barium oxide, obtained by calcining witherite
- Formula: BaO
- Molecular weight: 153.326
- IUPAC Standard InChIKey: QVQLCTNNEUAWMS-UHFFFAOYSA-N
- CAS Registry Number: 1304-28-5
- Chemical structure:
This structure is also available as a 2d Mol file - Other names: barium oxide; Barium monoxide
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Gas phase thermochemistry data
Go To: Top, Condensed phase thermochemistry data, Constants of diatomic molecules, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | -123.85 | kJ/mol | Review | Chase, 1998 | Data last reviewed in June, 1974 |
Quantity | Value | Units | Method | Reference | Comment |
S°gas,1 bar | 235.45 | J/mol*K | Review | Chase, 1998 | Data last reviewed in June, 1974 |
Gas Phase Heat Capacity (Shomate Equation)
Cp° = A + B*t + C*t2 + D*t3 +
E/t2
H° − H°298.15= A*t + B*t2/2 +
C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 −
E/(2*t2) + G
Cp = heat capacity (J/mol*K)
H° = standard enthalpy (kJ/mol)
S° = standard entropy (J/mol*K)
t = temperature (K) / 1000.
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | 5000. to 6000. |
---|---|
A | -1251.230 |
B | 506.9240 |
C | -68.96210 |
D | 3.194891 |
E | 2905.900 |
F | 2971.970 |
G | 616.0870 |
H | -123.8460 |
Reference | Chase, 1998 |
Comment | Data last reviewed in June, 1974 |
Condensed phase thermochemistry data
Go To: Top, Gas phase thermochemistry data, Constants of diatomic molecules, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°liquid | -491.63 | kJ/mol | Review | Chase, 1998 | Data last reviewed in June, 1974 |
Quantity | Value | Units | Method | Reference | Comment |
S°liquid,1 bar | 96.54 | J/mol*K | Review | Chase, 1998 | Data last reviewed in June, 1974 |
Quantity | Value | Units | Method | Reference | Comment |
ΔfH°solid | -548.10 | kJ/mol | Review | Chase, 1998 | Data last reviewed in June, 1974 |
Quantity | Value | Units | Method | Reference | Comment |
S°solid | 72.05 | J/mol*K | Review | Chase, 1998 | Data last reviewed in June, 1974 |
Liquid Phase Heat Capacity (Shomate Equation)
Cp° = A + B*t + C*t2 + D*t3 +
E/t2
H° − H°298.15= A*t + B*t2/2 +
C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 −
E/(2*t2) + G
Cp = heat capacity (J/mol*K)
H° = standard enthalpy (kJ/mol)
S° = standard entropy (J/mol*K)
t = temperature (K) / 1000.
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | 2286. to 5000. |
---|---|
A | 66.94400 |
B | 0.000002 |
C | -3.301011×10-7 |
D | 1.464401×10-8 |
E | 0.000004 |
F | -525.6580 |
G | 156.3120 |
H | -491.6270 |
Reference | Chase, 1998 |
Comment | Data last reviewed in June, 1974 |
Solid Phase Heat Capacity (Shomate Equation)
Cp° = A + B*t + C*t2 + D*t3 +
E/t2
H° − H°298.15= A*t + B*t2/2 +
C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 −
E/(2*t2) + G
Cp = heat capacity (J/mol*K)
H° = standard enthalpy (kJ/mol)
S° = standard entropy (J/mol*K)
t = temperature (K) / 1000.
