Ethane, 1,1,1-trifluoro-
- Formula: C2H3F3
- Molecular weight: 84.0404
- IUPAC Standard InChIKey: UJPMYEOUBPIPHQ-UHFFFAOYSA-N
- CAS Registry Number: 420-46-2
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: Methylfluoroform; 1,1,1-Trifluoroethane; CH3CF3; Freon 143a; FC 143a; Fluorocarbon FC143a; R 143a; 1,1,1-Trifluoroform
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Phase change data
Go To: Top, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
DH - Eugene S. Domalski and Elizabeth D. Hearing
AC - William E. Acree, Jr., James S. Chickos
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 226. | K | N/A | PCR Inc., 1990 | BS |
Tboil | 226.45 | K | N/A | Henne and Renoll, 1936 | Uncertainty assigned by TRC = 0.1 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Ttriple | 161.82 | K | N/A | Russell, Golding, et al., 1944 | Crystal phase 1 phase; Uncertainty assigned by TRC = 0.02 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Tc | 345.860 | K | N/A | Fujiwara, Nakamura, et al., 1998 | Uncertainty assigned by TRC = 0.05 K; For ITS-90 scale. Includes review of and comparison with previous literature; TRC |
Tc | 345.860 | K | N/A | Aoyama, Kishizawa, et al., 1996 | Uncertainty assigned by TRC = 0.02 K; For ITS-90, at temperture corres. to DC, includes review of and comparison with previous literture; TRC |
Tc | 345.97 | K | N/A | Fukushima, 1993 | Uncertainty assigned by TRC = 0.2 K; TRC |
Tc | 346.25 | K | N/A | Mears, Stahl, et al., 1955 | Uncertainty assigned by TRC = 0.7 K; by sealed tube method; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Pc | 37.639 | bar | N/A | Fujiwara, Nakamura, et al., 1998 | Uncertainty assigned by TRC = 0.05 bar; includes review of and comparison with previous literature; TRC |
Pc | 34.116 | bar | N/A | Zhang, Sato, et al., 1995 | Uncertainty assigned by TRC = 0.05 bar; by extrapolation of vapor pressure to Tc from previous publ.; TRC |
Pc | 37.69 | bar | N/A | Fukushima, 1993 | Uncertainty assigned by TRC = 0.05 bar; TRC |
Pc | 37.5763 | bar | N/A | Mears, Stahl, et al., 1955 | Uncertainty assigned by TRC = 1.0342 bar; from vapor pressure equation at Tc; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ρc | 5.16 | mol/l | N/A | Fujiwara, Nakamura, et al., 1998 | Uncertainty assigned by TRC = 0.04 mol/l; includes review of and comparison with previous literature; TRC |
ρc | 5.16 | mol/l | N/A | Aoyama, Kishizawa, et al., 1996 | Uncertainty assigned by TRC = 0.02 mol/l; at critical opalesence, includes review of and comparison with previous literature; TRC |
ρc | 5.10 | mol/l | N/A | Fukushima, 1993 | Uncertainty assigned by TRC = 0.04 mol/l; TRC |
ρc | 5.16 | mol/l | N/A | Mears, Stahl, et al., 1955 | Uncertainty assigned by TRC = 0.18 mol/l; rectilinear diameters; TRC |
Enthalpy of vaporization
ΔvapH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
19.175 | 224.40 | N/A | Russell, Golding, et al., 1944, 2 | P - 94.54 kPa; DH |
18.1 | 240. | EB | Weber and Defibaugh, 1996 | Based on data from 236. to 280. K.; AC |
17.5 | 250. | EB | Weber and Defibaugh, 1996 | Based on data from 236. to 280. K.; AC |
16.7 | 260. | EB | Weber and Defibaugh, 1996 | Based on data from 236. to 280. K.; AC |
15.9 | 270. | EB | Weber and Defibaugh, 1996 | Based on data from 236. to 280. K.; AC |
18.9 | 233. | BG | Mears, Stahl, et al., 1955, 2 | AC |
16.4 | 273. | BG | Mears, Stahl, et al., 1955, 2 | AC |
13.8 | 303. | BG | Mears, Stahl, et al., 1955, 2 | AC |
8.7 | 333. | BG | Mears, Stahl, et al., 1955, 2 | AC |
20.5 | 211. | N/A | Russell, Golding, et al., 1944, 2 | Based on data from 174. to 226. K.; AC |
19.2 ± 0.1 | 224. | C | Russell, Golding, et al., 1944, 2 | AC |
Entropy of vaporization
ΔvapS (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
85.45 | 224.40 | Russell, Golding, et al., 1944, 2 | P; DH |
Antoine Equation Parameters
log10(P) = A − (B / (T + C))
P = vapor pressure (bar)
T = temperature (K)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A | B | C | Reference | Comment |
---|---|---|---|---|---|
173.60 to 225.78 | 4.02423 | 786.645 | -30.093 | Russell, Golding, et al., 1944, 2 | Coefficents calculated by NIST from author's data. |
Enthalpy of fusion
ΔfusH (kJ/mol) | Temperature (K) | Reference | Comment |
