Ethanol, 2,2,2-trifluoro-
- Formula: C2H3F3O
- Molecular weight: 100.0398
- IUPAC Standard InChIKey: RHQDFWAXVIIEBN-UHFFFAOYSA-N
- CAS Registry Number: 75-89-8
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: β,β,β-Trifluoroethyl alcohol; Fluorinol 85; 2,2,2-Trifluoroethanol; 2,2,2-Trifluoroethyl alcohol; CF3CH2OH; Perfluoro-1,1-dihydroethanol; TFE; NSC 451; 1,1H-perfluoroethanol
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Condensed phase thermochemistry data
Go To: Top, Phase change data, Reaction thermochemistry data, Henry's Law data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°liquid | -222.89 ± 0.19 | kcal/mol | Ccr | Kolesov, Ivanov, et al., 1971 | Corrected for CODATA value of ΔfH; Correction of Kolesov, Zenkov, et al., 1965 |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°liquid | -196.35 ± 0.19 | kcal/mol | Ccr | Kolesov, Ivanov, et al., 1971 | Corrected for CODATA value of ΔfH; Correction of Kolesov, Zenkov, et al., 1965 |
Phase change data
Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
AC - William E. Acree, Jr., James S. Chickos
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 348. ± 3. | K | AVG | N/A | Average of 6 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Tfus | 229.65 | K | N/A | Kobayashi and Nagashima, 1985 | Uncertainty assigned by TRC = 0.3 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Tc | 498.57 | K | N/A | Bier, Tuerk, et al., 1990 | Uncertainty assigned by TRC = 0.1 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Pc | 47.62 | atm | N/A | Bier, Tuerk, et al., 1990 | Uncertainty assigned by TRC = 0.15 atm; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ΔvapH° | 10.51 | kcal/mol | V | Rochester and Symonds, 1973 | ALS |
Enthalpy of vaporization
ΔvapH (kcal/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
11.0 | 289. | A | Stephenson and Malanowski, 1987 | Based on data from 276. to 302. K.; AC |
10.5 | 313. | A | Stephenson and Malanowski, 1987 | Based on data from 298. to 328. K. See also Dykyj, 1970.; AC |
9.92 | 313. | MM | Rochester and Symonds, 1973 | Based on data from 298. to 328. K.; AC |
10.6 | 285. | MM | Meeks and Goldfarb, 1967 | Based on data from 273. to 298. K.; AC |
Antoine Equation Parameters
log10(P) = A − (B / (T + C))
P = vapor pressure (atm)
T = temperature (K)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A | B | C | Reference | Comment |
---|---|---|---|---|---|
272.8 to 298.6 | 3.56375 | 855.921 | -111.932 | Meeks and Goldfarb, 1967, 2 | Coefficents calculated by NIST from author's data. |
Reaction thermochemistry data
Go To: Top, Condensed phase thermochemistry data, Phase change data, Henry's Law data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
MS - José A. Martinho Simões
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
By formula: F- + C2H3F3O = (F- • C2H3F3O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 39.1 ± 2.0 | kcal/mol | IMRE | Larson and McMahon, 1983 | gas phase; These relative affinities are ca. 10 kcal/mol weaker than threshold values (see Wenthold and Squires, 1995) for donors greater than ca. 27 kcal/mol in free energy. This discrepancy has not yet been resolved, though the stronger value appears preferable.; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 26.8 | cal/mol*K | N/A | Larson and McMahon, 1983 | gas phase; switching reaction(F-)H2O, Entropy change calculated or estimated; Arshadi, Yamdagni, et al., 1970; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 31.1 ± 2.0 | kcal/mol | IMRE | Larson and McMahon, 1983 | gas phase; These relative affinities are ca. 10 kcal/mol weaker than threshold values (see Wenthold and Squires, 1995) for donors greater than ca. 27 kcal/mol in free energy. This discrepancy has not yet been resolved, though the stronger value appears preferable.; B,M |
By formula: C2H4F3O+ + C2H3F3O = (C2H4F3O+ • C2H3F3O)
