Cyclobutane, octafluoro-

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Quantity Value Units Method Reference Comment
Δfgas  CmAndreevskii and Antonova, 1982uncertain value: -1510. kJ/mol
Δfgas-1488.kJ/molCcbKolesov, Talakin, et al., 1968Correction of Kolesov, Talakin, et al., 1964

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
liquid291.1J/mol*KN/AFurukawa, McCoskey, et al., 1954 

Constant pressure heat capacity of liquid

Cp,liquid (J/mol*K) Temperature (K) Reference Comment
222.4296.41Ponomareva, 1982T = 240 to 340 K. Value is unsmoothed experimental datum: Cp given as 1.112 J/g*K.
209.77268.52Furukawa, McCoskey, et al., 1954T = 17 to 270 K. Value is unsmoothed experimental datum.

Phase change data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
DH - Eugene S. Domalski and Elizabeth D. Hearing
AC - William E. Acree, Jr., James S. Chickos

Quantity Value Units Method Reference Comment
Tboil267.3KN/APCR Inc., 1990BS
Tboil266.88KN/AKrauss and Stephan, 1989Uncertainty assigned by TRC = 0.2 K; TRC
Tboil223.KN/APark, Benning, et al., 1947Uncertainty assigned by TRC = 10. K; TRC
Quantity Value Units Method Reference Comment
Tfus233.KN/APark, Benning, et al., 1947Uncertainty assigned by TRC = 5. K; TRC
Quantity Value Units Method Reference Comment
Ttriple232.96KN/AKrauss and Stephan, 1989Uncertainty assigned by TRC = 0.2 K; TRC
Ttriple232.96KN/AFurukawa, McCoskey, et al., 1954, 2Crystal phase 1 phase; Uncertainty assigned by TRC = 0.02 K; TRC
Quantity Value Units Method Reference Comment
Tc388.46KN/AKrauss and Stephan, 1989Uncertainty assigned by TRC = 0.3 K; TRC
Tc388.44KN/AMousa, Kay, et al., 1972Uncertainty assigned by TRC = 0.2 K; TRC
Tc388.37KN/ADouslin, Moore, et al., 1959Uncertainty assigned by TRC = 0.1 K; TRC
Quantity Value Units Method Reference Comment
Pc27.84barN/AKrauss and Stephan, 1989Uncertainty assigned by TRC = 0.05 bar; TRC
Pc27.85barN/AMousa, Kay, et al., 1972Uncertainty assigned by TRC = 0.0344 bar; TRC
Pc27.775barN/ADouslin, Moore, et al., 1959Uncertainty assigned by TRC = 0.081 bar; TRC
Quantity Value Units Method Reference Comment
Vc0.325l/molN/ADouslin, Moore, et al., 1959Uncertainty assigned by TRC = 0.02 l/mol; TRC

Enthalpy of vaporization

ΔvapH (kJ/mol) Temperature (K) Method Reference Comment
23.721261.25N/AFurukawa, McCoskey, et al., 1954P = 78.78; DH
23.5304.AStephenson and Malanowski, 1987Based on data from 289. to 348. K.; AC
23.2358.AStephenson and Malanowski, 1987Based on data from 343. to 388. K.; AC
24.9259.AStephenson and Malanowski, 1987Based on data from 233. to 274. K. See also Furukawa, McCoskey, et al., 1954, 2.; AC
25.248.N/AKletskii and Petrik, 1967Based on data from 233. to 388. K.; AC
25.254.N/AMartin, 1962Based on data from 234. to 269. K. See also Boublik, Fried, et al., 1984.; AC

Entropy of vaporization

ΔvapS (J/mol*K) Temperature (K) Reference Comment
90.80261.25Furukawa, McCoskey, et al., 1954P; DH

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (bar)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
233. to 388.374.2541007.399-30.205Kletskii and Petric, 1967Coefficents calculated by NIST from author's data.

Enthalpy of phase transition

ΔHtrs (kJ/mol) Temperature (K) Initial Phase Final Phase Reference Comment
2.7682232.96crystaline, IliquidFurukawa, McCoskey, et al., 1954DH

Entropy of phase transition

ΔStrs (J/mol*K) Temperature (K) Initial Phase Final Phase Reference Comment
11.89232.96crystaline, IliquidFurukawa, McCoskey, et al., 1954DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

Cyclobutane, octafluoro- + 4sodium = 4carbon + 8sodium fluoride

By formula: C4F8 + 4Na = 4C + 8FNa

Quantity Value Units Method Reference Comment
Δr-2989. ± 9.2kJ/molCcbKolesov, Talakin, et al., 1968gas phase; Correction of Kolesov, Talakin, et al., 1964

2Ethene, tetrafluoro- = Cyclobutane, octafluoro-

By formula: 2C2F4 = C4F8

Quantity Value Units Method Reference Comment
Δr-210.kJ/molEqkAtkinson and Trenwith, 1953gas phase; At 527-800 °K

Henry's Law data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Rolf Sander

Henry's Law constant (water solution)

kH(T) = H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)

H (mol/(kg*bar)) d(ln(kH))/d(1/T) (K) Method Reference Comment
0.00025 QN/A missing citation give several references for the Henry's law constants but don't assign them to specific species.

