Acetaldehyde

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas-40.80 ± 0.35kcal/molChydWiberg, Crocker, et al., 1991ALS

Constant pressure heat capacity of gas

Cp,gas (cal/mol*K) Temperature (K) Reference Comment
8.49250.Thermodynamics Research Center, 19971 bar. Recommended heat capacity and entropy values are in good agreement with statistically calculated values of [ Pitzer K.S., 1949, 66LIP/WAG]. Discrepancies with results of calculation [ Della Vedova C.O., 1991] amount to 1.4 J/mol*K for S(300 K) and 3.4 J/mol*K for Cp(900 K). S(298.15 K) value calculated by high accuracy ab initio method [ East A.L.L., 1997] is in close agreement with selected one. Please also see Chao J., 1980, Chao J., 1986.; GT
9.625100.
10.34150.
11.11200.
12.62273.15
13.22 ± 0.02298.15
13.27300.
15.84400.
18.33500.
20.54600.
22.48700.
24.156800.
25.619900.
26.8861000.
27.9831100.
28.9341200.
29.7561300.
30.4711400.
31.0921500.
32.3181750.
33.2072000.
33.8622250.
34.3572500.
34.7392750.
35.0363000.

Constant pressure heat capacity of gas

Cp,gas (cal/mol*K) Temperature (K) Reference Comment
13.14298.1Chao J., 1986These ideal gas heat capacity values were obtained from the observed values of [ Coleman C.F., 1949] using the second virial coefficient data from [ Pitzer K.S., 1949].; GT
13.87322.9
14.92372.7
16.12422.4

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfliquid-46.95 ± 0.35kcal/molChydWiberg, Crocker, et al., 1991ALS
Quantity Value Units Method Reference Comment
liquid28.04cal/mol*KN/ALebedev and Vasil'ev, 1988DH

Constant pressure heat capacity of liquid

Cp,liquid (cal/mol*K) Temperature (K) Reference Comment
21.28298.15Lebedev and Vasil'ev, 1988T = 15 to 300 K.; DH
22.99273.Connor, Elving, et al., 1947DH

Phase change data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
DRB - Donald R. Burgess, Jr.
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
CAL - James S. Chickos, William E. Acree, Jr., Joel F. Liebman, Students of Chem 202 (Introduction to the Literature of Chemistry), University of Missouri -- St. Louis

Quantity Value Units Method Reference Comment
Tboil294.0 ± 0.8KAVGN/AAverage of 25 out of 27 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus151. ± 3.KAVGN/AAverage of 15 values; Individual data points
Quantity Value Units Method Reference Comment
Tc466.0KN/ATeja and Anselme, 1990Uncertainty assigned by TRC = 2. K; TRC
Tc461.KN/AHollmann, 1903Uncertainty assigned by TRC = 2. K; TRC
Tc454.7KN/AVan der Waals, 1881Uncertainty assigned by TRC = 6. K; TRC
Quantity Value Units Method Reference Comment
ρc6.49mol/lN/ATeja and Anselme, 1990Uncertainty assigned by TRC = 0.1 mol/l; TRC
Quantity Value Units Method Reference Comment
Δvap6.243kcal/molN/AMajer and Svoboda, 1985 
Δvap6.14kcal/molN/AWiberg, Crocker, et al., 1991DRB
Δvap6.43kcal/molEBBull, Seregrennaja, et al., 1963Based on data from 293. to 377. K. See also Verevkin, Krasnykh, et al., 2003.; AC

Enthalpy of vaporization

ΔvapH (kcal/mol) Temperature (K) Method Reference Comment
6.157293.3N/AMajer and Svoboda, 1985 
6.21308.AStephenson and Malanowski, 1987Based on data from 293. to 377. K.; AC
6.60283.AStephenson and Malanowski, 1987Based on data from 272. to 294. K. See also Dykyj, 1970.; AC
6.29308.N/AKim and Kim, 1977Based on data from 293. to 345. K.; AC
6.45307.N/AColes and Popper, 1950Based on data from 273. to 307. K.; AC
6.15 ± 0.05294.VColeman and DeVries, 1949ALS

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (atm)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
293.4 to 377.53.68068822.894-69.899Bull, Seregrennaja, et al., 1963, 2Coefficents calculated by NIST from author's data.
272.9 to 307.65.18261637.08322.317Coles and Popper, 1950Coefficents calculated by NIST from author's data.

