Benzene, 1,2,4,5-tetrafluoro-

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Quantity Value Units Method Reference Comment
Δfgas-646.8 ± 3.4kJ/molCcrHarrop and Head, 1978 

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfliquid-683.8 ± 3.2kJ/molCcrHarrop and Head, 1978ALS
Quantity Value Units Method Reference Comment
Δcliquid-2679.0 ± 1.7kJ/molCcrHarrop and Head, 1978ALS
Quantity Value Units Method Reference Comment
liquid250.4J/mol*KN/AAndon and Martin, 1973DH

Constant pressure heat capacity of liquid

Cp,liquid (J/mol*K) Temperature (K) Reference Comment
192.2298.15Andon and Martin, 1973T = 10 to 350 K.; DH

Phase change data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Tboil363.KN/APCR Inc., 1990BS
Tboil362.7KN/AWeast and Grasselli, 1989BS
Quantity Value Units Method Reference Comment
Ttriple277.03KN/AAndon and Martin, 1973, 2Uncertainty assigned by TRC = 0.02 K; TRC
Quantity Value Units Method Reference Comment
Tc543.35KN/AAmbrose, Broderick, et al., 1974Uncertainty assigned by TRC = 0.2 K; TRC
Quantity Value Units Method Reference Comment
Pc38.01barN/AAmbrose, Broderick, et al., 1974Uncertainty assigned by TRC = 0.06 bar; TRC
Quantity Value Units Method Reference Comment
Δvap37.2kJ/molN/ABoublik, Fried, et al., 1984Based on data from 290. to 390. K. See also Basarová and Svoboda, 1991.; AC
Δvap37.11kJ/molVFindlay, 1969ALS

Enthalpy of vaporization

ΔvapH (kJ/mol) Temperature (K) Method Reference Comment
33.1405.AStephenson and Malanowski, 1987Based on data from 390. to 488. K.; AC
32.6503.AStephenson and Malanowski, 1987Based on data from 488. to 543. K.; AC
36.8308.AStephenson and Malanowski, 1987Based on data from 293. to 390. K. See also Ambrose, Ellender, et al., 1975 and Boublik, Fried, et al., 1984.; AC

Enthalpy of fusion

ΔfusH (kJ/mol) Temperature (K) Reference Comment
15.050277.03Andon and Martin, 1973DH
15.05277.Andon and Martin, 1973, 2AC

Entropy of fusion

ΔfusS (J/mol*K) Temperature (K) Reference Comment
54.33277.03Andon and Martin, 1973DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
B - John E. Bartmess
RCD - Robert C. Dunbar

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

C6H6+ + Benzene, 1,2,4,5-tetrafluoro- = (C6H6+ • Benzene, 1,2,4,5-tetrafluoro-)

By formula: C6H6+ + C6H2F4 = (C6H6+ • C6H2F4)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr50.2kJ/molPHPMSMeot-Ner (Mautner), Hamlet, et al., 1978gas phase; M
Quantity Value Units Method Reference Comment
Δr110.J/mol*KPHPMSMeot-Ner (Mautner), Hamlet, et al., 1978gas phase; M

C6HF4- + Hydrogen cation = Benzene, 1,2,4,5-tetrafluoro-

By formula: C6HF4- + H+ = C6H2F4

Quantity Value Units Method Reference Comment
Δr1513. ± 8.8kJ/molG+TSBuker, Nibbering, et al., 1997gas phase; B
Quantity Value Units Method Reference Comment
Δr1478. ± 8.4kJ/molIMREBuker, Nibbering, et al., 1997gas phase; B

Chromium ion (1+) + Benzene, 1,2,4,5-tetrafluoro- = (Chromium ion (1+) • Benzene, 1,2,4,5-tetrafluoro-)

By formula: Cr+ + C6H2F4 = (Cr+ • C6H2F4)

Quantity Value Units Method Reference Comment
Δr111.kJ/molRAKRyzhov, 1999RCD

IR Spectrum

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Gas Phase Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

IR spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Notice: Concentration information is not available for this spectrum and, therefore, molar absorptivity values cannot be derived.

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

View spectrum image in SVG format.

Download spectrum in JCAMP-DX format.

Owner NIST Standard Reference Data Program
Collection (C) 2018 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin NIST Mass Spectrometry Data Center
State gas
Instrument HP-GC/MS/IRD

This IR spectrum is from the NIST/EPA Gas-Phase Infrared Database .


Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, UV/Visible spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin NIST Mass Spectrometry Data Center, 1990.
NIST MS number 118783

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


UV/Visible spectrum

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Victor Talrose, Eugeny B. Stern, Antonina A. Goncharova, Natalia A. Messineva, Natalia V. Trusova, Margarita V. Efimkina

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

UVVis spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

View spectrum image in SVG format.

