2-Butanone

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas-238.6 ± 0.84kJ/molCmChao and Zwolinski, 1976ALS
Δfgas-238.7 ± 0.96kJ/molEqkBuckley and Herington, 1965Reanalyzed by Cox and Pilcher, 1970, Original value = -238.0 kJ/mol; ALS
Δfgas-238.1kJ/molCcbSinke and Oetting, 1964ALS

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
57.03100.Chao J., 1986p=1 bar. Recommended values agree with results of statistical calculations [ Sinke G.C., 1964, Chao J., 1976] within 0.2-1.8 J/mol*K. S(T) values calculated by [ Nickerson J.K., 1961] are different from selected ones by 4-5 J/mol*K.; GT
68.98150.
80.20200.
96.12273.15
101.68 ± 0.14298.15
102.09300.
124.37400.
145.05500.
163.15600.
178.77700.
192.25800.
203.91900.
213.991000.
222.691100.
230.211200.
236.701300.
242.311400.
247.171500.

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
113.43 ± 0.23347.15von Geiseler G., 1973Experimental data [ Vilcu R., 1975] differ appreciably from data selected here. Their correctness seems to be doubtful (see [ Kabo G.J., 1995]). Low accuracy is also expected for experimental value of Cp(410 K)=123.85 J/mol*K [ Bennewitz K., 1938]. Please also see Nickerson J.K., 1961.; GT
115.65 ± 0.17358.79
118.70 ± 0.18371.90
119.03 ± 0.24372.15
121.75 ± 0.18385.60
124.39 ± 0.25397.15
124.60 ± 0.19399.55
126.98 ± 0.19410.70
131.71 ± 0.26432.15
138.62 ± 0.28467.15

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfliquid-273.3 ± 1.2kJ/molCcbSinke and Oetting, 1964ALS
Δfliquid-279.0kJ/molCcbParks, Mosley, et al., 1950see Moore, Renquist, et al., 1940; ALS
Quantity Value Units Method Reference Comment
Δcliquid-2444.2kJ/molCcbSinke and Oetting, 1964Corresponding Δfliquid = -273.2 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcliquid-2438.4kJ/molCcbParks, Mosley, et al., 1950see Moore, Renquist, et al., 1940; Corresponding Δfliquid = -278.9 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcliquid-2436.3 ± 1.5kJ/molCcbCrog and Hunt, 1942Corresponding Δfliquid = -281.1 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Quantity Value Units Method Reference Comment
liquid239.0J/mol*KN/AAndon, Counsell, et al., 1968DH
liquid238.82J/mol*KN/ASinke and Oetting, 1964DH
liquid241.4J/mol*KN/AParks, Kennedy, et al., 1956Extrapolation below 80 K, 53.47 J/mol*K.; DH

Constant pressure heat capacity of liquid

Cp,liquid (J/mol*K) Temperature (K) Reference Comment
159.298.15Malhotra and Woolf, 1992T = 278 to 338 K. p = 0.1 MPa.; DH
162.2303.15Reddy, 1986T = 303.15, 313.15 K.; DH
158.4298.15Costas and Patterson, 1985T = 283.15, 298.15, 313.15 K.; DH
158.4298.15Costas and Patterson, 1985, 2DH
157.91298.15Grolier and Benson, 1984DH
158.4298.1Roux, Perron, et al., 1978T = 277 to 313 K.; DH
159.2298.15Grolier, Benson, et al., 1975DH
158.7298.15Andon, Counsell, et al., 1968T = 10 to 320 K.; DH
158.0293.Rastorguev and Ganiev, 1967T = 293 to 353 K.; DH
158.91298.15Sinke and Oetting, 1964T = 13 to 308 K.; DH
158.41298.15Parks, Kennedy, et al., 1956T = 80 to 300 K.; DH
160.7297.0Kolosovskii and Udovenko, 1934DH
160.7297.0de Kolossowsky and Udowenko, 1933DH