Enthalpy of fusion

ΔfusH (kcal/mol) Temperature (K) Reference Comment
0.5521149.78Lebedev and Vasil'ev, 1988DH
0.411242.9Domalski and Hearing, 1996AC

Entropy of fusion

ΔfusS (cal/mol*K) Temperature (K) Reference Comment
3.688149.78Lebedev and Vasil'ev, 1988DH

Entropy of fusion

ΔfusS (cal/mol*K) Temperature (K) Reference Comment
3.685149.8Domalski and Hearing, 1996CAL
1.69242.9

Enthalpy of phase transition

ΔHtrs (kcal/mol) Temperature (K) Initial Phase Final Phase Reference Comment
0.4101242.9liquidliquidLebedev and Vasil'ev, 1988Lambda type transition.; DH

Entropy of phase transition

ΔStrs (cal/mol*K) Temperature (K) Initial Phase Final Phase Reference Comment
1.76242.9liquidliquidLebedev and Vasil'ev, 1988Lambda; DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
RCD - Robert C. Dunbar

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

C2H3O- + Hydrogen cation = Acetaldehyde

By formula: C2H3O- + H+ = C2H4O

Quantity Value Units Method Reference Comment
Δr366.42 ± 0.81kcal/molD-EAMead, Lykke, et al., 1984gas phase; Uncertainty: 6 millical/mol (0.26 micro-eV).Dipolebound state at ca. 14.3 cal/mol (5 cm-1); B
Δr365.8 ± 2.2kcal/molG+TSBartmess, Scott, et al., 1979gas phase; Acid: ethanal. The enol is 9.6 kcal/mol more acidic: Holmes and Lossing, 1982; value altered from reference due to change in acidity scale; B
Δr366.5 ± 2.9kcal/molG+TSCumming and Kebarle, 1978gas phase; B
Quantity Value Units Method Reference Comment
Δr359.6 ± 1.2kcal/molH-TSMead, Lykke, et al., 1984gas phase; Uncertainty: 6 millical/mol (0.26 micro-eV).Dipolebound state at ca. 14.3 cal/mol (5 cm-1); B
Δr359.0 ± 2.0kcal/molIMREBartmess, Scott, et al., 1979gas phase; Acid: ethanal. The enol is 9.6 kcal/mol more acidic: Holmes and Lossing, 1982; value altered from reference due to change in acidity scale; B
Δr359.7 ± 2.0kcal/molIMRECumming and Kebarle, 1978gas phase; B

C2H5O+ + Acetaldehyde = (C2H5O+ • Acetaldehyde)

By formula: C2H5O+ + C2H4O = (C2H5O+ • C2H4O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr29.0kcal/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr26.2cal/mol*KN/ALarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr21.2kcal/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M

C2H7O+ + Acetaldehyde = (C2H7O+ • Acetaldehyde)

By formula: C2H7O+ + C2H4O = (C2H7O+ • C2H4O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr31.2kcal/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr26.9cal/mol*KN/ALarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr23.2kcal/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M

C2H5O+ + Acetaldehyde = (C2H5O+ • Acetaldehyde)

By formula: C2H5O+ + C2H4O = (C2H5O+ • C2H4O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr31.9kcal/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984; M
Quantity Value Units Method Reference Comment
Δr29.0cal/mol*KN/ALarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984; M
Quantity Value Units Method Reference Comment
Δr23.3kcal/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984; M

C2H3O- + Hydrogen cation = Acetaldehyde

By formula: C2H3O- + H+ = C2H4O

Quantity Value Units Method Reference Comment
Δr393.19 ± 0.96kcal/molD-EANimlos, Soderquist, et al., 1989gas phase; B
Δr391.0 ± 2.1kcal/molG+TSDePuy, Bierbaum, et al., 1985gas phase; B
Δr387.0 ± 8.0kcal/molCIDTGraul and Squires, 1990gas phase; B
Δr<382.00kcal/molCIDTGraul and Squires, 1988gas phase; B
Quantity Value Units Method Reference Comment
Δr385.4 ± 1.1kcal/molH-TSNimlos, Soderquist, et al., 1989gas phase; B
Δr383.3 ± 2.0kcal/molIMRBDePuy, Bierbaum, et al., 1985gas phase; B
Δr<374.25 ± 0.60kcal/molH-TSGraul and Squires, 1988gas phase; B

Chlorine anion + Acetaldehyde = (Chlorine anion • Acetaldehyde)

By formula: Cl- + C2H4O = (Cl- • C2H4O)

