Amylene hydrate
- Formula: C5H12O
- Molecular weight: 88.1482
- IUPAC Standard InChIKey: MSXVEPNJUHWQHW-UHFFFAOYSA-N
- CAS Registry Number: 75-85-4
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: 2-Butanol, 2-methyl-; tert-Pentyl alcohol; tert-Amyl alcohol; tert-Pentanol; Dimethyl ethyl carbinol; Ethyl dimethyl carbinol; 1,1-Dimethyl-1-propanol; 2-Methyl-2-butanol; C2H5C(CH3)2OH; 2-Methyl butanol-2; 3-Methylbutan-3-ol; t-Amyl alcohol; 2-Methylbutan-2-ol; tert-Isoamyl alcohol; 3-Methyl-butanol-(3); Methyl-2 butanol-2; Methyl-3 butanol-3; NSC 25498; 2-methyl-2-butanol (tert-amyl alcohol)
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | -329.3 | kJ/mol | N/A | Chao and Rossini, 1965 | Value computed using ΔfHliquid° value of -379.5±0.54 kj/mol from Chao and Rossini, 1965 and ΔvapH° value of 50.17 kj/mol from missing citation.; DRB |
Quantity | Value | Units | Method | Reference | Comment |
S°gas | 362.8 ± 6.7 | J/mol*K | N/A | Wilhoit R.C., 1973 | Other third-law value of entropy at 298.15 K is 366.85 J/mol*K [ Stull D.R., 1969].; GT |
Constant pressure heat capacity of gas
Cp,gas (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
167.7 ± 4.1 | 381.35 | Stromsoe E., 1970 | Ideal gas heat capacities are given by [ Stromsoe E., 1970] as a linear function Cp=f1*(a+bT). This expression approximates the experimental values with the average deviation of 4.14 J/mol*K. The accuracy of the experimental heat capacities [ Stromsoe E., 1970] is estimated as less than 0.3%.; GT |
168.6 ± 4.1 | 384.65 | ||
169.4 ± 4.1 | 387.45 | ||
171.9 ± 4.1 | 396.05 | ||
172.4 ± 4.1 | 398.05 | ||
180.3 ± 4.1 | 425.95 | ||
194.3 ± 4.1 | 475.25 | ||
207.2 ± 4.1 | 520.85 | ||
222.8 ± 4.1 | 576.05 |
Condensed phase thermochemistry data
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°liquid | -379.5 ± 0.54 | kJ/mol | Ccb | Chao and Rossini, 1965 | ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°liquid | -3303.1 ± 0.46 | kJ/mol | Ccb | Chao and Rossini, 1965 | Corresponding ΔfHºliquid = -379.5 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
Quantity | Value | Units | Method | Reference | Comment |
S°liquid | 229.3 | J/mol*K | N/A | Parks, Huffman, et al., 1933 | Extrapolation below 90 K, 46.78 J/mol*K.; DH |
Constant pressure heat capacity of liquid
Cp,liquid (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
247.15 | 298.15 | Piekarski and Somsen, 1988 | DH |
248.86 | 298.15 | Benson and D'Arcy, 1986 | DH |
248.86 | 298.15 | Benson and D'Arcy, 1986, 2 | DH |
247.3 | 298.15 | D'Aprano, DeLisi, et al., 1983 | Data given at 288 and 298 K.; DH |
244.14 | 294.4 | Parks, Huffman, et al., 1933 | T = 92 to 294 K. Value is unsmoothed experimental datum.; DH |
Phase change data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
CAL - James S. Chickos, William E. Acree, Jr., Joel F. Liebman, Students of Chem 202 (Introduction to the Literature of Chemistry), University of Missouri -- St. Louis
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 375.1 ± 0.9 | K | AVG | N/A | Average of 38 out of 42 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Tfus | 264.2 | K | N/A | Costello and Bowden, 1958 | Uncertainty assigned by TRC = 0.5 K; TRC |
Tfus | 263.95 | K | N/A | Wibaut, Hoog, et al., 1939 | Uncertainty assigned by TRC = 0.5 K; TRC |
Tfus | 262.75 | K | N/A | Wibaut, Hoog, et al., 1939 | Uncertainty assigned by TRC = 0.6 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Ttriple | 264.0 | K | N/A | Parks, Huffman, et al., 1933, 2 | Crystal phase 1 phase; Uncertainty assigned by TRC = 0.2 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Tc | 543.7 ± 0.5 | K | N/A | Gude and Teja, 1995 | |
Tc | 543.7 | K | N/A | Quadri, Khilar, et al., 1991 | Uncertainty assigned by TRC = 0.7 K; TRC |
Tc | 545. | K | N/A | Majer and Svoboda, 1985 | |
Tc | 544.9 | K | N/A | Brown, 1906 | TRC |
Quantity | Value | Units | Method | Reference | Comment |
Pc | 37.1 ± 0.2 | bar | N/A | Gude and Teja, 1995 | |