Phase change data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
BS - Robert L. Brown and Stephen E. Stein
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
AC - William E. Acree, Jr., James S. Chickos
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Tboil353. ± 1.KAVGN/AAverage of 88 out of 89 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus186.4 ± 0.5KAVGN/AAverage of 6 values; Individual data points
Quantity Value Units Method Reference Comment
Ttriple186.5KN/AWilhoit, Chao, et al., 1985Uncertainty assigned by TRC = 0.01 K; TRC
Ttriple186.47KN/AAndon, Counsell, et al., 1968, 2Uncertainty assigned by TRC = 0.04 K; TRC
Ttriple186.4KN/ASinke and Oetting, 1964, 2Uncertainty assigned by TRC = 0.06 K; measured for the sample, 1/f = 1.00; TRC
Ttriple186.48KN/ASinke and Oetting, 1964, 2Uncertainty assigned by TRC = 0.03 K; measured for the sample, 1/f = 1.00; TRC
Ttriple186.1KN/AParks, Kennedy, et al., 1956, 2Uncertainty assigned by TRC = 0.1 K; TRC
Quantity Value Units Method Reference Comment
Tc535. ± 2.KAVGN/AAverage of 9 values; Individual data points
Quantity Value Units Method Reference Comment
Pc42. ± 2.barAVGN/AAverage of 8 values; Individual data points
Quantity Value Units Method Reference Comment
ρc3.74mol/lN/AKobe, Crawford, et al., 1955Uncertainty assigned by TRC = 0.21 mol/l; TRC
ρc3.49mol/lN/ARosenbaum, 1951Uncertainty assigned by TRC = 0.06 mol/l; TRC
Quantity Value Units Method Reference Comment
Δvap34. ± 2.kJ/molAVGN/AAverage of 6 values; Individual data points

Enthalpy of vaporization

ΔvapH (kJ/mol) Temperature (K) Method Reference Comment
31.3352.8N/AMajer and Svoboda, 1985 
34.6309.AStephenson and Malanowski, 1987Based on data from 294. to 342. K.; AC
32.5368.AStephenson and Malanowski, 1987Based on data from 353. to 403. K.; AC
31.6412.AStephenson and Malanowski, 1987Based on data from 397. to 479. K.; AC
31.1488.AStephenson and Malanowski, 1987Based on data from 473. to 537. K.; AC
33.9330.A,EB,GSStephenson and Malanowski, 1987Based on data from 315. to 363. K. See also Ambrose, Ellender, et al., 1975 and Collerson, Counsell, et al., 1965.; AC
35.6273.N/ADi Cave, Chianese, et al., 1978Based on data from 258. to 362. K.; AC
33.8315.CGeiseler, Quitzsch, et al., 1973AC
33.8 ± 0.1314.CNickerson, Kobe, et al., 1961AC
32.3 ± 0.1338.CNickerson, Kobe, et al., 1961AC
31.3 ± 0.1352.CNickerson, Kobe, et al., 1961AC
30.5 ± 0.1363.CNickerson, Kobe, et al., 1961AC
30.0 ± 0.1370.CNickerson, Kobe, et al., 1961AC
33.9329.N/AStull, 1947Based on data from 314. to 370. K.; AC

Enthalpy of vaporization

ΔvapH = A exp(-βTr) (1 − Tr)β
    ΔvapH = Enthalpy of vaporization (at saturation pressure) (kJ/mol)
    Tr = reduced temperature (T / Tc)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A (kJ/mol) β Tc (K) Reference Comment
298. to 371.51.870.2925536.8Majer and Svoboda, 1985 

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (bar)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
314.6 to 370.63.98941150.207-63.904Nickerson, Kobe, et al., 1961Coefficents calculated by NIST from author's data.

Enthalpy of fusion

ΔfusH (kJ/mol) Temperature (K) Reference Comment
8.385186.47Andon, Counsell, et al., 1968DH
8.4387186.48Sinke and Oetting, 1964DH
8.44186.5Acree, 1991AC
8.485186.1Parks, Kennedy, et al., 1956DH

Entropy of fusion

ΔfusS (J/mol*K) Temperature (K) Reference Comment
44.98186.47Andon, Counsell, et al., 1968DH
45.25186.48Sinke and Oetting, 1964DH
45.59186.1Parks, Kennedy, et al., 1956DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
B - John E. Bartmess
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
RCD - Robert C. Dunbar

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

C4H9O+ + 2-Butanone = (C4H9O+ • 2-Butanone)

By formula: C4H9O+ + C4H8O = (C4H9O+ • C4H8O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr127.kJ/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr129.J/mol*KN/ALarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr88.7kJ/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M