Quantity Value Units Method Reference Comment
Δr14.4 ± 2.0kcal/molIMRELarson and McMahon, 1984gas phase; B,M
Quantity Value Units Method Reference Comment
Δr21.7cal/mol*KN/ALarson and McMahon, 1984gas phase; switching reaction(Cl-)t-C4H9F, Entropy change calculated or estimated; Larson and McMahon, 1984, 2; M
Quantity Value Units Method Reference Comment
Δr7.9 ± 2.0kcal/molIMRELarson and McMahon, 1984gas phase; B,M

MeCO2 anion + Acetaldehyde = (MeCO2 anion • Acetaldehyde)

By formula: C2H3O2- + C2H4O = (C2H3O2- • C2H4O)

Bond type: Hydrogen bonds of deprotonated acids to ketones/

Quantity Value Units Method Reference Comment
Δr16.3 ± 1.0kcal/molTDAsMeot-ner, 1988gas phase; B,M
Quantity Value Units Method Reference Comment
Δr21.7cal/mol*KPHPMSMeot-ner, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr9.8 ± 2.0kcal/molTDAsMeot-ner, 1988gas phase; B

Hydrogen + Acetaldehyde = Ethanol

By formula: H2 + C2H4O = C2H6O

Quantity Value Units Method Reference Comment
Δr-19.44 ± 0.34kcal/molChydWiberg, Crocker, et al., 1991liquid phase; solvent: Triglyme; ALS
Δr-16.51 ± 0.10kcal/molChydDolliver, Gresham, et al., 1938gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -16.8 ± 0.1 kcal/mol; At 355 °K; ALS

(C2H5O- • 4294967295Acetaldehyde) + Acetaldehyde = C2H5O-

By formula: (C2H5O- • 4294967295C2H4O) + C2H4O = C2H5O-

Quantity Value Units Method Reference Comment
Δr37.7 ± 1.0kcal/molN/ARamond, Davico, et al., 2000gas phase; B
Δr39.5 ± 2.2kcal/molTherBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B

Nitric oxide anion + Acetaldehyde = (Nitric oxide anion • Acetaldehyde)

By formula: NO- + C2H4O = (NO- • C2H4O)

Quantity Value Units Method Reference Comment
Δr39.1kcal/molICRReents and Freiser, 1981gas phase; switching reaction,Thermochemical ladder(NO+)C2H5OH, Entropy change calculated or estimated; Farid and McMahon, 1978; M

Lithium ion (1+) + Acetaldehyde = (Lithium ion (1+) • Acetaldehyde)

By formula: Li+ + C2H4O = (Li+ • C2H4O)

Quantity Value Units Method Reference Comment
Δr41.3kcal/molICRStaley and Beauchamp, 1975gas phase; switching reaction(Li+)H2O, Keesee and Castleman, 1986 from Berman and Beauchamp, 1986; Dzidic and Kebarle, 1970 interpolated; M

3Acetaldehyde = Paraldehyde

By formula: 3C2H4O = C6H12O3

Quantity Value Units Method Reference Comment
Δr-21. ± 1.kcal/molCmKrasnov, Ozherel'eva, et al., 1983liquid phase; solvent: Nonaqueous; Trimerization; ALS
Δr-23.4kcal/molEqkBusfield, Lee, et al., 1973gas phase; ALS

Magnesium ion (1+) + Acetaldehyde = (Magnesium ion (1+) • Acetaldehyde)

By formula: Mg+ + C2H4O = (Mg+ • C2H4O)

Quantity Value Units Method Reference Comment
Δr63. ± 5.kcal/molICROperti, Tews, et al., 1988gas phase; switching reaction,Thermochemical ladder(Mg+)CH3OH; M

Ethane, 1,1-dimethoxy- + Water = 2Methyl Alcohol + Acetaldehyde

By formula: C4H10O2 + H2O = 2CH4O + C2H4O

Quantity Value Units Method Reference Comment
Δr8.622 ± 0.015kcal/molCmWiberg, 1980liquid phase; solvent: Water; Hydrolysis; ALS

1,1-Dimethoxyethane + Water = 2Methyl Alcohol + Acetaldehyde

By formula: C4H10O2 + H2O = 2CH4O + C2H4O

Quantity Value Units Method Reference Comment
Δr8.54 ± 0.07kcal/molCmBirley and Skinner, 1970liquid phase; Heat of hydrolysis; ALS