Bond type: Hydrogen bonds of the type OH-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 31.8 | kcal/mol | ICR | Larson and McMahon, 1982 | gas phase; switching reaction(H2O)2H+, Entropy change calculated or estimated; Cunningham, Payzant, et al., 1972, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 28.9 | cal/mol*K | N/A | Larson and McMahon, 1982 | gas phase; switching reaction(H2O)2H+, Entropy change calculated or estimated; Cunningham, Payzant, et al., 1972, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 23.2 | kcal/mol | ICR | Larson and McMahon, 1982 | gas phase; switching reaction(H2O)2H+, Entropy change calculated or estimated; Cunningham, Payzant, et al., 1972, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M |
By formula: CN- + C2H3F3O = (CN- • C2H3F3O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 24.00 ± 0.80 | kcal/mol | TDAs | Larson, Szulejko, et al., 1988 | gas phase; B,M |
ΔrH° | 24.6 ± 3.5 | kcal/mol | IMRE | Larson and McMahon, 1987 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 30. | cal/mol*K | PHPMS | Larson, Szulejko, et al., 1988 | gas phase; M |
ΔrS° | 26.1 | cal/mol*K | N/A | Larson and McMahon, 1987 | gas phase; switching reaction,Thermochemical ladder(CN-)H2O, Entropy change calculated or estimated; Payzant, Yamdagni, et al., 1971; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 15.10 ± 0.20 | kcal/mol | TDAs | Larson, Szulejko, et al., 1988 | gas phase; B |
ΔrG° | 16.4 ± 2.3 | kcal/mol | IMRE | Larson and McMahon, 1987 | gas phase; B,M |
By formula: Cl- + C2H3F3O = (Cl- • C2H3F3O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 24.0 ± 2.0 | kcal/mol | IMRE | Larson and McMahon, 1984 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 25.0 | cal/mol*K | N/A | Larson and McMahon, 1984 | gas phase; switching reaction(Cl-)CH3COOH, Entropy change calculated or estimated; Larson and McMahon, 1984, 2; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 16.5 ± 2.0 | kcal/mol | IMRE | Larson and McMahon, 1984 | gas phase; B,M |
C2H2F3O- + =
By formula: C2H2F3O- + H+ = C2H3F3O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 361.7 ± 2.5 | kcal/mol | G+TS | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 354.1 ± 2.0 | kcal/mol | IMRE | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale; B |
By formula: HS- + C2H3F3O = (HS- • C2H3F3O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 26.80 ± 0.50 | kcal/mol | TDAs | Sieck and Meot-ner, 1989 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 22.6 | cal/mol*K | PHPMS | Sieck and Meot-ner, 1989 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 20.1 ± 1.5 | kcal/mol | TDAs | Sieck and Meot-ner, 1989 | gas phase; B |
By formula: C5H5- + C2H3F3O = (C5H5- • C2H3F3O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 20.6 ± 1.0 | kcal/mol | TDAs | Meot-ner, 1988 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 24.3 | cal/mol*K | PHPMS | Meot-ner, 1988 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 13.3 ± 1.0 | kcal/mol | TDAs | Meot-ner, 1988 | gas phase; B |
By formula: CH6N+ + C2H3F3O = (CH6N+ • C2H3F3O)
Bond type: Hydrogen bonds of the type NH+-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 19.1 | kcal/mol | PHPMS | Meot-Ner, 1984 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 28.5 | cal/mol*K | PHPMS | Meot-Ner, 1984 | gas phase; M |
+ = C8H8F3OS-
By formula: C6H5S- + C2H3F3O = C8H8F3OS-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 21.00 ± 0.20 | kcal/mol | TDAs | Sieck and Meot-ner, 1989 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 13.50 ± 0.60 | kcal/mol | TDAs | Sieck and Meot-ner, 1989 | gas phase; B |
By formula: C6H5S- + C2H3F3O = (C6H5S- • C2H3F3O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 21.0 | kcal/mol | PHPMS | Sieck and Meot-ner, 1989 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 25.1 | cal/mol*K | PHPMS | Sieck and Meot-ner, 1989 | gas phase; M |
+ = C2H2D3F4O-
By formula: F- + C2H3F3O = C2H2D3F4O-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 30.5 ± 2.0 | kcal/mol | IMRE | Wilkinson, Szulejko, et al., 1992 | gas phase; Reported relative to ROH..F-, 0.5 kcal/mol weaker.; B |
C20H32Zr (solution) + (solution) = C22H33F3OZr (solution) + (g)
