 1947 | Coefficents calculated by NIST from author's data. |
Henry's Law data
Go To: Top, Gas phase thermochemistry data, Phase change data, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Rolf Sander
Henry's Law constant (water solution)
kH(T) = k°H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
k°H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)
k°H (mol/(kg*bar)) | d(ln(kH))/d(1/T) (K) | Method | Reference | Comment |
---|---|---|---|---|
1.4 | 2900. | L | N/A | |
1.5 | 3200. | Q | N/A | Only the tabulated data between T = 273. K and T = 303. K from missing citation was used to derive kH and -Δ kH/R. Above T = 303. K the tabulated data could not be parameterized by equation (reference missing) very well. The partial pressure of water vapor (needed to convert some Henry's law constants) was calculated using the formula given by missing citation. The quantities A and α from missing citation were assumed to be identical. |
1.2 | 3100. | C | N/A | |
1.2 | 3200. | C | N/A | |
1.2 | 3100. | T | N/A | |
1.2 | 3100. | Q | N/A | missing citation refer to several references in their list of Henry's law constants but they don't assign them to specific species. |
1.3 | 3100. | N/A | N/A | |
1.2 | 3200. | X | N/A | The value is taken from the compilation of solubilities by W. Asman (unpublished). |
1.2 | X | N/A | Value given here as quoted by missing citation. | |
1.2 | C | N/A | ||
1.3 | 2800. | X | N/A | |
1.2 | 3000. | L | N/A | |
1.4 | 2800. | L | N/A | |
1.2 | 3100. | X | N/A | The value is taken from the compilation of solubilities by W. Asman (unpublished). |
1.1 | c | N/A | ||
1.2 | 3100. | c | N/A | |
1.2 | 3200. | X | N/A | The value is taken from the compilation of solubilities by W. Asman (unpublished). |
Gas Chromatography
Go To: Top, Gas phase thermochemistry data, Phase change data, Henry's Law data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Van Den Dool and Kratz RI, polar column, temperature ramp
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | CP-Wax 52CB | 856. | Mahadevan and Farmer, 2006 | 60. C @ 5. min, 4. K/min, 220. C @ 30. min; Column length: 50. m; Column diameter: 0.32 mm |
Normal alkane RI, polar column, temperature ramp
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | DB-Wax | 882. | Chyau and Mau, 1999 | 60. m/0.25 mm/0.25 μm, N2, 3. K/min; Tstart: 40. C; Tend: 210. C |
References
Go To: Top, Gas phase thermochemistry data, Phase change data, Henry's Law data, Gas Chromatography, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Cox, Wagman, et al., 1984
Cox, J.D.; Wagman, D.D.; Medvedev, V.A.,
CODATA Key Values for Thermodynamics, Hemisphere Publishing Corp., New York, 1984, 1. [all data]
Chase, 1998
Chase, M.W., Jr.,
NIST-JANAF Themochemical Tables, Fourth Edition,
J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]
Hoffman and Vanderwerf, 1946
Hoffman, K.R.; Vanderwerf, C.A.,
Addition Compounds of Sulfur Dioxide with Pyridine and the Picolines,
J. Am. Chem. Soc., 1946, 68, 997. [all data]
Giauque and Stephenson, 1938
Giauque, W.F.; Stephenson, C.C.,
Sulfur Dioxide. The Heat Capacity of Solid and Liquid. Vapor Pressure. Heat of Vap. The Entropy Values from Termal and Molecular Data,
J. Am. Chem. Soc., 1938, 60, 1389. [all data]
Travers and Usher, 1906
Travers, M.W.; Usher, F.L.,
The behavior of certain substance at the critical point,
Z. Phys. Chem., Stoechiom. Verwandtschaftsl., 1906, 57, 365-81. [all data]
Giauque and Stephenson, 1938, 2
Giauque, W.F.; Stephenson, C.C.,
Sulfur Dioxide. The Heat Capacity of Solid and Liquid. Vapor Pressure. Heat of Vaporization. The Entropy Values from Thermal and Molecular Data,
J. Am. Chem. Soc., 1938, 60, 6, 1389-1394, https://doi.org/10.1021/ja01273a034
. [all data]
Stull, 1947
Stull, Daniel R.,
Vapor Pressure of Pure Substances. Organic and Inorganic Compounds,
Ind. Eng. Chem., 1947, 39, 4, 517-540, https://doi.org/10.1021/ie50448a022
. [all data]
Mahadevan and Farmer, 2006
Mahadevan, K.; Farmer, L.,
Key Odor Impact Compounds in Three Yeast Extract Pastes,
J. Agric. Food Chem., 2006, 54, 19, 7242-7250, https://doi.org/10.1021/jf061102x
. [all data]
Chyau and Mau, 1999
Chyau, C.-C.; Mau, J.-L.,
Release of volatile compounds from microwave heating of garlic juice with 2,4-decadienals,
Food Chem., 1999, 64, 4, 531-535, https://doi.org/10.1016/S0308-8146(98)00162-9
. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Phase change data, Henry's Law data, Gas Chromatography, References
- Symbols used in this document:
Ptriple Triple point pressure S°gas,1 bar Entropy of gas at standard conditions (1 bar) Tc Critical temperature Tfus Fusion (melting) point Ttriple Triple point temperature d(ln(kH))/d(1/T) Temperature dependence parameter for Henry's Law constant k°H Henry's Law constant at 298.15K ΔfH°gas Enthalpy of formation of gas at standard conditions ΔvapH Enthalpy of vaporization - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.