Pc | 37.10 | bar | N/A | Quadri, Khilar, et al., 1991 | Uncertainty assigned by TRC = 0.40 bar; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ΔvapH° | 50. ± 1. | kJ/mol | AVG | N/A | Average of 6 values; Individual data points |
Enthalpy of vaporization
ΔvapH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
39.04 | 375.4 | N/A | Majer and Svoboda, 1985 | |
51.2 | 318. | EB | Gierycz, Kosowski, et al., 2009 | Based on data from 303. to 373. K.; AC |
47.3 | 323. | N/A | Aucejo, Burguet, et al., 1994 | Based on data from 308. to 375. K.; AC |
49.0 | 295. | A | Stephenson and Malanowski, 1987 | Based on data from 280. to 375. K.; AC |
45.8 | 338. | A | Stephenson and Malanowski, 1987 | Based on data from 323. to 376. K.; AC |
48.4 ± 0.2 | 313. | C | Majer, Svoboda, et al., 1985 | AC |
46.4 ± 0.2 | 328. | C | Majer, Svoboda, et al., 1985 | AC |
44.2 ± 0.1 | 343. | C | Majer, Svoboda, et al., 1985 | AC |
42.0 ± 0.1 | 358. | C | Majer, Svoboda, et al., 1985 | AC |
40.3 ± 0.1 | 368. | C | Majer, Svoboda, et al., 1985 | AC |
52.8 | 313. | N/A | Wilhoit and Zwolinski, 1973 | Based on data from 298. to 375. K.; AC |
48.5 | 313. | N/A | Butler, Ramchandani, et al., 1935 | Based on data from 298. to 364. K.; AC |
Enthalpy of vaporization
ΔvapH = A exp(-αTr)
(1 − Tr)β
ΔvapH =
Enthalpy of vaporization (at saturation pressure)
(kJ/mol)
Tr = reduced temperature (T / Tc)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | 298. to 368. |
---|---|
A (kJ/mol) | 58.46 |
α | -1.4989 |
β | 1.2301 |
Tc (K) | 545. |
Reference | Majer and Svoboda, 1985 |
Antoine Equation Parameters
log10(P) = A − (B / (T + C))
P = vapor pressure (bar)
T = temperature (K)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A | B | C | Reference | Comment |
---|---|---|---|---|---|
298.12 to 363.98 | 4.4667 | 1261.658 | -91.953 | Butler, Ramchandani, et al., 1935, 2 | Coefficents calculated by NIST from author's data. |
Enthalpy of fusion
ΔfusH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
2.24 | 262.7 | AC | TONG, TAN, et al., 2008 | AC |
2.0 | 264.7 | AC | Straka, van Genderen, et al., 2007 | Based on data from 84. to 301. K.; AC |
4.46 | 264. | N/A | Domalski and Hearing, 1996 | See also Parks, Huffman, et al., 1933.; AC |
Entropy of fusion
ΔfusS (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
13.44 | 146. | Domalski and Hearing, 1996 | CAL |
0.78 | 213. | ||
16.88 | 264. |
Enthalpy of phase transition
ΔHtrs (kJ/mol) | Temperature (K) | Initial Phase | Final Phase | Reference | Comment |
---|---|---|---|---|---|
1.962 | 146.0 | crystaline, III | crystaline, II | Parks, Huffman, et al., 1933 | DH |
0.167 | 213. | crystaline, II | crystaline, I | Parks, Huffman, et al., 1933 | DH |
4.456 | 264.0 | crystaline, I | liquid | Parks, Huffman, et al., 1933 | DH |
Entropy of phase transition
ΔStrs (J/mol*K) | Temperature (K) | Initial Phase | Final Phase | Reference | Comment |
---|---|---|---|---|---|
13.44 | 146.0 | crystaline, III | crystaline, II | Parks, Huffman, et al., 1933 | DH |
0.79 | 213. | crystaline, II | crystaline, I | Parks, Huffman, et al., 1933 | DH |
16.88 | 264.0 | crystaline, I | liquid | Parks, Huffman, et al., 1933 | DH |
Reaction thermochemistry data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
B - John E. Bartmess
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
C5H11O- + =
By formula: C5H11O- + H+ = C5H12O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1561. ± 8.4 | kJ/mol | CIDC | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy.; B |
ΔrH° | 1561. ± 12. | kJ/mol | G+TS | Boand, Houriet, et al., 1983 | gas phase; value altered from reference due to change in acidity scale; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1533. ± 8.8 | kJ/mol | H-TS | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy.; B |
ΔrG° | 1533. ± 11. | kJ/mol | CIDC | Boand, Houriet, et al., 1983 | gas phase; value altered from reference due to change in acidity scale; B |
