Pyridine

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.

Quantity Value Units Method Reference Comment
Δfgas140.2kJ/molCcbHubbard, Frow, et al., 1961ALS
Δfgas140.6 ± 1.5kJ/molCmAndon, Cox, et al., 1957ALS
Δfgas140.7 ± 1.5kJ/molCcbCox, Challoner, et al., 1954ALS
Δfgas110.1kJ/molN/AConstam and White, 1903Value computed using ΔfHliquid° value of 69.9 kj/mol from Constam and White, 1903 and ΔvapH° value of 40.2 kj/mol from Hubbard, Frow, et al., 1961.; DRB

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfliquid99.96 ± 0.50kJ/molCcbHubbard, Frow, et al., 1961ALS
Δfliquid100.2 ± 1.5kJ/molCcbCox, Challoner, et al., 1954ALS
Δfliquid69.9kJ/molCcbConstam and White, 1903ALS
Quantity Value Units Method Reference Comment
Δcliquid-2725.kJ/molCcbStrepikheev, Baranov, et al., 1962ALS
Δcliquid-2782.2 ± 0.42kJ/molCcbHubbard, Frow, et al., 1961ALS
Δcliquid-2782.4 ± 1.5kJ/molCcbCox, Challoner, et al., 1954ALS
Δcliquid-2758.kJ/molCcbConstam and White, 1903ALS
Quantity Value Units Method Reference Comment
liquid177.90J/mol*KN/AMcCullough, Douslin, et al., 1957DH
liquid179.1J/mol*KN/AParks, Todd, et al., 1936Extrapolation below 90 K, 50.04 J/mol*K.; DH
liquid210.41J/mol*KN/APearce and Bakke, 1936Extrapolation below 90 K, 89.33 J/mol*K.; DH

Constant pressure heat capacity of liquid

Cp,liquid (J/mol*K) Temperature (K) Reference Comment
193.4293.Rastorguev and Ganiev, 1967T = 293 to 353 K.; DH
133.298.15Hubbard, Frow, et al., 1961DH
146.9332.Swietoslawski and Zielenkiewicz, 1958Mean value 22 to 96°C.; DH
132.72298.15McCullough, Douslin, et al., 1957T = 10 to 350 K.; DH
134.93298.1Parks, Todd, et al., 1936T = 90 to 300 K.; DH
133.30298.1Pearce and Bakke, 1936T = 90 to 298 K. Value is unsmoothed experimental datum.; DH
129.3289.Radulescu and Jula, 1934DH
135.35273.4Swietoslawski, Tybicka, et al., 1931DH
135.6290.Swietoslawski, Tybicka, et al., 1931, 2DH
129.33294.Mathews, Krause, et al., 1917DH
130.5283.Bramley, 1916Mean value, 0 to 20°C.; DH

Phase change data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
BS - Robert L. Brown and Stephen E. Stein
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Tboil388.5 ± 0.6KAVGN/AAverage of 80 out of 84 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus232. ± 2.KAVGN/AAverage of 26 values; Individual data points
Quantity Value Units Method Reference Comment
Ttriple231.48KN/AHelm, Lanum, et al., 1958Uncertainty assigned by TRC = 0.03 K; measured in calorimeter at USBM, Bartlesville, OK; TRC
Ttriple231.480KN/AMcCullough, Douslin, et al., 1957, 2Uncertainty assigned by TRC = 0.05 K; by extrapolation of 1/f to zero; TRC
Quantity Value Units Method Reference Comment
Tc619. ± 2.KAVGN/AAverage of 9 values; Individual data points
Quantity Value Units Method Reference Comment
Pc56.60barN/ABrunner, 1987Uncertainty assigned by TRC = 0.0565 bar; Visual, optical cell 30cm high. P transducer cal. vs PB.; TRC
Pc56.40barN/AKobe, Ravicz, et al., 1956Uncertainty assigned by TRC = 1.034 bar; TRC
Pc60.795barN/AHerz and Neukirch, 1923Uncertainty assigned by TRC = 0.8106 bar; TRC
Quantity Value Units Method Reference Comment
Vc0.253l/molN/AKobe, Ravicz, et al., 1956Uncertainty assigned by TRC = 0.005 l/mol; TRC
Quantity Value Units Method Reference Comment
Δvap40.3 ± 0.3kJ/molAVGN/AAverage of 10 out of 11 values; Individual data points