C5H11O+ + 2-Butanone = (C5H11O+ • 2-Butanone)

By formula: C5H11O+ + C4H8O = (C5H11O+ • C4H8O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr123.kJ/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr123.J/mol*KN/ALarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr86.6kJ/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M

C4H7O- + Hydrogen cation = 2-Butanone

By formula: C4H7O- + H+ = C4H8O

Quantity Value Units Method Reference Comment
Δr1536. ± 12.kJ/molG+TSChyall, Brickhouse, et al., 1994gas phase; Primary and secondary sites are of equal acidity by equilibration. Acidity from Zimmerman, Reed, et al., 1977; B
Δr1545. ± 10.kJ/molD-EAZimmerman, Reed, et al., 1977gas phase; B
Quantity Value Units Method Reference Comment
Δr1508. ± 11.kJ/molIMREChyall, Brickhouse, et al., 1994gas phase; Primary and secondary sites are of equal acidity by equilibration. Acidity from Zimmerman, Reed, et al., 1977; B
Δr1516. ± 11.kJ/molH-TSZimmerman, Reed, et al., 1977gas phase; B

C3H9Sn+ + 2-Butanone = (C3H9Sn+ • 2-Butanone)

By formula: C3H9Sn+ + C4H8O = (C3H9Sn+ • C4H8O)

Quantity Value Units Method Reference Comment
Δr164.kJ/molPHPMSStone and Splinter, 1984gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr137.J/mol*KN/AStone and Splinter, 1984gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
92.5525.PHPMSStone and Splinter, 1984gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M

CH6N+ + 2-Butanone = (CH6N+ • 2-Butanone)

By formula: CH6N+ + C4H8O = (CH6N+ • C4H8O)

Bond type: Hydrogen bonds of the type NH+-O between organics

Quantity Value Units Method Reference Comment
Δr105.kJ/molPHPMSMeot-Ner, 1984gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr100.J/mol*KN/AMeot-Ner, 1984gas phase; Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
47.7553.PHPMSMeot-Ner, 1984gas phase; Entropy change calculated or estimated; M

Chlorine anion + 2-Butanone = (Chlorine anion • 2-Butanone)

By formula: Cl- + C4H8O = (Cl- • C4H8O)

Quantity Value Units Method Reference Comment
Δr61.9 ± 8.4kJ/molIMRELarson and McMahon, 1984gas phase; B,M
Quantity Value Units Method Reference Comment
Δr87.9J/mol*KN/ALarson and McMahon, 1984gas phase; switching reaction(Cl-)(CH3)2CO, Entropy change calculated or estimated; Larson and McMahon, 1984, 2; M
Quantity Value Units Method Reference Comment
Δr36. ± 8.4kJ/molIMRELarson and McMahon, 1984gas phase; B,M

Hydrogen + 2-Butanone = 2-Butanol

By formula: H2 + C4H8O = C4H10O

Quantity Value Units Method Reference Comment
Δr-54.18kJ/molEqkBuckley and Herington, 1965gas phase; ALS
Δr-54.3 ± 0.4kJ/molChydDolliver, Gresham, et al., 1938gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -55.2 ± 0.4 kJ/mol; At 355 °K; ALS

C4H7O- + Hydrogen cation = 2-Butanone

By formula: C4H7O- + H+ = C4H8O

Quantity Value Units Method Reference Comment
Δr1678. ± 17.kJ/molCIDTGraul and Squires, 1990gas phase; B
Δr<1711.3kJ/molCIDTGraul and Squires, 1988gas phase; B
Quantity Value Units Method Reference Comment
Δr1646. ± 17.kJ/molH-TSGraul and Squires, 1990gas phase; B

Nitric oxide anion + 2-Butanone = (Nitric oxide anion • 2-Butanone)

By formula: NO- + C4H8O = (NO- • C4H8O)

Quantity Value Units Method Reference Comment
Δr177.kJ/molICRReents and Freiser, 1981gas phase; switching reaction,Thermochemical ladder(NO+)C2H5OH, Entropy change calculated or estimated; Farid and McMahon, 1978; M

C4H7O- + Hydrogen cation = 2-Butanone

By formula: C4H7O- + H+ = C4H8O

Quantity Value Units Method Reference Comment
Δr1540. ± 12.kJ/molG+TSCumming and Kebarle, 1978gas phase; B
Quantity Value Units Method Reference Comment
Δr1512. ± 8.4kJ/molIMRECumming and Kebarle, 1978gas phase; B