By formula: C20H32Zr (solution) + C2H3F3O (solution) = C22H33F3OZr (solution) + H2 (g)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -27.01 ± 0.50 | kcal/mol | RSC | Schock and Marks, 1988 | solvent: Toluene; MS |
C22H33F3OZr (solution) + (solution) = C24H34F6O2Zr (solution) + (g)
By formula: C22H33F3OZr (solution) + C2H3F3O (solution) = C24H34F6O2Zr (solution) + H2 (g)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -20.1 ± 0.2 | kcal/mol | RSC | Schock and Marks, 1988 | solvent: Toluene; MS |
C5H11BrMg (solution) + (solution) = C2H2BrF3MgO (solution) + (solution)
By formula: C5H11BrMg (solution) + C2H3F3O (solution) = C2H2BrF3MgO (solution) + C5H12 (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -47.71 | kcal/mol | RSC | Holm, 1983 | solvent: Diethyl ether; MS |
By formula: I- + C2H3F3O = (I- • C2H3F3O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 20.1 ± 1.0 | kcal/mol | TDAs | Caldwell, Masucci, et al., 1989 | gas phase; B,M |
Henry's Law data
Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Rolf Sander
Henry's Law constant (water solution)
kH(T) = k°H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
k°H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)
k°H (mol/(kg*bar)) | d(ln(kH))/d(1/T) (K) | Method | Reference |
---|---|---|---|
58. | 5900. | M | N/A |
References
Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Kolesov, Ivanov, et al., 1971
Kolesov, V.P.; Ivanov, L.S.; Skuratov, S.M.,
The standard enthalpy of formation of 2,2,2-trifluoroethanol,
Russ. J. Phys. Chem. (Engl. Transl.), 1971, 45, 303-305. [all data]
Kolesov, Zenkov, et al., 1965
Kolesov, V.P.; Zenkov, I.D.; Skuratov, S.M.,
Standard enthalpy of formation of 2,2,2-trifluoroethanol,
Russ. J. Phys. Chem. (Engl. Transl.), 1965, 39, 1320-1322. [all data]
Kobayashi and Nagashima, 1985
Kobayashi, K.; Nagashima, A.,
Measurement of the Viscosity of Trifluoroethanol and Its Aqueous Solutions under High Pressure,
Bull. JSME, 1985, 28, 1453. [all data]
Bier, Tuerk, et al., 1990
Bier, K.; Tuerk, M.; Zhai, J.,
Vapor. press. of trifluoroethanol
in Int. Inst. Ref., Comm. B1, Proc. Meet., Herzlia, Israel, 129-39, 1990. [all data]
Rochester and Symonds, 1973
Rochester, C.H.; Symonds, J.R.,
Thermodynamic studies of fluoroalchols Part 1.-Vapour pressures and enthalpies of vaporization,
J. Chem. Soc. Faraday Trans. 1, 1973, 69, 1267. [all data]
Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw,
Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2
. [all data]
Dykyj, 1970
Dykyj, J.,
Petrochemica, 1970, 10, 2, 51. [all data]
Meeks and Goldfarb, 1967
Meeks, Alan C.; Goldfarb, Ivan J.,
Vapor pressure of fluoroalcohols,
J. Chem. Eng. Data, 1967, 12, 2, 196-196, https://doi.org/10.1021/je60033a010
. [all data]
Meeks and Goldfarb, 1967, 2
Meeks, A.C.; Goldfarb, I.J.,
Vapor Pressure of Fluoroalcohols,
J. Chem. Eng. Data, 1967, 12, 2, 196, https://doi.org/10.1021/je60033a010
. [all data]
Larson and McMahon, 1983
Larson, J.W.; McMahon, T.B.,
Strong hydrogen bonding in gas-phase anions. An ion cyclotron resonance determination of fluoride binding energetics to bronsted acids from gas-phase fluoride exchange equilibria measurements,
J. Am. Chem. Soc., 1983, 105, 2944. [all data]
Wenthold and Squires, 1995
Wenthold, P.G.; Squires, R.R.,
Bond dissociation energies of F2(-) and HF2(-). A gas-phase experimental and G2 theoretical study,
J. Phys. Chem., 1995, 99, 7, 2002, https://doi.org/10.1021/j100007a034
. [all data]
Arshadi, Yamdagni, et al., 1970
Arshadi, M.; Yamdagni, R.; Kebarle, P.,
Hydration of Halide Negative Ions in the Gas Phase. II. Comparison of Hydration Energies for the Alkali Positive and Halide Negative Ions,
J. Phys. Chem., 1970, 74, 7, 1475, https://doi.org/10.1021/j100702a014
. [all data]
Larson and McMahon, 1982
Larson, J.W.; McMahon, T.B.,
Formation, Thermochemistry, and Relative Stabilities of Proton - Bound dimers of Oxygen n - Donor Bases from Ion Cyclotron Resonance Solvent - Exchange Equilibria Measurements,
J. Am. Chem. Soc., 1982, 104, 23, 6255, https://doi.org/10.1021/ja00387a016
. [all data]
Cunningham, Payzant, et al., 1972
Cunningham, A.J.; Payzant, J.D.; Kebarle, P.,