By formula: C4F6O3 + C5H12O = C7H11F3O2 + C2HF3O2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -88.53 ± 0.08 | kJ/mol | Cm | Wiberg and Hao, 1991 | liquid phase; Trifuoroacetolysis; ALS |
Henry's Law data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Rolf Sander
Henry's Law constant (water solution)
kH(T) = k°H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
k°H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)
k°H (mol/(kg*bar)) | d(ln(kH))/d(1/T) (K) | Method | Reference |
---|---|---|---|
72. | M | Butler, Ramchandani, et al., 1935, 2 |
References
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Chao and Rossini, 1965
Chao, J.; Rossini, F.D.,
Heats of combustion, formation, and isomerization of nineteen alkanols,
J. Chem. Eng. Data, 1965, 10, 374-379. [all data]
Wilhoit R.C., 1973
Wilhoit R.C.,
Physical and thermodynamic properties of aliphatic alcohols,
J. Phys. Chem. Ref. Data, 1973, 2, Suppl. 1, 1-420. [all data]
Stull D.R., 1969
Stull D.R., Jr.,
The Chemical Thermodynamics of Organic Compounds. Wiley, New York, 1969. [all data]
Stromsoe E., 1970
Stromsoe E.,
Heat capacity of alcohol vapors at atmospheric pressure,
J. Chem. Eng. Data, 1970, 15, 286-290. [all data]
Parks, Huffman, et al., 1933
Parks, G.S.; Huffman, H.M.; Barmore, M.,
Thermal data on organic compounds. XI. The heat capacities,
entropies and free energies of ten compounds containing oxygen or nitrogen. J. Am. Chem. Soc., 1933, 55, 2733-2740. [all data]
Piekarski and Somsen, 1988
Piekarski, H.; Somsen, G.,
Heat capacities and volumes of mixtures of N,N-dimethylformamide with isobutanol, sec-butanol and t-pentanol, J. Chem. Soc.,
Faraday Trans. 1, 1988, 84(2), 529-537. [all data]
Benson and D'Arcy, 1986
Benson, G.C.; D'Arcy, P.J.,
Excess isobaric heat capacities of some binary mixtures: (a C5-alkanol + n-heptane) at 298.15 K,
J. Chem. Thermodynam., 1986, 18, 493-498. [all data]
Benson and D'Arcy, 1986, 2
Benson, G.C.; D'Arcy, P.J.,
Heat capacities of binary mixtures of n-dodecane with hexane isomers,
Thermochim. Acta, 1986, 102, 75-81. [all data]
D'Aprano, DeLisi, et al., 1983
D'Aprano, A.; DeLisi, R.; Donato, D.I.,
Thermodynamics of binary mixtures: volumes, heat capacities, and dilution enthalpies for the n-pentanol + 2-methyl-2-butanol system,
J. Solution Chem., 1983, 12, 383-400. [all data]
Costello and Bowden, 1958
Costello, J.M.; Bowden, S.T.,
The Temperature Variation of Orthobaric Density Difference in Liquid-Vapor Systems III. Alcohols,
Recl. Trav. Chim. Pays-Bas, 1958, 77, 36-46. [all data]
Wibaut, Hoog, et al., 1939
Wibaut, J.P.; Hoog, H.; Langedijk, S.L.; Overhoff, J.; Smittenberg, J.; Benninga, N.; Bouman, G.P.; van Dijk, H.; Gaade, W.; Geldof, H.; Hackmann, J.Th.; Jonker, E.W.; Paap, T.; Zuiderweg, F.J.,
Study on the Preparation and the Physical Constants of A Number of Alkanes and Cycloalkanes,
Recl. Trav. Chim. Pays-Bas, 1939, 58, 329. [all data]
Parks, Huffman, et al., 1933, 2
Parks, G.S.; Huffman, H.M.; Barmore, M.,
Thermal Data on Organic Compounds. XI. The Heat Capacities, Entropies and Free Energies of Ten Compounds Containing Oxygen or Nitrogen,
J. Am. Chem. Soc., 1933, 55, 7, 2733, https://doi.org/10.1021/ja01334a016
. [all data]
Gude and Teja, 1995
Gude, M.; Teja, A.S.,
Vapor-Liquid Critical Properties of Elements and Compounds. 4. Aliphatic Alkanols,
J. Chem. Eng. Data, 1995, 40, 1025-1036. [all data]
Quadri, Khilar, et al., 1991
Quadri, S.K.; Khilar, K.C.; Kudchadker, A.P.; Patni, M.J.,
Measurement of the critical temperatures and critical pressures of some thermally stable or mildly unstable alkanols,
J. Chem. Thermodyn., 1991, 23, 67-76. [all data]
Majer and Svoboda, 1985
Majer, V.; Svoboda, V.,
Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]
Brown, 1906
Brown, J.C.,
The critical temperature and value of ml/theta of some carbon compounds,
J. Chem. Soc., Trans., 1906, 89, 311. [all data]