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | 298. to 2286. |
---|---|
A | 47.42730 |
B | 13.13620 |
C | -3.796501 |
D | 0.725938 |
E | -0.336757 |
F | -563.9310 |
G | 123.7920 |
H | -548.1040 |
Reference | Chase, 1998 |
Comment | Data last reviewed in June, 1974 |
Constants of diatomic molecules
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Klaus P. Huber and Gerhard H. Herzberg
Data collected through September, 1976
Symbol | Meaning |
---|---|
State | electronic state and / or symmetry symbol |
Te | minimum electronic energy (cm-1) |
ωe | vibrational constant – first term (cm-1) |
ωexe | vibrational constant – second term (cm-1) |
ωeye | vibrational constant – third term (cm-1) |
Be | rotational constant in equilibrium position (cm-1) |
αe | rotational constant – first term (cm-1) |
γe | rotation-vibration interaction constant (cm-1) |
De | centrifugal distortion constant (cm-1) |
βe | rotational constant – first term, centrifugal force (cm-1) |
re | internuclear distance (Å) |
Trans. | observed transition(s) corresponding to electronic state |
ν00 | position of 0-0 band (units noted in table) |
State | Te | ωe | ωexe | ωeye | Be | αe | γe | De | βe | re | Trans. | ν00 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
[36490-38620] 1 | ||||||||||||
↳Field, Capelle, et al., 1975 | ||||||||||||
B (1Π) | 32866.4 | 488 H | 3.6 | B ↔ X R | 32775 H | |||||||
↳missing citation | ||||||||||||
A' 1Π | 17691 2 | 443 H | 1.66 | 0.2252 3 | 0.00130 | (0.00000023) | 2.285 | A' ↔ X 4 R | 17578 H | |||
↳Hsu, Krugh, et al., 1974; Pruett and Zare, 1975; missing citation; Engelke, Sander, et al., 1976 | ||||||||||||
a 3Π0+ | 17586.5 2 | 449.0 5 | 2.5 | 0.22544 5 | 0.00138 | |||||||
State | Te | ωe | ωexe | ωeye | Be | αe | γe | De | βe | re | Trans. | ν00 |
a 3Π1 | 17442 2 | [445] 5 | (4.5) | [0.2254] 5 | 2.289 | |||||||
a 3Π2 | 17393 2 | 5 | 5 | |||||||||
A 1Σ+ | 16807.2 | 499.7 6 Z | 1.64 | 0.25832 6 | 0.001070 | 0.00000028 | 2.1338 | A ↔ X R 7 8 | 16722.25 Z | |||
↳missing citation; missing citation; missing citation; Sakurai, Johnson, et al., 1970; Dagdigian, Cruse, et al., 1974 | ||||||||||||
Microwave optical double resonance | ||||||||||||
↳Field, Bradford, et al., 1972; Field, Bradford, et al., 1972, 2; Field, English, et al., 1973 | ||||||||||||
X 1Σ+ | 0 | 669.76 9 Z | 2.028 10 | -0.0035 | 0.3126140 9 | 0.0013921 | -0.00000433 | 2.724E-07 | 1.939692 11 12 | |||
↳Wharton and Klemperer, 1963; Hoeft, Lovas, et al., 1970; Tiemann, Bojaschewsky, et al., 1974 | ||||||||||||
Mol. beam electric 13 and magn. reson. 14 | ||||||||||||
↳Wharton, Kaufman, et al., 1962; Brooks and Kaufman, 1965 |
Notes
1 | Nineteen 1Σ+ vibronic levels belonging to two or more perturbed electronic states. 17 |
2 | 3Π2, 3Π1, 3Π0, and 1Π, [see Field, 1974] correspond to Q, Z, Y, and X, respectively, of Lagerqvist, Lind, et al., 1949, Kovacs and Lagerqvist, 1950. |
3 | Only v=12,17,18 have been rotationally analyzed Pruett and Zare, 1975. In addition, constants for v=2,3,4 have been derived Lagerqvist, Lind, et al., 1949, Kovacs and Lagerqvist, 1950 from perturbations Field, 1974 in v=3,4,5, respectively, of A 1Σ+. Σ+ |