Enthalpy of vaporization

ΔvapH (kJ/mol) Temperature (K) Method Reference Comment
35.09388.4N/AMajer and Svoboda, 1985 
39.3324.N/AUkraintseva, Soldatov, et al., 1997Based on data from 289. to 358. K.; AC
37.6354.N/ABlanco, Beltran, et al., 1994Based on data from 346. to 362. K.; AC
39.9310.EBLencka, 1990Based on data from 295. to 388. K.; AC
39.7311.AStephenson and Malanowski, 1987Based on data from 296. to 353. K.; AC
37.3363.AStephenson and Malanowski, 1987Based on data from 348. to 434. K.; AC
35.0446.AStephenson and Malanowski, 1987Based on data from 431. to 558. K.; AC
34.0567.AStephenson and Malanowski, 1987Based on data from 552. to 620. K.; AC
37.6355.EBStephenson and Malanowski, 1987Based on data from 340. to 426. K. See also McCullough, Douslin, et al., 1957.; AC
39.6313.CMichou-Saucet, Jose, et al., 1986Based on data from 298. to 333. K.; AC
39.4313.CMajer, Svoboda, et al., 1984AC
38.5328.CMajer, Svoboda, et al., 1984AC
37.7343.CMajer, Svoboda, et al., 1984AC
36.3368.N/AMajer, Svoboda, et al., 1984AC
37.5 ± 0.1346.CMcCullough, Douslin, et al., 1957AC
36.4 ± 0.1366.CMcCullough, Douslin, et al., 1957AC
35.1 ± 0.1388.CMcCullough, Douslin, et al., 1957AC
38.4335.MGHerington and Martin, 1953Based on data from 320. to 388. K.; AC
44.4273.N/AMeulen and Mann, 1931Based on data from 258. to 389. K.; AC

Enthalpy of vaporization

ΔvapH = A exp(-βTr) (1 − Tr)β
    ΔvapH = Enthalpy of vaporization (at saturation pressure) (kJ/mol)
    Tr = reduced temperature (T / Tc)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A (kJ/mol) β Tc (K) Reference Comment
298. to 388.55.430.2536620.Majer and Svoboda, 1985 

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (bar)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
340.5 to 426.044.162721371.358-58.496McCullough, Douslin, et al., 1957Coefficents calculated by NIST from author's data.

Enthalpy of fusion

ΔfusH (kJ/mol) Temperature (K) Reference Comment
8.2785231.49McCullough, Douslin, et al., 1957Includes energy of anomaly at about 210 K.; DH
8.28231.5Domalski and Hearing, 1996AC
8.272231.1Parks, Todd, et al., 1936DH
3.100230.38Pearce and Bakke, 1936DH

Entropy of fusion

ΔfusS (J/mol*K) Temperature (K) Reference Comment
35.76231.49McCullough, Douslin, et al., 1957Includes; DH
35.79231.1Parks, Todd, et al., 1936DH
13.46230.38Pearce and Bakke, 1936DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
RCD - Robert C. Dunbar

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

C5H4N- + Hydrogen cation = Pyridine

By formula: C5H4N- + H+ = C5H5N

Quantity Value Units Method Reference Comment
Δr1631. ± 8.4kJ/molIMRESchafman and Wenthold, 2007gas phase; B
Δr1636. ± 10.kJ/molTDEqMeot-ner and Kafafi, 1988gas phase; anchored to 88MEO scale, not the "87 acidity scale". The Kiefer, Zhang, et al., 1997 BDE is for ortho.; B
Quantity Value Units Method Reference Comment
Δr1601. ± 8.4kJ/molTDEqMeot-ner and Kafafi, 1988gas phase; anchored to 88MEO scale, not the "87 acidity scale". The Kiefer, Zhang, et al., 1997 BDE is for ortho.; B
Δr1607. ± 13.kJ/molIMRBDePuy, Kass, et al., 1988gas phase; Comparable to water in acidity; B
Δr<1574. ± 8.4kJ/molIMRBBruins, Ferrer-Correia, et al., 1978gas phase; O- deprotonates; B

C5H6N+ + Pyridine = (C5H6N+ • Pyridine)

By formula: C5H6N+ + C5H5N = (C5H6N+ • C5H5N)