Gierycz, Kosowski, et al., 2009
Gierycz, Pawel; Kosowski, Andrzej; Swietlik, Ryszard,
Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols,
J. Chem. Eng. Data, 2009, 54, 11, 2996-3001, https://doi.org/10.1021/je900050z
. [all data]
Aucejo, Burguet, et al., 1994
Aucejo, Antonio; Burguet, M.C.; Monton, Juan B.; Munoz, Rosa; Sanchotello, Margarita; Vazquez, M. Isabel,
Isothermal Vapor-Liquid Equilibria of 1-Pentanol with 2-Methyl-1-butanol, 2-Methyl-2-butanol, and 3-Methyl-2-butanol,
J. Chem. Eng. Data, 1994, 39, 3, 578-580, https://doi.org/10.1021/je00015a040
. [all data]
Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw,
Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2
. [all data]
Majer, Svoboda, et al., 1985
Majer, V.; Svoboda, V.; Lencka, M.,
Enthalpies of vaporization and cohesive energies of dimethylpyridines and trimethylpyridines,
The Journal of Chemical Thermodynamics, 1985, 17, 4, 365-370, https://doi.org/10.1016/0021-9614(85)90133-8
. [all data]
Wilhoit and Zwolinski, 1973
Wilhoit, R.C.; Zwolinski, B.J.,
Physical and thermodynamic properties of aliphatic alcohols,
J. Phys. Chem. Ref. Data Suppl., 1973, 1, 2, 1. [all data]
Butler, Ramchandani, et al., 1935
Butler, J.A.V.; Ramchandani, C.N.; Thomson, D.W.,
58. The solubility of non-electrolytes. Part I. The free energy of hydration of some aliphatic alcohols,
J. Chem. Soc., 1935, 280, https://doi.org/10.1039/jr9350000280
. [all data]
Butler, Ramchandani, et al., 1935, 2
Butler, J.A.V.; Ramchandani, C.N.; Thomson, D.W.,
The Solubility of Non-Electrolytes. Part 1. The Free Energy of Hydration of Some Alphatic Alcohols,
J. Chem. Soc., 1935, 280-285, https://doi.org/10.1039/jr9350000280
. [all data]
TONG, TAN, et al., 2008
TONG, Bo; TAN, Zhi-Cheng; WANG, Shao-Xu,
Low Temperature Heat Capacities and Thermodynamic Properties of 2-Methyl-2-butanol,
Chin. J. Chem., 2008, 26, 9, 1561-1566, https://doi.org/10.1002/cjoc.200890282
. [all data]
Straka, van Genderen, et al., 2007
Straka, Martin; van Genderen, Aad; Ruzicka, Kvetoslav; Ruzicka, Vlastimil,
Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols,
J. Chem. Eng. Data, 2007, 52, 3, 794-802, https://doi.org/10.1021/je060411g
. [all data]
Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D.,
Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III,
J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985
. [all data]
Haas and Harrison, 1993
Haas, M.J.; Harrison, A.G.,
The Fragmentation of Proton-Bound Cluster Ions and the Gas-Phase Acidities of Alcohols,
Int. J. Mass Spectrom. Ion Proc., 1993, 124, 2, 115, https://doi.org/10.1016/0168-1176(93)80003-W
. [all data]
Boand, Houriet, et al., 1983
Boand, G.; Houriet, R.; Baumann, T.,
The gas phase acidity of aliphatic alcohols,
J. Am. Chem. Soc., 1983, 105, 2203. [all data]
Wiberg and Hao, 1991
Wiberg, K.B.; Hao, S.,
Enthalpies of hydration of alkenes. 4. Formation of acyclic tert-alcohols,
J. Org. Chem., 1991, 56, 5108-5110. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, References
- Symbols used in this document:
Cp,gas Constant pressure heat capacity of gas Cp,liquid Constant pressure heat capacity of liquid Pc Critical pressure S°gas Entropy of gas at standard conditions S°liquid Entropy of liquid at standard conditions Tboil Boiling point Tc Critical temperature Tfus Fusion (melting) point Ttriple Triple point temperature d(ln(kH))/d(1/T) Temperature dependence parameter for Henry's Law constant k°H Henry's Law constant at 298.15K ΔHtrs Enthalpy of phase transition ΔStrs Entropy of phase transition ΔcH°liquid Enthalpy of combustion of liquid at standard conditions ΔfH°gas Enthalpy of formation of gas at standard conditions ΔfH°liquid Enthalpy of formation of liquid at standard conditions ΔfusH Enthalpy of fusion ΔfusS Entropy of fusion ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔvapH Enthalpy of vaporization ΔvapH° Enthalpy of vaporization at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.