Ethane, 1,2-dimethoxy- + Water = 2Methyl Alcohol + Acetaldehyde

By formula: C4H10O2 + H2O = 2CH4O + C2H4O

Quantity Value Units Method Reference Comment
Δr8.6 ± 0.2kcal/molEqkWiberg, Morgan, et al., 1994liquid phase; ALS

2Methyl Alcohol + Acetaldehyde = Ethane, 1,2-dimethoxy- + Water

By formula: 2CH4O + C2H4O = C4H10O2 + H2O

Quantity Value Units Method Reference Comment
Δr-14.8 ± 0.3kcal/molCmWiberg, Morgan, et al., 1994gas phase; ALS

Acetaldehyde + Iodine = Hydrogen iodide + Acetyl iodide

By formula: C2H4O + I2 = HI + C2H3IO

Quantity Value Units Method Reference Comment
Δr0.7 ± 0.5kcal/molEqkWalsh and Benson, 1966gas phase; ALS

Water + Acetaldehyde, phenylhydrazone = Hydrazine, phenyl- + Acetaldehyde

By formula: H2O + C8H10N2 = C6H8N2 + C2H4O

Quantity Value Units Method Reference Comment
Δr-14.6kcal/molCmLandrieu, 1905solid phase; ALS

Paraldehyde = 3Acetaldehyde

By formula: C6H12O3 = 3C2H4O

Quantity Value Units Method Reference Comment
Δr23.4kcal/molEqkBusfield, Lee, et al., 1973gas phase; At 292-313 K; ALS

Sodium ion (1+) + Acetaldehyde = (Sodium ion (1+) • Acetaldehyde)

By formula: Na+ + C2H4O = (Na+ • C2H4O)

Quantity Value Units Method Reference Comment
Δr27.1 ± 0.8kcal/molCIDTArmentrout and Rodgers, 2000RCD

Silver ion (1+) + Acetaldehyde = (Silver ion (1+) • Acetaldehyde)

By formula: Ag+ + C2H4O = (Ag+ • C2H4O)

Quantity Value Units Method Reference Comment
Δr43.5 ± 4.5kcal/molRAKHo, Yang, et al., 1997RCD

Henry's Law data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Rolf Sander

Henry's Law constant (water solution)

kH(T) = H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)

H (mol/(kg*bar)) d(ln(kH))/d(1/T) (K) Method Reference Comment
14.5600.LN/A 
13.5700.MN/A 
9.8 QN/A missing citation give several references for the Henry's law constants but don't assign them to specific species.
17.5000.MN/AThe data from Table 1 by missing citation was used to redo the regression analysis. The data for acetone in their Table 2 is wrong.
11.6300.MN/A missing citation list effective values that take into account hydration of the aldehydes: kH = ([RCHO] + [RCH(OH)2]) / p(RCHO)
1.74500.XN/A 
13.5800.MN/A 
15. XN/AValue given here as quoted by missing citation.
17.4700.XN/A 
15. MButtery, Ling, et al., 1969 
15. XN/AValue given here as quoted by missing citation.

IR Spectrum

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Mass spectrum (electron ionization), UV/Visible spectrum, Vibrational and/or electronic energy levels, References, Notes

Data compiled by: Coblentz Society, Inc.


Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, IR Spectrum, UV/Visible spectrum, Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin Japan AIST/NIMC Database- Spectrum MS-NW-9104
NIST MS number 227634

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


UV/Visible spectrum

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Victor Talrose, Alexander N. Yermakov, Alexy A. Usov, Antonina A. Goncharova, Axlexander N. Leskin, Natalia A. Messineva, Natalia V. Trusova, Margarita V. Efimkina

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

UVVis spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

View spectrum image in SVG format.

Download spectrum in JCAMP-DX format.

Source Fillet and Letort, 1956
Owner INEP CP RAS, NIST OSRD
Collection (C) 2007 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin INSTITUTE OF ENERGY PROBLEMS OF CHEMICAL PHYSICS, RAS
Source reference RAS UV No. 12511
Instrument Beckman DU
Melting point - 123
Boiling point 20.1