Quantity Value Units Method Reference Comment
Δr105.kJ/molPHPMSMeot-Ner (Mautner), 1992gas phase; M
Δr103.kJ/molPHPMSMeot-Ner M. and Sieck, 1983gas phase; M
Δr110.kJ/molHPMSHolland and Castleman, 1982gas phase; M
Δr99.2kJ/molPHPMSMeot-Ner (Mautner), 1979gas phase; M
Δr99.2kJ/molPHPMSMeot-Ner (Mautner), 1979gas phase; M
Quantity Value Units Method Reference Comment
Δr124.J/mol*KPHPMSMeot-Ner (Mautner), 1992gas phase; M
Δr118.J/mol*KPHPMSMeot-Ner M. and Sieck, 1983gas phase; M
Δr134.J/mol*KHPMSHolland and Castleman, 1982gas phase; M
Δr120.J/mol*KPHPMSMeot-Ner (Mautner), 1979gas phase; M
Δr120.J/mol*KPHPMSMeot-Ner (Mautner), 1979gas phase; M

Pyridine + 3Hydrogen = Piperidine

By formula: C5H5N + 3H2 = C5H11N

Quantity Value Units Method Reference Comment
Δr-193.8 ± 0.75kJ/molEqkHales and Herington, 1957gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -202.2 ± 0.75 kJ/mol; At 400-550 K; ALS
Δr-193.0 ± 2.1kJ/molEqkBurrows and King, 1935liquid phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -188.3 kJ/mol; At 423-443 K; ALS

Chlorine anion + Pyridine = (Chlorine anion • Pyridine)

By formula: Cl- + C5H5N = (Cl- • C5H5N)

Quantity Value Units Method Reference Comment
Δr53.1 ± 8.4kJ/molTDAsHiraoka, Mizuse, et al., 1988gas phase; B,M
Quantity Value Units Method Reference Comment
Δr82.4J/mol*KPHPMSHiraoka, Mizuse, et al., 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr28. ± 11.kJ/molTDAsHiraoka, Mizuse, et al., 1988gas phase; B

(C5H6N+ • 2Pyridine) + Pyridine = (C5H6N+ • 3Pyridine)

By formula: (C5H6N+ • 2C5H5N) + C5H5N = (C5H6N+ • 3C5H5N)

Quantity Value Units Method Reference Comment
Δr56.9kJ/molHPMSHolland and Castleman, 1982gas phase; Entropy change is questionable; M
Quantity Value Units Method Reference Comment
Δr159.J/mol*KHPMSHolland and Castleman, 1982gas phase; Entropy change is questionable; M

Lithium ion (1+) + Pyridine = (Lithium ion (1+) • Pyridine)

By formula: Li+ + C5H5N = (Li+ • C5H5N)

Quantity Value Units Method Reference Comment
Δr181. ± 15.kJ/molCIDTAmunugama and Rodgers, 2000RCD
Δr180.kJ/molICRStaley and Beauchamp, 1975gas phase; switching reaction(Li+)H2O, from graph; Dzidic and Kebarle, 1970 extrapolated; M

Potassium ion (1+) + Pyridine = (Potassium ion (1+) • Pyridine)

By formula: K+ + C5H5N = (K+ • C5H5N)

Quantity Value Units Method Reference Comment
Δr90. ± 4.kJ/molCIDTAmunugama and Rodgers, 2000RCD
Δr86.6kJ/molHPMSDavidson and Kebarle, 1976gas phase; M
Quantity Value Units Method Reference Comment
Δr77.8J/mol*KHPMSDavidson and Kebarle, 1976gas phase; M

(Silver ion (1+) • 2Pyridine) + Pyridine = (Silver ion (1+) • 3Pyridine)

By formula: (Ag+ • 2C5H5N) + C5H5N = (Ag+ • 3C5H5N)

Quantity Value Units Method Reference Comment
Δr69.9kJ/molHPMSHolland and Castleman, 1982gas phase; M
Quantity Value Units Method Reference Comment
Δr117.J/mol*KHPMSHolland and Castleman, 1982gas phase; M

(Silver ion (1+) • 3Pyridine) + Pyridine = (Silver ion (1+) • 4Pyridine)

By formula: (Ag+ • 3C5H5N) + C5H5N = (Ag+ • 4C5H5N)

Quantity Value Units Method Reference Comment
Δr74.9kJ/molHPMSHolland and Castleman, 1982gas phase; M
Quantity Value Units Method Reference Comment
Δr169.J/mol*KHPMSHolland and Castleman, 1982gas phase; M

(Chlorine anion • Pyridine) + Pyridine = (Chlorine anion • 2Pyridine)