(CAS Reg. No. 35730-33-7 • 42949672952-Butanone) + 2-Butanone = CAS Reg. No. 35730-33-7

By formula: (CAS Reg. No. 35730-33-7 • 4294967295C4H8O) + C4H8O = CAS Reg. No. 35730-33-7

Quantity Value Units Method Reference Comment
Δr164. ± 9.2kJ/molN/ATaft, 1987gas phase; value altered from reference due to change in acidity scale; B

2-Butanol = Hydrogen + 2-Butanone

By formula: C4H10O = H2 + C4H8O

Quantity Value Units Method Reference Comment
Δr54.22kJ/molEqkCubberley and Mueller, 1946gas phase; ALS
Δr57.170kJ/molEqkKolb and Burwell, 1945gas phase; ALS

Magnesium ion (1+) + 2-Butanone = (Magnesium ion (1+) • 2-Butanone)

By formula: Mg+ + C4H8O = (Mg+ • C4H8O)

Quantity Value Units Method Reference Comment
Δr280.kJ/molICROperti, Tews, et al., 1988gas phase; switching reaction,Thermochemical ladder(CH3OH); M

2,2-Dimethoxybutane + Water = 2Methyl Alcohol + 2-Butanone

By formula: C6H14O2 + H2O = 2CH4O + C4H8O

Quantity Value Units Method Reference Comment
Δr19.33 ± 0.04kJ/molCmWiberg and Squires, 1979liquid phase; Heat of hydrolysis; ALS

Hydrogen iodide + 3-Iodo-2-butanone = Iodine + 2-Butanone

By formula: HI + C4H7IO = I2 + C4H8O

Quantity Value Units Method Reference Comment
Δr-42.7kJ/molKinSolly, Golden, et al., 1970gas phase; ALS

Hydrogen + Methyl vinyl ketone = 2-Butanone

By formula: H2 + C4H6O = C4H8O

Quantity Value Units Method Reference Comment
Δr-550.6kJ/molChydVeselova and Sul'man, 1980liquid phase; ALS

Sodium ion (1+) + 2-Butanone = (Sodium ion (1+) • 2-Butanone)

By formula: Na+ + C4H8O = (Na+ • C4H8O)

Quantity Value Units Method Reference Comment
Δr131. ± 7.1kJ/molCIDTMoision and Armentrout, 2002RCD

Henry's Law data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Rolf Sander

Henry's Law constant (water solution)

kH(T) = H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)

H (mol/(kg*bar)) d(ln(kH))/d(1/T) (K) Method Reference Comment
20.5000.LN/A 
20.5000.MN/AThe data from Table 1 by missing citation was used to redo the regression analysis. The data for acetone in their Table 2 is wrong.
7.7 XN/AValue given here as cited in missing citation.
6.8-5200.XN/A 
4.1 to 7.7 XHowe, Mullins, et al., 1987Value given here as quoted by missing citation.
7.15800.XN/A 
18.5700.MN/A 
10. MN/AValue at T = 303. K.
18. MN/A 
17. XN/AValue given here as quoted by missing citation.
19. MN/A 
21. MButtery, Ling, et al., 1969 
7.1 RN/A 

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Chao and Zwolinski, 1976
Chao, J.; Zwolinski, B.J., Ideal gas thermodynamic properties of propanone and 2-butanone, J. Phys. Chem. Ref. Data, 1976, 5, 319-328. [all data]

Buckley and Herington, 1965
Buckley, E.; Herington, E.F.G., Equilibria in some secondary alcohol + hydrogen + ketone systems, Trans. Faraday Soc., 1965, 61, 1618-1625. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Sinke and Oetting, 1964
Sinke, G.C.; Oetting, F.L., The chemical thermodynamic properties of methyl ethyl ketone, J. Phys. Chem., 1964, 68, 1354-1358. [all data]

Chao J., 1986
Chao J., Thermodynamic properties of key organic oxygen compounds in the carbon range C1 to C4. Part 2. Ideal gas properties, J. Phys. Chem. Ref. Data, 1986, 15, 1369-1436. [all data]