4 | Radiative lifetime τ(v=13...17)= 9 μs Pruett and Zare, 1975. Similar lifetimes observed by Sakurai, Johnson, et al., 1970,2O can be attributed to either A' 1Π or a 3Πi; see Field, Jones, et al., 1974. |
5 | From perturbations in A 1Σ+ Lagerqvist, Lind, et al., 1949, Kovacs and Lagerqvist, 1950, Field, 1974. Field, 1974 has adopted the following constants a 3Πi; Te = 17483 Field, 1974, a 3Πi; A= -105 Field, 1974, a 3Πi; ωe= 448.3 Field, 1974, a 3Πi; ωexe=2.39 Field, 1974, a 3Πi; Be=0.2244 Field, 1974, a 3Πi αe=0.0014 Field, 1974. |
6 | Partially deperturbed constants. Numerous interactions with levels of a 3Πi and A' 1Π, except in v=0 which is unperturbed Lagerqvist, Lind, et al., 1949, Kovacs and Lagerqvist, 1950, Field, 1974. Potential curve Singh and Rai, 1966, Tawde and Tulasigeri, 1975. |
7 | Radiative lifetime τ(v=0) = 0.356 μs; f00(A←X) = 0.00026 Johnson, 1972. Slight variation of τ with v. |
8 | Relative intensities Vaidya, Desai, et al., 1964, Walvekar and Korwar, 1969, Degen, Brown, et al., 1971, Best and Hoffman, 1973; Franck-Condon factors Ortenberg, Glasko, et al., 1964, Wentink and Spindler, 1972, Tawde and Tulasigeri, 1975. |
9 | The ground state constants have been derived Field, Capelle, et al., 1975 from a combination of microwave rotational constants Hoeft, Lovas, et al., 1970, Tiemann, Bojaschewsky, et al., 1974, electronic band origins Lagerqvist, Lind, et al., 1949, and data on higher vibrational levels (v ≤ 34) obtained by optical-optical double resonance photoluminescence spectroscopy. They were used for the construction of the RKR potential curve up to v=40 Field, Capelle, et al., 1975. |
10 | ωeze = -6.3E-5. |
11 | From the Dunham corrected microwave Be value in Tiemann, Bojaschewsky, et al., 1974. |
12 | Microwave sp. 18 |
13 | μel (v)=[7.934 + 0.042(v+1/2)] D. |
14 | gJ = (-)0.103. |
15 | By extrapolation of the highest observed ground state levels (v=0,J) populated in the reaction Ba+CO2 under single-collision conditions Dagdigian, Cruse, et al., 1974. Compatible with lower bounds obtained from the short-wavelength limits of the Ba+NO2 Ottinger and Zare, 1970, Jonah, Zare, et al., 1972 and Ba+ClO2 Engelke, Sander, et al., 1976 chemiluminescence spectra. Flame photometric values 16,27,36, if corrected to a 1Σ ground state, are near 5.69 eV. Earlier measurements reviewed in Schofield, 1967, Gaydon, 1968. |
16 | Electron impact appearance potential Panchenkov, Gusarov, et al., 1973, Rauh and Ackermann, 1976. |
17 | Optical-optical double resonance laser spectroscopy. |
18 | Values of eqQ(135,137Ba) in Hoeft, Lovas, et al., 1970, Tiemann, Bojaschewsky, et al., 1974. |
References
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Constants of diatomic molecules, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Chase, 1998
Chase, M.W., Jr.,
NIST-JANAF Themochemical Tables, Fourth Edition,
J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]
Field, Capelle, et al., 1975
Field, R.W.; Capelle, G.A.; Revelli, M.A.,
Optical-optical double resonance laser spectroscopy of BaO,