By formula: (Cl- • C5H5N) + C5H5N = (Cl- • 2C5H5N)

Quantity Value Units Method Reference Comment
Δr49.0kJ/molPHPMSHiraoka, Mizuse, et al., 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr94.6J/mol*KPHPMSHiraoka, Mizuse, et al., 1988gas phase; M

(C5H6N+ • Pyridine) + Pyridine = (C5H6N+ • 2Pyridine)

By formula: (C5H6N+ • C5H5N) + C5H5N = (C5H6N+ • 2C5H5N)

Quantity Value Units Method Reference Comment
Δr52.7kJ/molHPMSHolland and Castleman, 1982gas phase; M
Quantity Value Units Method Reference Comment
Δr124.J/mol*KHPMSHolland and Castleman, 1982gas phase; M

H2O3- + Pyridine + Water = C5H7NO3-

By formula: H2O3- + C5H5N + H2O = C5H7NO3-

Quantity Value Units Method Reference Comment
Δr137. ± 9.6kJ/molN/ALe Barbu, Schiedt, et al., 2002gas phase; Affinity is difference in EAs of lesser solvated species; B

Oxygen anion + Pyridine = C5H5NO2-

By formula: O2- + C5H5N = C5H5NO2-

Quantity Value Units Method Reference Comment
Δr90.8 ± 9.6kJ/molN/ALe Barbu, Schiedt, et al., 2002gas phase; Affinity is difference in EAs of lesser solvated species; B

Nitric oxide anion + Pyridine = C5H5N2O-

By formula: NO- + C5H5N = C5H5N2O-

Quantity Value Units Method Reference Comment
Δr56.9 ± 9.6kJ/molN/ALe Barbu, Schiedt, et al., 2002gas phase; Affinity is difference in EAs of lesser solvated species; B

3Pyridine, 1-oxide + potassium chloride = 3Pyridine + KClO3

By formula: 3C5H5NO + ClK = 3C5H5N + KClO3

Quantity Value Units Method Reference Comment
Δr315. ± 10.kJ/molCmShaofeng and Pilcher, 1988solid phase; ALS

3Pyridine, 1-oxide + potassium bromide = 3Pyridine + KBrO3

By formula: 3C5H5NO + BrK = 3C5H5N + KBrO3

Quantity Value Units Method Reference Comment
Δr313.6 ± 9.6kJ/molCmShaofeng and Pilcher, 1988solid phase; ALS

Iron ion (1+) + Pyridine = (Iron ion (1+) • Pyridine)

By formula: Fe+ + C5H5N = (Fe+ • C5H5N)

Quantity Value Units Method Reference Comment
Δr223. ± 9.2kJ/molCIDTRodgers, Stanley, et al., 2000RCD

Chromium ion (1+) + Pyridine = (Chromium ion (1+) • Pyridine)

By formula: Cr+ + C5H5N = (Cr+ • C5H5N)

Quantity Value Units Method Reference Comment
Δr197. ± 12.kJ/molCIDTRodgers, Stanley, et al., 2000RCD

Titanium ion (1+) + Pyridine = (Titanium ion (1+) • Pyridine)

By formula: Ti+ + C5H5N = (Ti+ • C5H5N)

Quantity Value Units Method Reference Comment
Δr217. ± 9.6kJ/molCIDTRodgers, Stanley, et al., 2000RCD

Manganese ion (1+) + Pyridine = (Manganese ion (1+) • Pyridine)

By formula: Mn+ + C5H5N = (Mn+ • C5H5N)

Quantity Value Units Method Reference Comment
Δr182. ± 8.8kJ/molCIDTRodgers, Stanley, et al., 2000RCD

Scandium ion (1+) + Pyridine = (Scandium ion (1+) • Pyridine)

By formula: Sc+ + C5H5N = (Sc+ • C5H5N)

Quantity Value Units Method Reference Comment
Δr231. ± 10.kJ/molCIDTRodgers, Stanley, et al., 2000RCD

Magnesium ion (1+) + Pyridine = (Magnesium ion (1+) • Pyridine)

By formula: Mg+ + C5H5N = (Mg+ • C5H5N)

Quantity Value Units Method Reference Comment
Δr200. ± 6.7kJ/molCIDTRodgers, Stanley, et al., 2000RCD

Vanadium ion (1+) + Pyridine = (Vanadium ion (1+) • Pyridine)

By formula: V+ + C5H5N = (V+ • C5H5N)