A Kinetic Study of the Proton Hydrate H+(H2O)n Equilibria in the Gas Phase,
J. Am. Chem. Soc., 1972, 94, 22, 7627, https://doi.org/10.1021/ja00777a003
. [all data]
Lias, Liebman, et al., 1984
Lias, S.G.; Liebman, J.F.; Levin, R.D.,
Evaluated gas phase basicities and proton affinities of molecules heats of formation of protonated molecules,
J. Phys. Chem. Ref. Data, 1984, 13, 695. [all data]
Keesee and Castleman, 1986
Keesee, R.G.; Castleman, A.W., Jr.,
Thermochemical data on Ggs-phase ion-molecule association and clustering reactions,
J. Phys. Chem. Ref. Data, 1986, 15, 1011. [all data]
Larson, Szulejko, et al., 1988
Larson, J.W.; Szulejko, J.E.; McMahon, T.B.,
Gas Phase Lewis Acid-Base Interactions. An Experimental Determination of Cyanide Binding Energies From Ion Cyclotron Resonance and High-Pressure Mass Spectrometric Equilibrium Measurements.,
J. Am. Chem. Soc., 1988, 110, 23, 7604, https://doi.org/10.1021/ja00231a004
. [all data]
Larson and McMahon, 1987
Larson, J.W.; McMahon, T.B.,
Hydrogen bonding in gas phase anions. The energetics of interaction between cyanide ion and bronsted acids,
J. Am. Chem. Soc., 1987, 109, 6230. [all data]
Payzant, Yamdagni, et al., 1971
Payzant, J.D.; Yamdagni, R.; Kebarle, P.,
Hydration of CN-, NO2-, NO3-, and HO- in the gas phase,
Can. J. Chem., 1971, 49, 3308. [all data]
Larson and McMahon, 1984
Larson, J.W.; McMahon, T.B.,
Hydrogen bonding in gas phase anions. An experimental investigation of the interaction between chloride ion and bronsted acids from ICR chloride exchange equilibria,
J. Am. Chem. Soc., 1984, 106, 517. [all data]
Larson and McMahon, 1984, 2
Larson, J.W.; McMahon, T.B.,
Gas phase negative ion chemistry of alkylchloroformates,
Can. J. Chem., 1984, 62, 675. [all data]
Bartmess, Scott, et al., 1979
Bartmess, J.E.; Scott, J.A.; McIver, R.T., Jr.,
The gas phase acidity scale from methanol to phenol,
J. Am. Chem. Soc., 1979, 101, 6047. [all data]
Sieck and Meot-ner, 1989
Sieck, L.W.; Meot-ner, M.,
Ionic Hydrogen Bond and Ion Solvation. 8. RS-..HOR Bond Strengths. Correlation with Acidities.,
J. Phys. Chem., 1989, 93, 4, 1586, https://doi.org/10.1021/j100341a079
. [all data]
Meot-ner, 1988
Meot-ner, M.,
The Ionic Hydrogen Bond and Solvation. 7. Interaction Energies of Carbanions with Solvent Molecules,
J. Am. Chem. Soc., 1988, 110, 12, 3858, https://doi.org/10.1021/ja00220a022
. [all data]
Meot-Ner, 1984
Meot-Ner, (Mautner)M.,
The Ionic Hydrogen Bond and Ion Solvation. 1. -NH+ O-, -NH+ N- and -OH+ O- Bonds. Correlations with Proton Affinity. Deviations Due to Structural Effects,
J. Am. Chem. Soc., 1984, 106, 5, 1257, https://doi.org/10.1021/ja00317a015
. [all data]
Wilkinson, Szulejko, et al., 1992
Wilkinson, F.E.; Szulejko, J.E.; Allison, C.E.; Mcmahon, T.B.,
Fourier Transform Ion Cyclotron Resonance Investigation of the Deuterium Isotope Effect on Gas Phase Ion/Molecule Hydrogen Bonding Interactions in Alcohol-Fluoride Adduct Ions,
Int. J. Mass Spectrom., 1992, 117, 487-505, https://doi.org/10.1016/0168-1176(92)80110-M
. [all data]
Schock and Marks, 1988
Schock, L.E.; Marks, T.J.,
J. Am. Chem. Soc., 1988, 110, 7701. [all data]
Holm, 1983
Holm, T.,
Acta Chem. Scand. B, 1983, 37, 797. [all data]
Caldwell, Masucci, et al., 1989
Caldwell, G.W.; Masucci, J.A.; Ikonomou, M.G.,
Negative Ion Chemical Ionization Mass Spectrometry - Binding of Molecules to Bromide and Iodide Anions,
Org. Mass Spectrom., 1989, 24, 1, 8, https://doi.org/10.1002/oms.1210240103
. [all data]
Notes
Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, References
- Symbols used in this document:
Pc Critical pressure Tboil Boiling point Tc Critical temperature Tfus Fusion (melting) point d(ln(kH))/d(1/T) Temperature dependence parameter for Henry's Law constant k°H Henry's Law constant at 298.15K ΔcH°liquid Enthalpy of combustion of liquid at standard conditions ΔfH°liquid Enthalpy of formation of liquid at standard conditions ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions ΔvapH Enthalpy of vaporization ΔvapH° Enthalpy of vaporization at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.