J. Chem. Phys., 1975, 63, 3228. [all data]
Hsu, Krugh, et al., 1974
Hsu, C.J.; Krugh, W.D.; Palmer, H.B.; Obenauf, R.H.; Aten, C.F.,
A new electronic band system of BaO,
J. Mol. Spectrosc., 1974, 53, 273. [all data]
Pruett and Zare, 1975
Pruett, J.G.; Zare, R.N.,
Lifetime-separated spectroscopy: observation and rotational analysis of the BaO A'1Π state,
J. Chem. Phys., 1975, 62, 2050. [all data]
Engelke, Sander, et al., 1976
Engelke, F.; Sander, R.K.; Zare, R.N.,
Crossed-beam chemiluminescent studies of alkaline earth atoms with ClO2,
J. Chem. Phys., 1976, 65, 1146. [all data]
Sakurai, Johnson, et al., 1970
Sakurai, K.; Johnson, S.E.; Broida, H.P.,
Laser-induced fluoroscence of BaO,
J. Chem. Phys., 1970, 52, 1625. [all data]
Dagdigian, Cruse, et al., 1974
Dagdigian, P.J.; Cruse, H.W.; Schultz, A.; Zare, R.N.,
Product state analysis of BaO from the reactions Ba + CO2 and Ba + O2,
J. Chem. Phys., 1974, 61, 4450. [all data]
Field, Bradford, et al., 1972
Field, R.W.; Bradford, R.S.; Harris, D.O.; Broida, H.P.,
Microwave optical double resonance spectroscopy of BaO,
J. Chem. Phys., 1972, 56, 4712. [all data]
Field, Bradford, et al., 1972, 2
Field, R.W.; Bradford, R.S.; Broida, H.P.; Harris, D.O.,
Excited state microwave spectroscopy of the A1Σ state of BaO,
J. Chem. Phys., 1972, 57, 2209. [all data]
Field, English, et al., 1973
Field, R.W.; English, A.D.; Tanaka, T.; Harris, D.O.; Jennings, D.A.,
Microwave optical double resonance spectroscopy with a cw dye laser: BaO X1Σ and A1Σ,
J. Chem. Phys., 1973, 59, 2191. [all data]
Wharton and Klemperer, 1963
Wharton, L.; Klemperer, W.,
Microwave spectrum of BaO,
J. Chem. Phys., 1963, 38, 2705. [all data]
Hoeft, Lovas, et al., 1970
Hoeft, J.; Lovas, F.J.; Tiemann, E.; Torring, T.,
Microwave spectrum of BaO,
Z. Naturforsch. A, 1970, 25, 1750. [all data]
Tiemann, Bojaschewsky, et al., 1974
Tiemann, E.; Bojaschewsky, M.; Sauter-Servaes, C.; Torring, T.,
Rotationsspektrum von BaO,
Z. Naturforsch. A, 1974, 29, 1692. [all data]
Wharton, Kaufman, et al., 1962
Wharton, L.; Kaufman, M.; Klemperer, W.,
Electric resonance spectrum and dipole moment of BaO,
J. Chem. Phys., 1962, 37, 621. [all data]
Brooks and Kaufman, 1965
Brooks, R.; Kaufman, M.,
Rotational magnetic moment of BaO,
J. Chem. Phys., 1965, 43, 3406. [all data]
Field, 1974
Field, R.W.,
Assignment of the lowest 3Π and 1Π states of CaO, SrO, and BaO,
J. Chem. Phys., 1974, 60, 2400. [all data]
Lagerqvist, Lind, et al., 1949
Lagerqvist, A.; Lind, E.; Barrow, R.F.,
Band-spectrum of barium oxide,
Nature (London), 1949, 164, 923. [all data]
Kovacs and Lagerqvist, 1950
Kovacs, I.; Lagerqvist, A.,
Perturbations in the BaO spectrum,
J. Chem. Phys., 1950, 18, 1683. [all data]
Field, Jones, et al., 1974
Field, R.W.; Jones, C.R.; Broida, H.P.,
Gas-phase reaction of Ba with N2O. II. Mechanism of reaction,
J. Chem. Phys., 1974, 60, 4377. [all data]
Singh and Rai, 1966
Singh, R.B.; Rai, D.K.,
Potential curves for some diatomic molecules: P2, PN, SiN, NBr, BaO, BeF, SiF & SnF,
Indian J. Pure Appl. Phys., 1966, 4, 102. [all data]
Tawde and Tulasigeri, 1975