Quantity Value Units Method Reference Comment
Δr218. ± 13.kJ/molCIDTRodgers, Stanley, et al., 2000RCD

Nickel ion (1+) + Pyridine = (Nickel ion (1+) • Pyridine)

By formula: Ni+ + C5H5N = (Ni+ • C5H5N)

Quantity Value Units Method Reference Comment
Δr255. ± 15.kJ/molCIDTRodgers, Stanley, et al., 2000RCD

Aluminum ion (1+) + Pyridine = (Aluminum ion (1+) • Pyridine)

By formula: Al+ + C5H5N = (Al+ • C5H5N)

Quantity Value Units Method Reference Comment
Δr190. ± 10.kJ/molCIDTRodgers, Stanley, et al., 2000RCD

Zinc ion (1+) + Pyridine = (Zinc ion (1+) • Pyridine)

By formula: Zn+ + C5H5N = (Zn+ • C5H5N)

Quantity Value Units Method Reference Comment
Δr247. ± 7.1kJ/molCIDTRodgers, Stanley, et al., 2000RCD

Cobalt ion (1+) + Pyridine = (Cobalt ion (1+) • Pyridine)

By formula: Co+ + C5H5N = (Co+ • C5H5N)

Quantity Value Units Method Reference Comment
Δr247. ± 13.kJ/molCIDTRodgers, Stanley, et al., 2000RCD

Copper ion (1+) + Pyridine = (Copper ion (1+) • Pyridine)

By formula: Cu+ + C5H5N = (Cu+ • C5H5N)

Quantity Value Units Method Reference Comment
Δr246. ± 10.kJ/molCIDTRodgers, Stanley, et al., 2000RCD

Sodium ion (1+) + Pyridine = (Sodium ion (1+) • Pyridine)

By formula: Na+ + C5H5N = (Na+ • C5H5N)

Quantity Value Units Method Reference Comment
Δr127. ± 3.kJ/molCIDTAmunugama and Rodgers, 2000RCD

Henry's Law data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Rolf Sander

Henry's Law constant (water solution)

kH(T) = H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)

H (mol/(kg*bar)) d(ln(kH))/d(1/T) (K) Method Reference Comment
89. QN/A missing citation give several references for the Henry's law constants but don't assign them to specific species.
110.5900.MN/A 

IR Spectrum

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes

Data compiled by: Coblentz Society, Inc.

Data compiled by: Tanya L. Myers, Russell G. Tonkyn, Ashley M. Oeck, Tyler O. Danby, John S. Loring, Matthew S. Taubman, Stephen W. Sharpe, Jerome C. Birnbaum, and Timothy J. Johnson

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director


Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, IR Spectrum, UV/Visible spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin Japan AIST/NIMC Database- Spectrum MS-NW- 79
NIST MS number 227742

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


UV/Visible spectrum

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Victor Talrose, Eugeny B. Stern, Antonina A. Goncharova, Natalia A. Messineva, Natalia V. Trusova, Margarita V. Efimkina

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

UVVis spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

View spectrum image in SVG format.

Download spectrum in JCAMP-DX format.

Source missing citation
Owner INEP CP RAS, NIST OSRD
Collection (C) 2007 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin INSTITUTE OF ENERGY PROBLEMS OF CHEMICAL PHYSICS, RAS
Source reference RAS UV No. 1112
Instrument Zeiss PMQII
Melting point -41.6
Boiling point 115.2

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Hubbard, Frow, et al., 1961
Hubbard, W.N.; Frow, F.R.; Waddington, G., The heats of combustion and formation of pyridine and hippuric acid, J. Phys. Chem., 1961, 65, 1326-1328. [all data]

Andon, Cox, et al., 1957
Andon, R.J.L.; Cox, J.D.; Herington, E.F.G.; Martin, J.F., The second virial coefficients of pyridine and benzene, and certain of their methyl homologues, Trans. Faraday Soc., 1957, 53, 1074. [all data]

Cox, Challoner, et al., 1954
Cox, J.D.; Challoner, A.R.; Meetham, A.R., The heats of combustion of pyridine and certain of its derivatives, J. Chem. Soc., 1954, 265-271. [all data]

Constam and White, 1903
Constam, E.J.; White, J., Physico-chemical investigations in the pyridine series, Am. Chem. J., 1903, 29, 1-49. [all data]