Sinke G.C., 1964
Sinke G.C., The chemical thermodynamic properties of methyl ethyl ketone, J. Phys. Chem., 1964, 68, 1354-1358. [all data]

Chao J., 1976
Chao J., Ideal gas thermodynamic properties of propanone and 2-butanone, J. Phys. Chem. Ref. Data, 1976, 5, 319-328. [all data]

Nickerson J.K., 1961
Nickerson J.K., The thermodynamic properties of the methyl ketone series, J. Phys. Chem., 1961, 65, 1037-1043. [all data]

von Geiseler G., 1973
von Geiseler G., The heat capacity and the heat of vaporization of isomeric butylmethylketones and propylacetates, Z. Phys. Chem. (Leipzig), 1973, 252, 170-176. [all data]

Vilcu R., 1975
Vilcu R., Determination of heat capacities of some alcohols and ketones in vapor phase, Rev. Roum. Chim., 1975, 20, 603-609. [all data]

Kabo G.J., 1995
Kabo G.J., Thermodynamic properties, conformation, and phase transitions of cyclopentanol, J. Chem. Thermodyn., 1995, 27, 953-967. [all data]

Bennewitz K., 1938
Bennewitz K., Molar heats of vapor organic compounds, Z. Phys. Chem. (Leipzig), 1938, B39, 126-144. [all data]

Parks, Mosley, et al., 1950
Parks, G.S.; Mosley, J.R.; Peterson, P.V., Jr., Heats of combustion and formation of some organic compounds containing oxygen, J. Chem. Phys., 1950, 18, 152. [all data]

Moore, Renquist, et al., 1940
Moore, G.E.; Renquist, M.L.; Parks, G.S., Thermal data on organic compounds. XX. Modern combustion data for two methylnonanes, methyl ethyl ketone, thiophene and six cycloparaffins, J. Am. Chem. Soc., 1940, 62, 1505-1507. [all data]

Crog and Hunt, 1942
Crog, R.S.; Hunt, H., Heats of combustion. II. The heats of combustion of ethyl methyl ketone and ethylene oxide, J. Phys. Chem., 1942, 46, 1162-1163. [all data]

Andon, Counsell, et al., 1968
Andon, R.J.L.; Counsell, J.F.; Martin, J.F., Thermodynamic properties of organic oxygen compounds. Part XX. The low-temperature heat capacity and entropy of C4 and C5 ketones, J. Chem. Soc. A, 1968, 1894-1897. [all data]

Parks, Kennedy, et al., 1956
Parks, G.S.; Kennedy, W.D.; Gates, R.R.; Mosley, J.R.; Moore, G.E.; Renquist, M.L., Thermal data on organic compounds. XXVI. Some heat capacity, entropy and free energy data for seven compounds containing oxygen., Not In System, 1956, 78, 56-59. [all data]

Malhotra and Woolf, 1992
Malhotra, R.; Woolf, L.A., Thermodynamic properties of butan-2-one at temperatures from 278 to 338 K and pressures from 0.1 MPa to 280 MPa; predictions for higher ketones, J. Chem. Thermodynam., 1992, 24, 1207-1217. [all data]

Reddy, 1986
Reddy, K.S., Isentropic compressibilities of binary liquid mixtures at 303.15 and 313.15 K, J. Chem. Eng. Data, 1986, 31, 238-240. [all data]

Costas and Patterson, 1985
Costas, M.; Patterson, D., Heat capacities of water + organic-solvent mixtures, J. Chem. Soc., Faraday Trans. 1, 1985, 81, 2381-2398. [all data]

Costas and Patterson, 1985, 2
Costas, M.; Patterson, D., Self-association of alcohols in inert solvents, J. Chem. Soc., Faraday Trans. 1, 1985, 81, 635-654. [all data]

Grolier and Benson, 1984
Grolier, J.-P.E.; Benson, G.C., Thermodynamic properties of binary mixtures containing ketones. VIII. Heat capacities and volumes of some n-alkanone + n-alkane mixtures at 298.15 K, Can. J. Chem., 1984, 62, 949-953. [all data]

Roux, Perron, et al., 1978
Roux, G.; Perron, G.; Desnoyers, J.E., The heat capacities and volumes of some low molecular weight amides, ketones, esters, and ethers in water over the whole solubility range, Can. J. Chem., 1978, 56, 2808-2814. [all data]

