Xenon

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Phase change data, Henry's Law data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Quantity Value Units Method Reference Comment
gas,1 bar169.685 ± 0.003J/mol*KReviewCox, Wagman, et al., 1984CODATA Review value
gas,1 bar169.68J/mol*KReviewChase, 1998Data last reviewed in March, 1982

Gas Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
    Cp = heat capacity (J/mol*K)
    H° = standard enthalpy (kJ/mol)
    S° = standard entropy (J/mol*K)
    t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 298. to 6000.
A 20.78600
B 7.449320×10-7
C -2.049401×10-7
D 1.066661×10-8
E 2.500261×10-8
F -6.197350
G 194.8380
H 0.000000
ReferenceChase, 1998
Comment Data last reviewed in March, 1982

Phase change data

Go To: Top, Gas phase thermochemistry data, Henry's Law data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director

Quantity Value Units Method Reference Comment
Tboil165.02KN/AZiegler, Mullins, et al., 1966Uncertainty assigned by TRC = 0.05 K; TRC
Quantity Value Units Method Reference Comment
Ttriple161.38KN/AKemp, Kemp, et al., 1985Uncertainty assigned by TRC = 0.02 K; studied as possible fixed point for IPTS-68; TRC
Ttriple161.37KN/AZiegler, Mullins, et al., 1966Uncertainty assigned by TRC = 0.05 K; TRC
Ttriple161.4KN/ALahr and Eversole, 1962Uncertainty assigned by TRC = 0.3 K; TRC
Ttriple161.36KN/AClusius and Weigand, 1940Uncertainty assigned by TRC = 0.2 K; See property X for dP/dT for c-l equil.; TRC
Quantity Value Units Method Reference Comment
Ptriple0.81600barN/AFonseca and Lobo, 1989Uncertainty assigned by TRC = 0.0001 bar; TRC
Ptriple0.6166barN/ACalado, Rebelo, et al., 1986Uncertainty assigned by TRC = 0.00007 bar; TRC
Ptriple0.8165barN/AZiegler, Mullins, et al., 1966Uncertainty assigned by TRC = 0.0019 bar; TRC
Quantity Value Units Method Reference Comment
Tc289.74KN/ATheeuwes and Bearman, 1970Uncertainty assigned by TRC = 0.02 K; PVT, values chosen concordant with vapour pressures measured up to 284 K; TRC
Quantity Value Units Method Reference Comment
ρc8.371mol/lN/ATheeuwes and Bearman, 1970Uncertainty assigned by TRC = 0.00830 mol/l; PVT, values chosen concordant with vapour pressures measured up to 284 K; TRC

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (bar)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
161.43 to 162.632.83881326.595-49.796Chen, Lim, et al., 1975Coefficents calculated by NIST from author's data.
161.70 to 184.703.80675577.661-13.0Michels and Wassenaar, 1950Coefficents calculated by NIST from author's data.

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Henry's Law data

Go To: Top, Gas phase thermochemistry data, Phase change data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Rolf Sander

Henry's Law constant (water solution)

kH(T) = H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)

H (mol/(kg*bar)) d(ln(kH))/d(1/T) (K) Method Reference
0.00432200.LN/A
0.00431900.MN/A

References

Go To: Top, Gas phase thermochemistry data, Phase change data, Henry's Law data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Cox, Wagman, et al., 1984
Cox, J.D.; Wagman, D.D.; Medvedev, V.A., CODATA Key Values for Thermodynamics, Hemisphere Publishing Corp., New York, 1984, 1. [all data]

Chase, 1998
Chase, M.W., Jr., NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]

Ziegler, Mullins, et al., 1966
Ziegler, W.T.; Mullins, J.C.; Berquist, A.R., Calculation of the Vapor Pressure and Heats of Vaporization and Sublimation of Liquids and Solids below One Atmosphere Pressure. VIII. Xenon, Ga. Inst. Technol., Eng. Exp. Stn., Proj. A-764, Tech. Rep. No. 3, 1966. [all data]

Kemp, Kemp, et al., 1985
Kemp, R.C.; Kemp, W.R.G.; Smart, P.W., The triple point of xenon as a possible defining point on an international temperature scale, Metrologia, 1985, 21, 43. [all data]

Lahr and Eversole, 1962
Lahr, P.H.; Eversole, W.G., Compression Isotherms of Argon, Krypton, and Xenon Through the Freezing Zone, J. Chem. Eng. Data, 1962, 7, 42-47. [all data]

Clusius and Weigand, 1940
Clusius, K.; Weigand, K., Melting Curves of the Gases A, Kr, Xe, CH4, CH3D, CD4, C2H4, C2H6, COS, and PH3 to 200 Atmospheres Pressure. The Chane of Volume on Melting, Z. Phys. Chem., Abt. B, 1940, 46, 1-37. [all data]

Fonseca and Lobo, 1989
Fonseca, I.M.A.; Lobo, L.Q., Thermodynamics of liquid mixtures of xenon and methyl fluoride, Fluid Phase Equilib., 1989, 47, 249. [all data]

Calado, Rebelo, et al., 1986
Calado, J.C.G.; Rebelo, L.P.N.; Streett, W.B.; Zollweg, J.A., Thermodynamics of liquid (dimethylether + xenon), J. Chem. Thermodyn., 1986, 18, 931. [all data]

Theeuwes and Bearman, 1970
Theeuwes, F.; Bearman, R.J., The p,V,T behavior of dense fluids V. The vapor pressure and saturated liquid density of xenon, J. Chem. Thermodyn., 1970, 2, 507-12. [all data]

Chen, Lim, et al., 1975
Chen, H.H.; Lim, C.C.; Aziz, R.A., The Enthalpy of Vaporization and Internal Energy of Liquid Argon, Krypton, and Xenon Determined from Vapor Pressures, J. Chem. Thermodyn., 1975, 7, 2, 191-199, https://doi.org/10.1016/0021-9614(75)90268-2 . [all data]

Michels and Wassenaar, 1950
Michels, A.; Wassenaar, T., Vapour Pressure of Liquid Xenon, Physica (Amsterdam), 1950, 16, 3, 253-256, https://doi.org/10.1016/0031-8914(50)90023-1 . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Phase change data, Henry's Law data, References