Strepikheev, Baranov, et al., 1962
Strepikheev, Yu.A.; Baranov, Yu.I.; Burmistrova, O.A., Determination of the heats of combustion and the heat capacities of several mono- and di-isocyanates, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 1962, 5, 387-390. [all data]

McCullough, Douslin, et al., 1957
McCullough, J.P.; Douslin, D.R.; Messerly, J.F.; Hossenlopp, I.A.; Kincheloe, T.C.; Waddington, G., Pyridine: experimental and calculated chemical thermodynamic properties between 0 and 1500 K., a revised vibrational assignment, J. Am. Chem. Soc., 1957, 79, 4289-4295. [all data]

Parks, Todd, et al., 1936
Parks, G.S.; Todd, S.S.; Moore, W.A., Thermal data on organic compounds. XVI. Some heat capacity, entropy and free energy data for typical benzene derivatives and heterocyclic compounds, J. Am. Chem. Soc., 1936, 58, 398-401. [all data]

Pearce and Bakke, 1936
Pearce, J.N.; Bakke, H.M., The heat capacity and the free energy of formation of pyridine, Proc. Iowa Acad. Sci., 1936, 43, 171-174. [all data]

Rastorguev and Ganiev, 1967
Rastorguev, Yu.L.; Ganiev, Yu.A., Study of the heat capacity of selected solvents, Izv. Vyssh. Uchebn. Zaved. Neft Gaz. 10, 1967, No.1, 79-82. [all data]

Swietoslawski and Zielenkiewicz, 1958
Swietoslawski, W.; Zielenkiewicz, A., Mean specific heat of some ternary azeotropes, Bull. Acad. Pol. Sci. Ser. Sci. Chim., 1958, 6, 365-366. [all data]

Radulescu and Jula, 1934
Radulescu, D.; Jula, O., Beiträge zur Bestimmung der Abstufung der Polarität des Aminstickstoffes in den organischen Verbindungen, Z. Phys. Chem., 1934, B26, 390-393. [all data]

Swietoslawski, Tybicka, et al., 1931
Swietoslawski, W.; Tybicka, S.; Solodkowska, W., Sur un microcalorimetre adiabatique, adapte aux mesures de la chaleur specifique de substances solides et liquides, Bull. Int. Acad. Pol. Sci. Lett. Cl. Sci. Math Nat. Ser A, 1931, 1931, 322-335. [all data]

Swietoslawski, Tybicka, et al., 1931, 2
Swietoslawski, W.; Tybicka, S.; Solodkowska, W., Sur un microcalorimetre adiabatique, adapte aux mesures de la chaleur specifique de substances solides et liquides, Rocz. Chem., 1931, 11, 65-77. [all data]

Mathews, Krause, et al., 1917
Mathews, J.H.; Krause, E.L.; Bohnson, B.L., a contribution to the thermal chemistry of pyridine, J. Am. Chem. Soc., 1917, 39, 398-413. [all data]

Bramley, 1916
Bramley, A., The study of binary mixtures. Part IV. Heats of reaction and specific heats, J. Chem. Soc. (London), 1916, 109, 496-515. [all data]

Helm, Lanum, et al., 1958
Helm, R.V.; Lanum, W.J.; Cook, G.L.; Ball, J.S., Purification and Properties of Pyrrole, Pyrrolidine, Pyridine and 2-Methylpyridine, J. Phys. Chem., 1958, 62, 858. [all data]

McCullough, Douslin, et al., 1957, 2
McCullough, J.P.; Douslin, D.R.; Messerly, J.F.; Hossenlopp, I.A.; Kincheloe, T.C.; Waddington, G., Pyridine: Experimental and Calculated Chemical Thermodynamic Prop- erties Between 0 and 1500 K; A Revised Vibrational Assignment, J. Am. Chem. Soc., 1957, 79, 4289. [all data]

Brunner, 1987
Brunner, E., Fluid mixtures at high pressures VI. Phase separation and critical phenomina in 18 binary mixtures containing either pyridine or ethanoic acid, J. Chem. Thermodyn., 1987, 19, 823. [all data]

Kobe, Ravicz, et al., 1956
Kobe, K.A.; Ravicz, A.E.; Vohra, S.P., Critical Properties and Vapor Pressures of Some Ethers and Heterocyclic Compounds, J. Chem. Eng. Data, 1956, 1, 50. [all data]