Grolier, Benson, et al., 1975
Grolier, J-P.E.; Benson, G.C.; Picker, P., Simultaneous measurements of heat capacities and densities of organic liquid mixtures-systems containing ketones, J. Chem. Eng. Data, 1975, 20, 243-246. [all data]

Rastorguev and Ganiev, 1967
Rastorguev, Yu.L.; Ganiev, Yu.A., Study of the heat capacity of selected solvents, Izv. Vyssh. Uchebn. Zaved. Neft Gaz. 10, 1967, No.1, 79-82. [all data]

Kolosovskii and Udovenko, 1934
Kolosovskii, N.A.; Udovenko, W.W., Specific heat of liquids. II., Zhur. Obshchei Khim., 1934, 4, 1027-1033. [all data]

de Kolossowsky and Udowenko, 1933
de Kolossowsky, N.A.; Udowenko, W.W., Mesure des chaleurs specifique moleculaires de quelques liquides, Compt. rend., 1933, 197, 519-520. [all data]

Wilhoit, Chao, et al., 1985
Wilhoit, R.C.; Chao, J.; Hall, K.R., Thermodynamic Properties of Key Organic Compounds in the Carbon Range C1 to C4. Part 1. Properties of Condensed Phases, J. Phys. Chem. Ref. Data, 1985, 14, 1. [all data]

Andon, Counsell, et al., 1968, 2
Andon, R.J.L.; Counsell, J.F.; Martin, J.F., Thermodynamic properties of organic oxygen compounds. Part XX. The low- temperature heat capacity and entropy of C4 and C5 ketones., J. Chem. Soc. A, 1968, 1968, 1894-7. [all data]

Sinke and Oetting, 1964, 2
Sinke, G.C.; Oetting, F.L., The Chemical Thermodynamic Properties of Methyl Ethyl Ketone, J. Phys. Chem., 1964, 68, 1354-8. [all data]

Parks, Kennedy, et al., 1956, 2
Parks, G.S.; Kennedy, W.D.; Gates, R.R.; Mosley, J.R.; Moore, G.E.; Renquist, M.L., Thermal Data on Organic Compounds XXVI. Some Heat Capacity, Entropy and Free Energy Data for Seven Compounds Containing Oxygen, J. Am. Chem. Soc., 1956, 78, 56-9. [all data]

Kobe, Crawford, et al., 1955
Kobe, K.A.; Crawford, H.R.; Stephenson, R.W., Critical Properties and Vapor Pressures of Some Ketones, Ind. Eng. Chem., 1955, 47, 1767-72. [all data]

Rosenbaum, 1951
Rosenbaum, M., , M.S. Thesis, Univ. Tex., Austin, TX, 1951. [all data]

Majer and Svoboda, 1985
Majer, V.; Svoboda, V., Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Ambrose, Ellender, et al., 1975
Ambrose, D.; Ellender, J.H.; Lees, E.B.; Sprake, C.H.S.; Townsend, R., Thermodynamic properties of organic oxygen compounds XXXVIII. Vapour pressures of some aliphatic ketones, The Journal of Chemical Thermodynamics, 1975, 7, 5, 453-472, https://doi.org/10.1016/0021-9614(75)90275-X . [all data]

Collerson, Counsell, et al., 1965
Collerson, R.R.; Counsell, J.F.; Handley, R.; Martin, J.F.; Sprake, C.H.S., 677. Thermodynamic properties of organic oxygen compounds. Part XV. Purification and vapour pressures of some ketones and ethers, J. Chem. Soc., 1965, 3697, https://doi.org/10.1039/jr9650003697 . [all data]

Di Cave, Chianese, et al., 1978
Di Cave, Sergio; Chianese, Angelo; Prantera, Antonio, Vapor-liquid equilibrium of the system methylethylketone-sec-butyl alcohol, J. Chem. Eng. Data, 1978, 23, 4, 279-281, https://doi.org/10.1021/je60079a013 . [all data]

Geiseler, Quitzsch, et al., 1973
Geiseler, G.; Quitzsch, K.; Hofmann, H.-P.; Pfestorf, R.Z., Z. Phys. Chem. (Leipzig), 1973, 252, 170. [all data]

