1-Pentanol, 2-methyl-

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Condensed phase thermochemistry data

Go To: Top, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Eugene S. Domalski and Elizabeth D. Hearing

Constant pressure heat capacity of liquid

Cp,liquid (J/mol*K) Temperature (K) Reference
249.21298.15Benson, D'Arcy, et al., 1985
247.63298.15Bravo, Pintos, et al., 1984
248.40298.15Aicart, Kumaran, et al., 1983

Phase change data

Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos

Quantity Value Units Method Reference Comment
Tboil421. ± 2.KAVGN/AAverage of 20 out of 21 values; Individual data points
Quantity Value Units Method Reference Comment
Tc604.4 ± 0.5KN/AGude and Teja, 1995 
Tc604.4KN/AQuadri, Khilar, et al., 1991Uncertainty assigned by TRC = 0.7 K; TRC
Quantity Value Units Method Reference Comment
Pc34.5 ± 0.2barN/AGude and Teja, 1995 
Pc34.50barN/AQuadri, Khilar, et al., 1991Uncertainty assigned by TRC = 0.50 bar; TRC
Quantity Value Units Method Reference Comment
Δvap59.4 ± 0.3kJ/molGSKulikov, Verevkin, et al., 2001Based on data from 275. to 313. K.; AC

Enthalpy of vaporization

ΔvapH (kJ/mol) Temperature (K) Method Reference Comment
49.3382.AStephenson and Malanowski, 1987Based on data from 367. to 423. K.; AC
64.9279.AStephenson and Malanowski, 1987Based on data from 261. to 294. K. See also Thomas, Meatyard, et al., 1979.; AC
57.4 ± 0.2328.CMajer, Svoboda, et al., 1985AC
55.7 ± 0.2343.CMajer, Svoboda, et al., 1985AC
53.9 ± 0.2358.CMajer, Svoboda, et al., 1985AC
52.7 ± 0.2368.CMajer, Svoboda, et al., 1985AC
54.2313.N/AWilhoit and Zwolinski, 1973Based on data from 298. to 423. K.; AC
50.2356.IHovorka, Lankelma, et al., 1938Based on data from 298. to 413. K.; AC

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (bar)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
298. to 423.6.1982625.1433.181Hovorka, Lankelma, et al., 1938Coefficents calculated by NIST from author's data.

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: John E. Bartmess

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

C6H13O- + Hydrogen cation = 1-Pentanol, 2-methyl-

By formula: C6H13O- + H+ = C6H14O

Quantity Value Units Method Reference Comment
Δr1561. ± 8.4kJ/molCIDCHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.
Quantity Value Units Method Reference Comment
Δr1533. ± 8.8kJ/molH-TSHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.

IR Spectrum

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Gas Phase Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

IR spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Notice: Concentration information is not available for this spectrum and, therefore, molar absorptivity values cannot be derived.

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

View spectrum image in SVG format.

Download spectrum in JCAMP-DX format.

Owner NIST Standard Reference Data Program
Collection (C) 2018 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin Sadtler Research Labs Under US-EPA Contract
State gas

This IR spectrum is from the NIST/EPA Gas-Phase Infrared Database .


Mass spectrum (electron ionization)

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin Japan AIST/NIMC Database- Spectrum MS-NW- 743
NIST MS number 229384

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


References

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Benson, D'Arcy, et al., 1985
Benson, G.C.; D'Arcy, P.J.; Kumaran, M.K., Excess molar isobaric heat capacities of (2-methylpentan-1-ol + n-hexane) and (2-ethylbutan-1-ol + n-hexane) at 298.15 K, J. Chem. Thermodynam., 1985, 17, 501-504. [all data]

Bravo, Pintos, et al., 1984
Bravo, R.; Pintos, M.; Baluja, M.C.; Paz Andrade, M.I.; Roux-Desgranges, G.; Grolier, J.-P.E., Excess volumes excess heat capacities of some mixtures: (an isomer of hexanol + an n-alkane) at 298.15 K, J. Chem. Thermodynam., 1984, 16, 73-79. [all data]

Aicart, Kumaran, et al., 1983
Aicart, E.; Kumaran, M.K.; Halpin, C.J.; Benson, G.C., Ultrasonic speeds and isentropic compressibilities of 2-methylpentan-1-ol with hexane isomers at 298.15 K, J. Chem. Thermodynam., 1983, 15, 1189-1197. [all data]

Gude and Teja, 1995
Gude, M.; Teja, A.S., Vapor-Liquid Critical Properties of Elements and Compounds. 4. Aliphatic Alkanols, J. Chem. Eng. Data, 1995, 40, 1025-1036. [all data]

Quadri, Khilar, et al., 1991
Quadri, S.K.; Khilar, K.C.; Kudchadker, A.P.; Patni, M.J., Measurement of the critical temperatures and critical pressures of some thermally stable or mildly unstable alkanols, J. Chem. Thermodyn., 1991, 23, 67-76. [all data]

Kulikov, Verevkin, et al., 2001
Kulikov, Dmitry; Verevkin, Sergey P.; Heintz, Andreas, Determination of Vapor Pressures and Vaporization Enthalpies of the Aliphatic Branched C 5 and C 6 Alcohols, J. Chem. Eng. Data, 2001, 46, 6, 1593-1600, https://doi.org/10.1021/je010187p . [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Thomas, Meatyard, et al., 1979
Thomas, Leo H.; Meatyard, Robert; Smith, Harry; Davies, Gwyn H., Vapor pressures and molar entropies of vaporization of monohydric alcohols, J. Chem. Eng. Data, 1979, 24, 3, 159-161, https://doi.org/10.1021/je60082a032 . [all data]

Majer, Svoboda, et al., 1985
Majer, V.; Svoboda, V.; Lencka, M., Enthalpies of vaporization and cohesive energies of dimethylpyridines and trimethylpyridines, The Journal of Chemical Thermodynamics, 1985, 17, 4, 365-370, https://doi.org/10.1016/0021-9614(85)90133-8 . [all data]

Wilhoit and Zwolinski, 1973
Wilhoit, R.C.; Zwolinski, B.J., Physical and thermodynamic properties of aliphatic alcohols, J. Phys. Chem. Ref. Data Suppl., 1973, 1, 2, 1. [all data]

Hovorka, Lankelma, et al., 1938
Hovorka, Frank; Lankelma, Herman P.; Stanford, Spencer C., Thermodynamic Properties of the Hexyl Alcohols. II. Hexanols-1, -2, -3 and 2-Methylpentanol-1 and -4, J. Am. Chem. Soc., 1938, 60, 4, 820-827, https://doi.org/10.1021/ja01271a018 . [all data]

Haas and Harrison, 1993
Haas, M.J.; Harrison, A.G., The Fragmentation of Proton-Bound Cluster Ions and the Gas-Phase Acidities of Alcohols, Int. J. Mass Spectrom. Ion Proc., 1993, 124, 2, 115, https://doi.org/10.1016/0168-1176(93)80003-W . [all data]


Notes

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), References