Herz and Neukirch, 1923
Herz, W.; Neukirch, E., On Knowldge of the Critical State, Z. Phys. Chem., Stoechiom. Verwandtschaftsl., 1923, 104, 433-50. [all data]

Majer and Svoboda, 1985
Majer, V.; Svoboda, V., Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]

Ukraintseva, Soldatov, et al., 1997
Ukraintseva, E.A.; Soldatov, D.V.; Dyadin, Yu.A., Pyridine vapor pressure and thermodynamic parameters of clathrate and complex formation in the pyridine-zinc nitrate system, Zh. Neorg. Khim., 1997, 42, 2, 283. [all data]

Blanco, Beltran, et al., 1994
Blanco, Beatriz; Beltran, Sagrario; Cabezas, Jose Luis; Coca, Jose, Vapor-liquid equilibria of coal-derived liquids. 3. Binary systems with tetralin at 200 mm mercury, J. Chem. Eng. Data, 1994, 39, 1, 23-26, https://doi.org/10.1021/je00013a007 . [all data]

Lencka, 1990
Lencka, Malgorzata, Measurements of the vapour pressures of pyridine, 2-methylpyridine, 2,4-dimethylpyridine, 2,6-dimethylpyridine, and 2,4,6-trimethylpyridine from 0.1 kPa to atmospheric pressure using a modified Swietoslawski ebulliometer, The Journal of Chemical Thermodynamics, 1990, 22, 5, 473-480, https://doi.org/10.1016/0021-9614(90)90139-H . [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Michou-Saucet, Jose, et al., 1986
Michou-Saucet, Marie-Annie; Jose, Jacques; Michou-Saucet, Christian, Equilibre liquide-vapeur isotherme des systemes pyridine-n-hexane et pyridine-n-heptane, Thermochimica Acta, 1986, 102, 271-279, https://doi.org/10.1016/0040-6031(86)85335-7 . [all data]

Majer, Svoboda, et al., 1984
Majer, V.; Svoboda, V.; Lencka, M., Enthalpies of vaporization and cohesive energies of pyridine and isomeric methylpyridines, J. Chem. Thermodyn., 1984, 16, 1019-1024. [all data]

Herington and Martin, 1953
Herington, E.F.G.; Martin, J.F., Vapour pressures of pyridine and its homologues, Trans. Faraday Soc., 1953, 49, 154, https://doi.org/10.1039/tf9534900154 . [all data]

Meulen and Mann, 1931
Meulen, P.A. van der.; Mann, Russell F., THE VAPOR PRESSURE OF PYRIDINE, J. Am. Chem. Soc., 1931, 53, 2, 451-453, https://doi.org/10.1021/ja01353a006 . [all data]

Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D., Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III, J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985 . [all data]

Schafman and Wenthold, 2007
Schafman, B.S.; Wenthold, P.G., Regioselectivity of pyridine deprotonation in the gas phase, J. Org. Chem., 2007, 72, 5, 1645-1651, https://doi.org/10.1021/jo062117x . [all data]

Meot-ner and Kafafi, 1988
Meot-ner, M.; Kafafi, S.A., Carbon Acidities of Aromatic Compounds, J. Am. Chem. Soc., 1988, 110, 19, 6297, https://doi.org/10.1021/ja00227a003 . [all data]

Kiefer, Zhang, et al., 1997
Kiefer, J.H.; Zhang, Q.; Kern, R.D.; Yao, J.; Jursic, B., Pyrolysis of Aromatic Azines: Pyrazine, Pyrimidine, and Pyridine, J. Phys. Chem. A, 1997, 101, 38, 7061, https://doi.org/10.1021/jp970211z . [all data]

DePuy, Kass, et al., 1988
DePuy, C.H.; Kass, S.R.; Bean, G.P., Formation and Reactions of Heteroaromatic Anions in the Gas Phase, J. Org. Chem., 1988, 53, 19, 4427, https://doi.org/10.1021/jo00254a001 . [all data]

Bruins, Ferrer-Correia, et al., 1978
Bruins, A.P.; Ferrer-Correia, A.J.; Harrison, A.G.; Jennings, K.R.; Mithcum, R.K., Negative ion chemical ionization mass spectrometry of some aromatic compounds using O-. as the reagent ion, Adv. Mass Spectrom., 1978, 7, 355. [all data]

Meot-Ner (Mautner), 1992
Meot-Ner (Mautner), M., Intermolecular Forces in Organic Clusters, J. Am. Chem. Soc., 1992, 114, 9, 3312, https://doi.org/10.1021/ja00035a024 . [all data]

