copper oxide


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Gas phase ion energetics data, Constants of diatomic molecules, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Quantity Value Units Method Reference Comment
Δfgas306.27kJ/molReviewChase, 1998Data last reviewed in December, 1977
Quantity Value Units Method Reference Comment
gas,1 bar234.62J/mol*KReviewChase, 1998Data last reviewed in December, 1977

Gas Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
    Cp = heat capacity (J/mol*K)
    H° = standard enthalpy (kJ/mol)
    S° = standard entropy (J/mol*K)
    t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 298. to 1200.1200. to 6000.
A 35.3635446.06542
B 5.412422-6.233114
C -4.3358371.671166
D 1.355291-0.092325
E -0.083269-4.404288
F 295.2414284.4664
G 275.5110282.5367
H 306.2692306.2692
ReferenceChase, 1998Chase, 1998
Comment Data last reviewed in December, 1977 Data last reviewed in December, 1977

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, Constants of diatomic molecules, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Quantity Value Units Method Reference Comment
Δfsolid-156.06kJ/molReviewChase, 1998Data last reviewed in December, 1977
Quantity Value Units Method Reference Comment
solid42.59J/mol*KReviewChase, 1998Data last reviewed in December, 1977

Solid Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
    Cp = heat capacity (J/mol*K)
    H° = standard enthalpy (kJ/mol)
    S° = standard entropy (J/mol*K)
    t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 298. to 2000.
A 48.56494
B 7.498607
C -0.055980
D 0.013851
E -0.760082
F -173.4272
G 94.85128
H -156.0632
ReferenceChase, 1998
Comment Data last reviewed in December, 1977

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Constants of diatomic molecules, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: John E. Bartmess

Electron affinity determinations

EA (eV) Method Reference Comment
1.780 ± 0.040LPESWu, Desai, et al., 1997 
1.7770 ± 0.0060LPESPolak, Gilles, et al., 1991 

Constants of diatomic molecules

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Gas phase ion energetics data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Klaus P. Huber and Gerhard H. Herzberg

Data collected through August, 1975

Symbols used in the table of constants
SymbolMeaning
State electronic state and / or symmetry symbol
Te minimum electronic energy (cm-1)
ωe vibrational constant – first term (cm-1)
ωexe vibrational constant – second term (cm-1)
ωeye vibrational constant – third term (cm-1)
Be rotational constant in equilibrium position (cm-1)
αe rotational constant – first term (cm-1)
γe rotation-vibration interaction constant (cm-1)
De centrifugal distortion constant (cm-1)
βe rotational constant – first term, centrifugal force (cm-1)
re internuclear distance (Å)
Trans. observed transition(s) corresponding to electronic state
ν00 position of 0-0 band (units noted in table)
Diatomic constants for 63Cu16O
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
Unidentified transitions in matrix absorption (F ← X?) and fluorescence.
Shirk and Bass, 1970; Thompson, Easley, et al., 1973
P 2Π3/2  [574] 1   [0.384] 1 0.005    [1.855] 1 P → X1 R 25194 1
Appelblad and Lagerqvist, 1974
M 2Π3/2     [0.419] 2     [1.776] 2 M ↔ X1 R 23898 2 Z
Lagerqvist and Uhler, 1967; Appelblad and Lagerqvist, 1973; Appelblad and Lagerqvist, 1974, 2
I 2Π3/2  [608] 3   [0.416] 3 0.0046    [1.783] 3 I → X1 R 22449 3
Appelblad and Lagerqvist, 1974
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
H 2Π3/2  [557] 3   [0.4176] 3 0.0056    [1.7791] 3 H → X1 R 22326 3
Appelblad and Lagerqvist, 1974
G 2Σ(-) (1/2) 21618.6 [582.74] Z (4.0)  0.41481 4 0.00370  0.000000724  1.78509 G → X2 5 R 21316.94 6 Z
missing citation
           G → X1 5 R 21593.98 6 Z
missing citation
F 2Πi 21237 7 [600.8] Z (4.4)  0.4121 8 0.0038  0.0000008  1.7910 F → X R 21082.8 9 Z
missing citation; Appelblad and Lagerqvist, 1973; missing citation; Appelblad and Lagerqvist, 1975
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
E 2Δ5/2 21058.0 733 HQ 5.5  0.4445 10 0.0036    1.7244 E → X1 21104.1 HQ
Appelblad and Lagerqvist, 1974
Bands in the green region, partially analyzed Lefebvre, Pinchemel, et al., 1976 in terms of a 2Πi2Πi transition.
missing citation; missing citation
A 2Σ(+) 16491.3 631.02 Z (6.0)  0.43387 11 0.00475  0.000000793  1.74543 A ↔ X2 16215.33 6 Z
missing citation; missing citation; Appelblad and Lagerqvist, 1973; missing citation
           A ↔ X1 R 16492.37 6 Z
missing citation; missing citation; Appelblad and Lagerqvist, 1973; missing citation
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
X2 2Π 1/2 279.02 12 636.18 Z 4.36  0.44415 13 0.00449  0.00000084  1.72513 14 
X1 2Π 3/2 0 640.17 Z 4.43  0.44454 0.00456  0.00000085  1.72437  