Tawde, N.R.; Tulasigeri, V.G.,
Franck-Condon factors, r-centroids and electronic transition moment variation with internuclear distance of the A1Σ-X1Σ band system of BaO using RKR potentials,
Acta Phys. Acad. Sci. Hung., 1975, 38, 299. [all data]
Johnson, 1972
Johnson, S.E.,
Measured radiative lifetimes and electronic quenching cross sections of BaO(A1Σ),
J. Chem. Phys., 1972, 56, 149. [all data]
Vaidya, Desai, et al., 1964
Vaidya, W.M.; Desai, D.D.; Bidaye, R.G.,
Intensity distribution in the A1Σ-X1Σ system of BaO,
J. Quant. Spectrosc. Radiat. Transfer, 1964, 4, 353. [all data]
Walvekar and Korwar, 1969
Walvekar, A.P.; Korwar, V.M.,
Vibrational transition probabilities of the bands of the BaO (A1Σ-X1Σ) system,
J. Phys. B:, 1969, 2, 115. [all data]
Degen, Brown, et al., 1971
Degen, V.; Brown, N.; Romick, G.J.,
Rotational and vibrational temperatures of BaO from a barium release at 170 km, and the synthetic spectrum of BaO in the region 4700 Å to 15,500 Å,
Planet. Space Sci., 1971, 19, 1625. [all data]
Best and Hoffman, 1973
Best, G.T.; Hoffman, H.S.,
The electronic transition moment of the A1Σ-X1Σ band system of BaO,
J. Quant. Spectrosc. Radiat. Transfer, 1973, 13, 69. [all data]
Ortenberg, Glasko, et al., 1964
Ortenberg, F.S.; Glasko, V.B.; Dmitriev, A.I.,
Vibrational transition probabilities for band systems of some diatomic oxides. II.,
Sov. Astron. Engl. Transl., 1964, 8, 258, In original 332. [all data]
Wentink and Spindler, 1972
Wentink, T., Jr.; Spindler, R.J., Jr.,
Franck-Condon factors, r-centroids and oscillator strength of BaO (A1Σ-X1Σ),
J. Quant. Spectrosc. Radiat. Transfer, 1972, 12, 129. [all data]
Ottinger and Zare, 1970
Ottinger, Ch.; Zare, R.N.,
Crossed beam chemiluminescence,
Chem. Phys. Lett., 1970, 5, 243. [all data]
Jonah, Zare, et al., 1972
Jonah, C.D.; Zare, R.N.; Ottinger, Ch.,
Crossed-beam chemiluminescence studies of some group IIa metal oxides,
J. Chem. Phys., 1972, 56, 263. [all data]
Schofield, 1967
Schofield, K.,
The bond dissociation energies of group IIA diatomic oxides,
Chem. Rev., 1967, 67, 707. [all data]
Gaydon, 1968
Gaydon, A.G.,
Dissociation energies and spectra of diatomic molecules, Chapman and Hall, Ltd., 3rd Edition, London, 1968, 1. [all data]
Panchenkov, Gusarov, et al., 1973
Panchenkov, I.G.; Gusarov, A.V.; Gorokhov, L.N.,
Dissociation energy of the barium oxide molecule,
Russ. J. Phys. Chem., 1973, 47, 55. [all data]
Rauh and Ackermann, 1976
Rauh, E.G.; Ackermann, R.J.,
Erratum: First ionization potentials of some refractory oxide vapors,
J. Chem. Phys., 1976, 64, 1862. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Constants of diatomic molecules, References
- Symbols used in this document:
S°gas,1 bar Entropy of gas at standard conditions (1 bar) S°liquid,1 bar Entropy of liquid at standard conditions (1 bar) S°solid Entropy of solid at standard conditions ΔfH°gas Enthalpy of formation of gas at standard conditions ΔfH°liquid Enthalpy of formation of liquid at standard conditions ΔfH°solid Enthalpy of formation of solid at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.