Meot-Ner M. and Sieck, 1983
Meot-Ner M.; Sieck, L.W., The Ionic Hydrogen Bond. 1. Sterically Hindered Bonds. Solvation and Clustering of Sterically Hindered Amines and Pyridines, J. Am. Chem. Soc., 1983, 105, 10, 2956, https://doi.org/10.1021/ja00348a005 . [all data]

Holland and Castleman, 1982
Holland, P.M.; Castleman, A.W., The Thermochemical Properties of Gas - Phase Transition Metal Ion Complexes, J. Chem. Phys., 1982, 76, 8, 4195, https://doi.org/10.1063/1.443497 . [all data]

Meot-Ner (Mautner), 1979
Meot-Ner (Mautner), M., Ion Thermochemistry of Low Volatility Compounds in the Gas Phase. II. Intrinsic Basicities and Hydrogen Bonded Dimers of Nitrogen Heterocyclics and Nucleic Bases, J. Am. Chem. Soc., 1979, 101, 9, 2396, https://doi.org/10.1021/ja00503a027 . [all data]

Hales and Herington, 1957
Hales, J.L.; Herington, E.F.G., Equilibrium between pyridine and piperidine, Trans. Faraday Soc., 1957, 53, 616-622. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Burrows and King, 1935
Burrows, G.H.; King, L.A., Jr., The free energy change that accompanies hydrogenation of pyridine to piperidine, J. Am. Chem. Soc., 1935, 57, 1789-1791. [all data]

Hiraoka, Mizuse, et al., 1988
Hiraoka, K.; Mizuse, S.; Yamabe, S., Determination of the Stabilities and Structures of X-(C6H6) Clusters (X = Cl, Br, and I), Chem. Phys. Lett., 1988, 147, 2-3, 174, https://doi.org/10.1016/0009-2614(88)85078-4 . [all data]

Amunugama and Rodgers, 2000
Amunugama, R.; Rodgers, M.T., Absolute Alkali Metal Ion Binding Affinities of Several Azines Determined by Threshold Collision-Induced Dissociation and Ab Initio Theory, Int. J. Mass Spectrom., 2000, 195/196, 439, https://doi.org/10.1016/S1387-3806(99)00145-1 . [all data]

Staley and Beauchamp, 1975
Staley, R.H.; Beauchamp, J.L., Intrinsic Acid - Base Properties of Molecules. Binding Energies of Li+ to pi - and n - Donor Bases, J. Am. Chem. Soc., 1975, 97, 20, 5920, https://doi.org/10.1021/ja00853a050 . [all data]

Dzidic and Kebarle, 1970
Dzidic, I.; Kebarle, P., Hydration of the Alkali Ions in the Gas Phase. Enthalpies and Entropies of Reactions M+(H2O)n-1 + H2O = M+(H2O)n, J. Phys. Chem., 1970, 74, 7, 1466, https://doi.org/10.1021/j100702a013 . [all data]

Davidson and Kebarle, 1976
Davidson, W.R.; Kebarle, P., Binding Energies and Stabilities of Potassium Ion Complexes from Studies of Gas Phase Ion Equilibria K+ + M = K+.M, J. Am. Chem. Soc., 1976, 98, 20, 6133, https://doi.org/10.1021/ja00436a011 . [all data]

Le Barbu, Schiedt, et al., 2002
Le Barbu, K.; Schiedt, J.; Weinkauf, R.; Schlag, E.W.; Nilles, J.M.; Xu, S.J.; Thomas, O.C.; Bowen, K.H., Microsolvation of small anions by aromatic molecules: An exploratory study, J. Chem. Phys., 2002, 116, 22, 9663-9671, https://doi.org/10.1063/1.1475750 . [all data]

Shaofeng and Pilcher, 1988
Shaofeng, L.; Pilcher, G., Enthalpy of formation of pyridine-N-oxide: the dissociation enthalpy of the (N-O) bond, J. Chem. Thermodyn., 1988, 20, 463-465. [all data]

Rodgers, Stanley, et al., 2000
Rodgers, M.T.; Stanley, J.R.; Amunugama, R., Periodic Trends in the Binding of Metal Ions to Pyridine Studied by Threshold Collision-Induced Dissociation and Density Functional Theory, J. Am. Chem. Soc., 2000, 122, 44, 10969, https://doi.org/10.1021/ja0027923 . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, References