Nickerson, Kobe, et al., 1961
Nickerson, J.K.; Kobe, K.A.; McKetta, John J., THE THERMODYNAMIC PROPERTIES OF THE METHYL KETONE SERIES, J. Phys. Chem., 1961, 65, 6, 1037-1043, https://doi.org/10.1021/j100824a038 . [all data]

Stull, 1947
Stull, Daniel R., Vapor Pressure of Pure Substances. Organic and Inorganic Compounds, Ind. Eng. Chem., 1947, 39, 4, 517-540, https://doi.org/10.1021/ie50448a022 . [all data]

Acree, 1991
Acree, William E., Thermodynamic properties of organic compounds: enthalpy of fusion and melting point temperature compilation, Thermochimica Acta, 1991, 189, 1, 37-56, https://doi.org/10.1016/0040-6031(91)87098-H . [all data]

Larson and McMahon, 1982
Larson, J.W.; McMahon, T.B., Formation, Thermochemistry, and Relative Stabilities of Proton - Bound dimers of Oxygen n - Donor Bases from Ion Cyclotron Resonance Solvent - Exchange Equilibria Measurements, J. Am. Chem. Soc., 1982, 104, 23, 6255, https://doi.org/10.1021/ja00387a016 . [all data]

Grimsrud and Kebarle, 1973
Grimsrud, E.P.; Kebarle, P., Gas Phase Ion Equilibria Studies of the Solvation of the Hydrogen Ion by Methanol, Dimethyl Ether and Water. Effect of Hydrogen Bonding, J. Am. Chem. Soc., 1973, 95, 24, 7939, https://doi.org/10.1021/ja00805a002 . [all data]

Lias, Liebman, et al., 1984
Lias, S.G.; Liebman, J.F.; Levin, R.D., Evaluated gas phase basicities and proton affinities of molecules heats of formation of protonated molecules, J. Phys. Chem. Ref. Data, 1984, 13, 695. [all data]

Keesee and Castleman, 1986
Keesee, R.G.; Castleman, A.W., Jr., Thermochemical data on Ggs-phase ion-molecule association and clustering reactions, J. Phys. Chem. Ref. Data, 1986, 15, 1011. [all data]

Chyall, Brickhouse, et al., 1994
Chyall, L.J.; Brickhouse, M.D.; Schnute, M.E.; Squires, R.R., Kinetic versus thermodynamic control in the deprotonation of unsymmetrical ketones in the gas phase, J. Am. Chem. Soc., 1994, 116, 19, 8681, https://doi.org/10.1021/ja00098a031 . [all data]

Zimmerman, Reed, et al., 1977
Zimmerman, A.H.; Reed, K.J.; Brauman, J.I., Photodetachment of electrons from enolate anions. Gas phase electron affinities of enolate radicals, J. Am. Chem. Soc., 1977, 99, 7203. [all data]

Stone and Splinter, 1984
Stone, J.A.; Splinter, D.E., A high-pressure mass spectrometric study of the binding of (CH3)3Sn+ to lewis bases in the gas phase, Int. J. Mass Spectrom. Ion Processes, 1984, 59, 169. [all data]

Meot-Ner, 1984
Meot-Ner, (Mautner)M., The Ionic Hydrogen Bond and Ion Solvation. 1. -NH+ O-, -NH+ N- and -OH+ O- Bonds. Correlations with Proton Affinity. Deviations Due to Structural Effects, J. Am. Chem. Soc., 1984, 106, 5, 1257, https://doi.org/10.1021/ja00317a015 . [all data]

Larson and McMahon, 1984
Larson, J.W.; McMahon, T.B., Hydrogen bonding in gas phase anions. An experimental investigation of the interaction between chloride ion and bronsted acids from ICR chloride exchange equilibria, J. Am. Chem. Soc., 1984, 106, 517. [all data]

Larson and McMahon, 1984, 2
Larson, J.W.; McMahon, T.B., Gas phase negative ion chemistry of alkylchloroformates, Can. J. Chem., 1984, 62, 675. [all data]

Dolliver, Gresham, et al., 1938
Dolliver, M.A.; Gresham, T.L.; Kistiakowsky, G.B.; Smith, E.A.; Vaughan, W.E., Heats of organic reactions. VI. Heats of hydrogenation of some oxygen-containing compounds, J. Am. Chem. Soc., 1938, 60, 440-450. [all data]