Vibrational and/or electronic energy levels

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Takehiko Shimanouchi

Symmetry:   Cs     Symmetry Number σ = 1


 Sym.   No   Approximate   Selected Freq.  Infrared   Raman   Comments 
 Species   type of mode   Value   Rating   Value  Phase  Value  Phase

a' 1 CH3 d-str 3005  C 3005 M gas 3001 W liq.
a' 2 CH3 s-str 2917  D 2917 S p liq.
a' 3 CH str 2822  C 2822 M gas 2843 W p liq.
a' 4 CO str 1743  C 1743 VS gas 1714 S p liq.
a' 5 CH3 d-deform 1441  C 1441 S gas 1426 S liq.
a' 6 CH bend 1400  C 1400 S gas 1391 S liq.
a' 7 CH3 s-deform 1352  C 1352 S gas 1342 M liq.
a' 8 CC str 1113  C 1113 S gas 1109 M p liq.
a' 9 CH3 rock 919  C 919 M gas 911 M liq.
a' 10 CCO deform 509  C 509 S gas 512 S p liq.
a 11 CH3 d-str 2967  C 2967 M gas 2964 W liq.
a 12 CH3 d-deform 1420  C 1420 S gas 1426 S dp liq.
a 13 CH3 rock 867  C 867 M gas 885 M liq.
a 14 CH bend 763  C 763 W gas 767 M dp liq.
a 15 Torsion 150  C 150 W gas MW: ν150 ()A), ν148 ()E)

Source: Shimanouchi, 1972

Notes

VSVery strong
SStrong
MMedium
WWeak
pPolarized
dpDepolarized
MWTorsional Frequency calculated from microwave spectroscopic data.
C3~6 cm-1 uncertainty
D6~15 cm-1 uncertainty

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Vibrational and/or electronic energy levels, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Wiberg, Crocker, et al., 1991
Wiberg, K.B.; Crocker, L.S.; Morgan, K.M., Thermochemical studies of carbonyl compounds. 5. Enthalpies of reduction of carbonyl groups, J. Am. Chem. Soc., 1991, 113, 3447-3450. [all data]

Thermodynamics Research Center, 1997
Thermodynamics Research Center, Selected Values of Properties of Chemical Compounds., Thermodynamics Research Center, Texas A&M University, College Station, Texas, 1997. [all data]

Pitzer K.S., 1949
Pitzer K.S., Jr., Thermodynamics and vibrational spectrum of acetaldehyde, J. Am. Chem. Soc., 1949, 71, 2842-2844. [all data]

Della Vedova C.O., 1991
Della Vedova C.O., Raman and infrared spectra and photochemical behavior of acetaldehyde isolated in matrixes, J. Raman Spectrosc., 1991, 22, 505-507. [all data]

East A.L.L., 1997
East A.L.L., Ab initio statistical thermodynamical models for the computation of third-law entropies, J. Chem. Phys., 1997, 106, 6655-6674. [all data]

Chao J., 1980
Chao J., Perfect gas thermodynamic properties of methanal, ethanal and their deuterated species, Thermochim. Acta, 1980, 41, 41-54. [all data]

Chao J., 1986
Chao J., Thermodynamic properties of key organic oxygen compounds in the carbon range C1 to C4. Part 2. Ideal gas properties, J. Phys. Chem. Ref. Data, 1986, 15, 1369-1436. [all data]

Coleman C.F., 1949
Coleman C.F., The heat capacity of organic vapors. V. Acetaldehyde, J. Am. Chem. Soc., 1949, 71, 2839-2841. [all data]

Lebedev and Vasil'ev, 1988
Lebedev, B.V.; Vasil'ev, V.G., Thermodynamics of ethanal at 0-300 K, Zhur. Fiz. Khim., 1988, 62, 3099-3102. [all data]

Connor, Elving, et al., 1947
Connor, A.Z.; Elving, P.J.; Steingiser, S., Specific heat of acetaldehyde and acetaldehyde dibutyl acetal, J. Am. Chem. Soc., 1947, 69, 1532. [all data]

Teja and Anselme, 1990
Teja, A.S.; Anselme, M.J., The critical properties of thermally stable and unstable fluids. I. 1985 results, AIChE Symp. Ser., 1990, 86, 279, 115-21. [all data]

Hollmann, 1903
Hollmann, R., Physical and natural equilibria between the modifications of aldehyde, Z. Phys. Chem., Stoechiom. Verwandtschaftsl., 1903, 43, 129-59. [all data]

Van der Waals, 1881
Van der Waals, J.D., Continuity of Gas and Liquid Data, 1881,, 1881, Leipzig, p 168. [all data]

Majer and Svoboda, 1985
Majer, V.; Svoboda, V., Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]

Bull, Seregrennaja, et al., 1963
Bull, S.S.; Seregrennaja, I.I.; Tsherbakora, P.R., Khim. Prom. (Moscow), 1963, 7, 507. [all data]