IR Spectrum

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Gas Phase Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

IR spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Notice: Concentration information is not available for this spectrum and, therefore, molar absorptivity values cannot be derived.

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

View spectrum image in SVG format.

Download spectrum in JCAMP-DX format.

Owner NIST Standard Reference Data Program
Collection (C) 2018 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin Sadtler Research Labs Under US-EPA Contract
State gas

This IR spectrum is from the NIST/EPA Gas-Phase Infrared Database .


Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, IR Spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
NIST MS number 9037

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, IR Spectrum, Mass spectrum (electron ionization), Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Andreevskii and Antonova, 1982
Andreevskii, D.N.; Antonova, Z.A., Development of an increment scheme for calculating the thermodynamic properties of organic polyfluoro compounds, J. Appl. Chem. USSR, 1982, 55, 582-587. [all data]

Kolesov, Talakin, et al., 1968
Kolesov, V.P.; Talakin, O.G.; Skuratov, S.M., Enthalpy of formation of some specimens of amorphous carbon, Russ. J. Phys. Chem. (Engl. Transl.), 1968, 42, 1218-1220. [all data]

Kolesov, Talakin, et al., 1964
Kolesov, V.P.; Talakin, O.G.; Skuratov, S.M., Standard enthalpy of formation of perfluorocyclobutane, Russ. J. Phys. Chem. (Engl. Transl.), 1964, 38, 930-931. [all data]

Furukawa, McCoskey, et al., 1954
Furukawa, G.T.; McCoskey, R.E.; Reilly, M.L., Heat capacity, heats of transitions, fusion and vaporization, and vapor pressure of octafluorocyclobutane, J. Res., 1954, NBS 52, 11-16. [all data]

Ponomareva, 1982
Ponomareva, O.P., Study of the isobaric heat capacity of Freon-113 and Freon-C318 in a broad range of parametric conditions, Teplofiz. Svoistva Veshchestv i Materialov, Moskva, 1982, 16, 64-70. [all data]

PCR Inc., 1990
PCR Inc., Research Chemicals Catalog 1990-1991, PCR Inc., Gainesville, FL, 1990, 1. [all data]

Krauss and Stephan, 1989
Krauss, R.; Stephan, K., Thermal Conductivity of Refrigerants in a Wide Range of Temperature and Pressure, J. Phys. Chem. Ref. Data, 1989, 18, 43. [all data]

Park, Benning, et al., 1947
Park, J.D.; Benning, A.F.; Downing, F.B.; Laucius, J.F.; McHarness, R.C., Synthesis of Tetrafluoroethylene. Pyrolysis of Monochlorodifluoromethane, Ind. Eng. Chem., 1947, 39, 343-8. [all data]

Furukawa, McCoskey, et al., 1954, 2
Furukawa, G.T.; McCoskey, R.E.; Reilly, M.L., Heat capacity, heats of transitions, fusion, and vaporization, and vapor pressure of octafluorocyclobutane, J. RES. NATL. BUR. STAN., 1954, 52, 1, 11, https://doi.org/10.6028/jres.052.003 . [all data]

Mousa, Kay, et al., 1972
Mousa, A.H.N.; Kay, W.B.; Kreglewski, A., The critical constants of binary mixtures of certain perfluoro-compounds with alkanes, J. Chem. Thermodyn., 1972, 4, 301-11. [all data]

Douslin, Moore, et al., 1959
Douslin, D.R.; Moore, R.T.; Waddington, G., The pressure-volume-temperature properties of perfluorocyclobutane: equations of state, viral coefficients and intermolecular potential energy functions, J. Phys. Chem., 1959, 63, 1959. [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Kletskii and Petrik, 1967
Kletskii, A.V.; Petrik, L.E., Zh. Fiz. Khim., 1967, 41, 5, 1183. [all data]

Martin, 1962
Martin, J.J., Thermodynamic Properties of Perfluorocyclobutane., J. Chem. Eng. Data, 1962, 7, 1, 68-72, https://doi.org/10.1021/je60012a020 . [all data]

Boublik, Fried, et al., 1984
Boublik, T.; Fried, V.; Hala, E., The Vapour Pressures of Pure Substances: Selected Values of the Temperature Dependence of the Vapour Pressures of Some Pure Substances in the Normal and Low Pressure Region, 2nd ed., Elsevier, New York, 1984, 972. [all data]

Kletskii and Petric, 1967
Kletskii, A.B.; Petric, L.E., Dependence of Vapor Pressure of Perfluorocyclobutane, Zh. Fiz. Khim., 1967, 41, 1183-1184. [all data]

Atkinson and Trenwith, 1953
Atkinson, B.; Trenwith, A.B., 424. The thermal decomposition of tetrafluorethylene, J. Chem. Soc. London, 1953, 2082-2087. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, IR Spectrum, Mass spectrum (electron ionization), References