Graul and Squires, 1990
Graul, S.T.; Squires, R.R., Gas-Phase Acidities Derived from Threshold Energies for Activated Reactions, J. Am. Chem. Soc., 1990, 112, 7, 2517, https://doi.org/10.1021/ja00163a007 . [all data]

Graul and Squires, 1988
Graul, S.T.; Squires, R.R., On the Existence of Alkyl Carbanions in the Gas Phase, J. Am. Chem. Soc., 1988, 110, 2, 607, https://doi.org/10.1021/ja00210a054 . [all data]

Reents and Freiser, 1981
Reents, W.D.; Freiser, B.S., Gas-Phase Binding Energies and Spectroscopic Properties of NO+ Charge-Transfer Complexes, J. Am. Chem. Soc., 1981, 103, 2791. [all data]

Farid and McMahon, 1978
Farid, R.; McMahon, T.B., Gas-Phase Ion-Molecule Reactions of Alkyl Nitrites by Ion Cyclotron Resonance Spectroscopy, Int. J. Mass Spectrom. Ion Phys., 1978, 27, 2, 163, https://doi.org/10.1016/0020-7381(78)80037-0 . [all data]

Cumming and Kebarle, 1978
Cumming, J.B.; Kebarle, P., Summary of gas phase measurements involving acids AH. Entropy changes in proton transfer reactions involving negative ions. Bond dissociation energies D(A-H) and electron affinities EA(A), Can. J. Chem., 1978, 56, 1. [all data]

Taft, 1987
Taft, R.W., The Nature and Analysis of Substitutent Electronic Effects, Personal communication. See also Prog. Phys. Org. Chem., 1987, 16, 1. [all data]

Cubberley and Mueller, 1946
Cubberley, A.H.; Mueller, M.B., Equilibrium studies on the dehydrogenation of primary and secondary alcohols. I. 2-Butanol, 2-octanol, cyclopentanol and benzyl alcohol, J. Am. Chem. Soc., 1946, 68, 1149-1151. [all data]

Kolb and Burwell, 1945
Kolb, H.J.; Burwell, R.L., Jr., Equilibrium in the dehydrogenation of secondary propyl and butyl alcohols, J. Am. Chem. Soc., 1945, 67, 1084-1088. [all data]

Operti, Tews, et al., 1988
Operti, L.; Tews, E.C.; Freiser, B.S., Determination of Gas-Phase Ligand Binding Energies to Mg+ by FTMS Techniques, J. Am. Chem. Soc., 1988, 110, 12, 3847, https://doi.org/10.1021/ja00220a020 . [all data]

Wiberg and Squires, 1979
Wiberg, K.B.; Squires, R.R., Thermodynamics of hydrolysis aliphatic ketals. An entropy component of steric effects, J. Am. Chem. Soc., 1979, 101, 5512-5515. [all data]

Solly, Golden, et al., 1970
Solly, R.K.; Golden, D.M.; Benson, S.W., Kinetics and thermochemistry of the gas phase reaction of methyl ethyl ketone with iodine. II. The heat of formation and unimolecular decomposition of 2-iodo-3-butanone, Int. J. Chem. Kinet., 1970, 2, 393-407. [all data]

Veselova and Sul'man, 1980
Veselova, M.E.; Sul'man, E.M., Effect of the chemical structure of α,β-unsaturated esters and ketones on the selectivity of their hydrogenation, Svoistva Veshchestv i Stroenie Molekul, Kalinin, 1980, 140-143. [all data]

Moision and Armentrout, 2002
Moision, R.M.; Armentrout, P.B., Experimental and Theoretical Dissection of Sodium Cation/Glycine Interactions, J. Phys. Chem A, 2002, 106, 43, 10350, https://doi.org/10.1021/jp0216373 . [all data]

Howe, Mullins, et al., 1987
Howe, G.B.; Mullins, M.E.; Rogers, T.N., , Evaluation and Prediction of Henry's Law Constants and Aqueous Sol. for Solvents and Hydrocarbon Fuel Comp. NTIS Rep. ELS-86-66, 1987. [all data]

Buttery, Ling, et al., 1969
Buttery, R.G.; Ling, L.C.; Guadagni, D.G., Volatilities Aldehydes, Ketones, and Esters in Dilute Water Solution, J. Agric. Food Chem., 1969, 17, 385-389. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, References