Download spectrum in JCAMP-DX format.

Source Hitchcock, Fischer, et al., 1987
Owner INEP CP RAS, NIST OSRD
Collection (C) 2007 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin INSTITUTE OF ENERGY PROBLEMS OF CHEMICAL PHYSICS, RAS
Source reference RAS UV No. 1399
Instrument n.i.g.
Melting point 4.5
Boiling point 90.2

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Harrop and Head, 1978
Harrop, D.; Head, A.J., Thermodynamic properties of fluorine compounds. 18. Enthalpy of combustion of 1,2,4,5-tetrafluorobenzene, J. Chem. Thermodyn., 1978, 10, 705-706. [all data]

Andon and Martin, 1973
Andon, R.J.L.; Martin, J.F., Thermodynamic properties of fluorine compounds. Part 11. Low-temperature heat capacities of the three tetrafluorobenzenes, J. Chem. Soc. Faraday Trans., 1973, I 69, 761-770. [all data]

PCR Inc., 1990
PCR Inc., Research Chemicals Catalog 1990-1991, PCR Inc., Gainesville, FL, 1990, 1. [all data]

Weast and Grasselli, 1989
CRC Handbook of Data on Organic Compounds, 2nd Editon, Weast,R.C and Grasselli, J.G., ed(s)., CRC Press, Inc., Boca Raton, FL, 1989, 1. [all data]

Andon and Martin, 1973, 2
Andon, R.J.L.; Martin, J.F., Thermodynamic properties of fluorine compounds. Part 11.---Low-temperature heat capacities of the three tetrafluorobenzenes, J. Chem. Soc., Faraday Trans. 1, 1973, 69, 0, 761, https://doi.org/10.1039/f19736900761 . [all data]

Ambrose, Broderick, et al., 1974
Ambrose, D.; Broderick, B.E.; Townsend, R., The Critical Temperatures and Pressures of Thirty Organic Compounds, J. Appl. Chem. Biotechnol., 1974, 24, 359. [all data]

Boublik, Fried, et al., 1984
Boublik, T.; Fried, V.; Hala, E., The Vapour Pressures of Pure Substances: Selected Values of the Temperature Dependence of the Vapour Pressures of Some Pure Substances in the Normal and Low Pressure Region, 2nd ed., Elsevier, New York, 1984, 972. [all data]

Basarová and Svoboda, 1991
Basarová, Pavlína; Svoboda, Václav, Calculation of heats of vaporization of halogenated hydrocarbons from saturated vapour pressure data, Fluid Phase Equilibria, 1991, 68, 13-34, https://doi.org/10.1016/0378-3812(91)85008-I . [all data]

Findlay, 1969
Findlay, T.J.V., Vapor pressures of fluorobenzenes from 5° to 50°C, J. Chem. Eng. Data, 1969, 14, 229. [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Ambrose, Ellender, et al., 1975
Ambrose, D.; Ellender, J.H.; Sprake, C.H.S.; Townsend, R., Thermodynamic properties of fluorine compounds. Part 15.---Vapour pressures of the three tetrafluorobenzenes and 1,3,5-trichloro-2,4,6-trifluorobenzene, J. Chem. Soc., Faraday Trans. 1, 1975, 71, 0, 35, https://doi.org/10.1039/f19757100035 . [all data]

Meot-Ner (Mautner), Hamlet, et al., 1978
Meot-Ner (Mautner), M.; Hamlet, P.; Hunter, E.P.; Field, F.H., Bonding Energies in Association Ions of Aromatic Molecules. Correlations with Ionization Energies, J. Am. Chem. Soc., 1978, 100, 17, 5466, https://doi.org/10.1021/ja00485a034 . [all data]

Buker, Nibbering, et al., 1997
Buker, H.H.; Nibbering, N.M.M.; Espinosa, D.; Mongin, F.; Schlosser, M., Additivity of substituent effects in the fluoroarene series: Equilibrium acidity in the gas phase and deprotonation rates in ethereal solution, Tetrahed. Lett., 1997, 38, 49, 8519-8522, https://doi.org/10.1016/S0040-4039(97)10303-3 . [all data]

Ryzhov, 1999
Ryzhov, V., Binding Energies of Chromium Cations with Fluorobenzenes from Radiative Association Kinetics, Int. J. Mass Spectrom., 1999, 185/186/187, 913. [all data]

Hitchcock, Fischer, et al., 1987
Hitchcock, H.P.; Fischer, P.; Gedanken, A.; Robin, M.B., Antibonding α valence MOs in the inner-shell and outer-shell spectra of the fluorobenzenes, J. Phys. Chem., 1987, 91, 531-540. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, References