Notes

1Lowest observed level and ΔG, vibrational numbering unknown. The observed transitions are v-3 at 23327 cm-1, v-4 and (v+1)-4.
2One level only. Vibrational numbering uncertain; the authors in Antic-Jovanovic, Pesic, et al., 1968 suggest v=1. Perturbations.
3These are values of ΔG(3/2),B1, r1,v(1-0). v=0 not observed.
4Spin doubling Δν12(v=0) = +0.1674N(N+1) + ...; Δν12(v=1)= +0.1743N(N+1) + ....
5G «rarrw» X1 is considerably weaker than G → X2. Relative branch intensities in both sub-bands are unusual.
6N'=0 relative to {J"=0}.
7A0 = -6.24, A1 = -31.87. Also J-dependent terms Appelblad and Lagerqvist, 1974, 2.
8v=0 perturbed. Λ-type doubling in v=1. For 2Π1/2, Δνfe = (-)[0.3190(J+1/2) - ...]; For 2Π3/2,Δνfe = (-)[2.74E-5(J-1/2)(J+1/2)(J+3/2) - ...].
9J'=1/2 relative to J"= 1/2 (average of {F1} and F2).
10v=0 strongly perturbed.
11Spin-doubling constants γ0 = -0.1952, γ1 = -0.1908.
12A0 = -276.11, A1 = -272.28, A2 = -268.69; also J-dependent terms Appelblad and Lagerqvist, 1974, 2.
13Λ-type doubling , Δνfe(2Π1/2) = (-)[0.0148(J+1/2) - ...](average of v=0,1,2).
14The absence of an ESR spectrum attributable to matrix isolated CuO is compatible with a 2Π ground state Thompson, Easley, et al., 1973.
15Thermochemical value (mass-spectrom.) , Cheetam and Barrow, 1967, Smoes, Mandy, et al., 1972.

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Gas phase ion energetics data, Constants of diatomic molecules, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Chase, 1998
Chase, M.W., Jr., NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]

Wu, Desai, et al., 1997
Wu, H.; Desai, S.R.; Wang, L., Chemical Bonding between Cu and Oxygen - Copper Oxides versus O2 Complexes: A Study of CuOx(x=0-6) Species by Anion Photoelectron Spectroscopy, J. Phys. Chem., 1997, 101, 11, 2103, https://doi.org/10.1021/jp9631442 . [all data]

Polak, Gilles, et al., 1991
Polak, M.L.; Gilles, M.K.; Ho, J.; Lineberger, W.C., Photoelectron Spectroscopy of CuO-, J. Phys. Chem., 1991, 95, 9, 3460, https://doi.org/10.1021/j100162a005 . [all data]

Shirk and Bass, 1970
Shirk, J.S.; Bass, A.M., Absorption and laser-excited fluorescence of matrix-isolated CuO, J. Chem. Phys., 1970, 52, 1894. [all data]

Thompson, Easley, et al., 1973
Thompson, K.R.; Easley, W.C.; Knight, L.B., Spectra of matrix isolated transition metal monoxides. Maganese(II) and copper(II) oxides. Evidence for a 2Π ground state for copper(II) oxide, J. Phys. Chem., 1973, 77, 49. [all data]

Appelblad and Lagerqvist, 1974
Appelblad, O.; Lagerqvist, A., USIP Annual Report, Rpt. May-75, 1974, 1. [all data]

Lagerqvist and Uhler, 1967
Lagerqvist, A.; Uhler, U., The band spectrum of copper oxide, Z. Naturforsch. B, 1967, 22, 551. [all data]

Appelblad and Lagerqvist, 1973
Appelblad, O.; Lagerqvist, A., The spectrum of CuO: rotational analysis of a blue band system, J. Mol. Spectrosc., 1973, 48, 607. [all data]

Appelblad and Lagerqvist, 1974, 2
Appelblad, O.; Lagerqvist, A., The spectrum of CuO: rotational analysis of some blue and red bands, Phys. Scr., 1974, 10, 307. [all data]

Appelblad and Lagerqvist, 1975
Appelblad, O.; Lagerqvist, A., The spectrum of CuO: rotational analysis of a 2Σ--X2Πi transition, Can. J. Phys., 1975, 53, 2221. [all data]

Lefebvre, Pinchemel, et al., 1976
Lefebvre, Y.; Pinchemel, B.; Bacis, R., Analyse rotationnelle d'un systeme vert 2Πi-X2Πi de la molecule CuO, Can. J. Phys., 1976, 54, 735. [all data]

Antic-Jovanovic, Pesic, et al., 1968
Antic-Jovanovic, A.; Pesic, D.S.; Gaydon, A.G., The spectrum of CuO; study of the orange-red system by use of 18O, Proc. R. Soc. London A, 1968, 307, 399. [all data]

Cheetam and Barrow, 1967
Cheetam, C.J.; Barrow, R.F., Adv. High Temp. Chem., 1967, 1, 7. [all data]

Smoes, Mandy, et al., 1972
Smoes, S.; Mandy, F.; Vander Auwera-Mahieu, A.; Drowart, J., Determination by the mass spectrometric Knudsen cell method of the dissociation energies of the group IB chalcogenides, Bull. Soc. Chim. Belg., 1972, 81, 45. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Gas phase ion energetics data, Constants of diatomic molecules, References