---|---|---|---|
6.19 | 161.9 | Acree, 1991 | AC |
Enthalpy of phase transition
ΔHtrs (kJ/mol) | Temperature (K) | Initial Phase | Final Phase | Reference | Comment |
---|---|---|---|---|---|
0.297 | 156.35 | crystaline, II | crystaline, I | Russell, Golding, et al., 1944, 2 | DH |
6.192 | 161.82 | crystaline, I | liquid | Russell, Golding, et al., 1944, 2 | DH |
Entropy of phase transition
ΔStrs (J/mol*K) | Temperature (K) | Initial Phase | Final Phase | Reference | Comment |
---|---|---|---|---|---|
1.90 | 156.35 | crystaline, II | crystaline, I | Russell, Golding, et al., 1944, 2 | DH |
38.26 | 161.82 | crystaline, I | liquid | Russell, Golding, et al., 1944, 2 | DH |
Gas Chromatography
Go To: Top, Phase change data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Normal alkane RI, non-polar column, temperature ramp
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | OV-101 | 268. | Zenkevich, 2005 | 25. m/0.20 mm/0.10 μm, N2/He, 6. K/min; Tstart: 50. C; Tend: 250. C |
References
Go To: Top, Phase change data, Gas Chromatography, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
PCR Inc., 1990
PCR Inc.,
Research Chemicals Catalog 1990-1991, PCR Inc., Gainesville, FL, 1990, 1. [all data]
Henne and Renoll, 1936
Henne, A.L.; Renoll, M.W.,
J. Am. Chem. Soc., 1936, 58, 889. [all data]
Russell, Golding, et al., 1944
Russell, H.K.; Golding, D.R.; Yost, D.M.,
The heat capacity, heat of transition, fusion & vaporization, Vapor press. and entropy of 1,1,1-trifluoroethane,
J. Am. Chem. Soc., 1944, 66, 16. [all data]
Fujiwara, Nakamura, et al., 1998
Fujiwara, K.; Nakamura, S.; Noguchi, M.,
Critical Parameters and Vapor Pressure Measurements for 1,1,1-Trifluoroethane (R-143a),
J. Chem. Eng. Data, 1998, 43, 55-9. [all data]
Aoyama, Kishizawa, et al., 1996
Aoyama, H.; Kishizawa, G.; Sato, H.; Watanabe, K.,
Vapor-Liquid Coexistence Curves in the Critical Region and the Critical Temperatures and Densities of 1,1,1,2-Tetrafluoroethane (R-134a), 1,1,1- Trifluoroethane (R-143a), and 1,1,1,2,3,3- Hexafluorop,
J. Chem. Eng. Data, 1996, 41, 1046-1051. [all data]
Fukushima, 1993
Fukushima, M.,
Measurements of vapor pressure , vapor-liquid coexistence curve and critical parameters of HFC-143a,
Nippon Reito Kyokai Ronbunshu, 1993, 10, 87-93. [all data]
Mears, Stahl, et al., 1955
Mears, W.H.; Stahl, R.F.; Orfeo, S.R.; Shair, R.C.; Kells, L.F.; Thompson, W.; McCann, H.,
Thermodynamic Properties of Halogenated Ethanes and Ethylenes,
Ind. Eng. Chem., 1955, 47, 1449. [all data]
Zhang, Sato, et al., 1995
Zhang, H.-L.; Sato, H.; Watanabe, K.,
Vapor Pressures, Gas-Phase PVT Properties, and Second Virial Coefficients for 1,1,1-Trifluoroethane,
J. Chem. Eng. Data, 1995, 40, 887-90. [all data]
Russell, Golding, et al., 1944, 2
Russell, H., Jr.; Golding, D.R.V.; Yost, D.M.,
The heat capacity, heats of transition, fusion and vaporization, vapor pressure and entropy of 1,1,1-trifluoroethane,
J. Am. Chem. Soc., 1944, 66, 16-20. [all data]
Weber and Defibaugh, 1996
Weber, L.A.; Defibaugh, D.R.,
Vapor Pressures and PVT Properties of the Gas Phase of 1,1,1-Trifluoroethane,
J. Chem. Eng. Data, 1996, 41, 6, 1477-1480, https://doi.org/10.1021/je9602071
. [all data]
Mears, Stahl, et al., 1955, 2
Mears, Whitney H.; Stahl, Richard F.; Orfeo, S. Robert; Shair, Robert C.; Kells, Lyman F.; Thompson, Walter; McCann, Harold,
Thermodynamic Properties of Halogenated Ethanes and Ethylenes,
Ind. Eng. Chem., 1955, 47, 7, 1449-1454, https://doi.org/10.1021/ie50547a052
. [all data]
Acree, 1991
Acree, William E.,
Thermodynamic properties of organic compounds: enthalpy of fusion and melting point temperature compilation,
Thermochimica Acta, 1991, 189, 1, 37-56, https://doi.org/10.1016/0040-6031(91)87098-H
. [all data]
Zenkevich, 2005
Zenkevich, I.G.,
Experimentally measured retention indices., 2005. [all data]
Notes
Go To: Top, Phase change data, Gas Chromatography, References
- Symbols used in this document:
Pc Critical pressure Tboil Boiling point Tc Critical temperature Ttriple Triple point temperature ΔHtrs Enthalpy of phase transition ΔStrs Entropy of phase transition ΔfusH Enthalpy of fusion ΔvapH Enthalpy of vaporization ΔvapS Entropy of vaporization ρc Critical density - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.