Verevkin, Krasnykh, et al., 2003
Verevkin, Sergey P.; Krasnykh, Eugen L.; Vasiltsova, Tatiana V.; Koutek, Bohumir; Doubsky, Jan; Heintz, Andreas, Vapor pressures and enthalpies of vaporization of a series of the linear aliphatic aldehydes, Fluid Phase Equilibria, 2003, 206, 1-2, 331-339, https://doi.org/10.1016/S0378-3812(03)00035-9 . [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Dykyj, 1970
Dykyj, J., Petrochemica, 1970, 10, 2, 51. [all data]

Kim and Kim, 1977
Kim, B.C.; Kim, D.H., Hwahak Kwa Hwahak Kongop, 1977, 20, 232. [all data]

Coles and Popper, 1950
Coles, K.F.; Popper, Felix, Vapor-Liquid Equilibria. Ethylene Oxide - Acetaldehyde and Ethylene Oxide - Water Systems, Ind. Eng. Chem., 1950, 42, 7, 1434-1438, https://doi.org/10.1021/ie50487a046 . [all data]

Coleman and DeVries, 1949
Coleman, C.F.; DeVries, T., The heat capacity of organic vapors. V. Acetaldehyde, J. Am. Chem. Soc., 1949, 71, 2839-28. [all data]

Bull, Seregrennaja, et al., 1963, 2
Bull, S.Sh.; Seregrennaja, I.I.; Tsherbakora, P.R., Isothermic Equilibrium of Liquid-Steam in System Water-Acetoaldehyde, Khim. Prom. (Moscow), 1963, 7, 507-509. [all data]

Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D., Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III, J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985 . [all data]

Mead, Lykke, et al., 1984
Mead, R.D.; Lykke, K.R.; Lineberger, W.C.; Marks, J.; Brauman, J.I., Spectroscopy and Dynamics of the Dipole-Bound State of Acetaldehyde Enolate., J. Chem. Phys., 1984, 81, 11, 4883., https://doi.org/10.1063/1.447515 . [all data]

Bartmess, Scott, et al., 1979
Bartmess, J.E.; Scott, J.A.; McIver, R.T., Jr., The gas phase acidity scale from methanol to phenol, J. Am. Chem. Soc., 1979, 101, 6047. [all data]

Holmes and Lossing, 1982
Holmes, J.L.; Lossing, F.P., Heats of formation of the ionic and neutral enols of acetaldehyde and acetone, J. Am. Chem. Soc., 1982, 104, 2648. [all data]

Cumming and Kebarle, 1978
Cumming, J.B.; Kebarle, P., Summary of gas phase measurements involving acids AH. Entropy changes in proton transfer reactions involving negative ions. Bond dissociation energies D(A-H) and electron affinities EA(A), Can. J. Chem., 1978, 56, 1. [all data]

Larson and McMahon, 1982
Larson, J.W.; McMahon, T.B., Formation, Thermochemistry, and Relative Stabilities of Proton - Bound dimers of Oxygen n - Donor Bases from Ion Cyclotron Resonance Solvent - Exchange Equilibria Measurements, J. Am. Chem. Soc., 1982, 104, 23, 6255, https://doi.org/10.1021/ja00387a016 . [all data]

Grimsrud and Kebarle, 1973
Grimsrud, E.P.; Kebarle, P., Gas Phase Ion Equilibria Studies of the Solvation of the Hydrogen Ion by Methanol, Dimethyl Ether and Water. Effect of Hydrogen Bonding, J. Am. Chem. Soc., 1973, 95, 24, 7939, https://doi.org/10.1021/ja00805a002 . [all data]

Lias, Liebman, et al., 1984
Lias, S.G.; Liebman, J.F.; Levin, R.D., Evaluated gas phase basicities and proton affinities of molecules heats of formation of protonated molecules, J. Phys. Chem. Ref. Data, 1984, 13, 695. [all data]

Keesee and Castleman, 1986
Keesee, R.G.; Castleman, A.W., Jr., Thermochemical data on Ggs-phase ion-molecule association and clustering reactions, J. Phys. Chem. Ref. Data, 1986, 15, 1011. [all data]

Nimlos, Soderquist, et al., 1989
Nimlos, M.R.; Soderquist, J.A.; Ellison, G.B., Spectroscopy of CH3CO- and CH3CO, J. Am. Chem. Soc., 1989, 111, 20, 7675, https://doi.org/10.1021/ja00202a001 . [all data]

DePuy, Bierbaum, et al., 1985
DePuy, C.H.; Bierbaum, V.M.; Damrauer, R.; Soderquist, J.A., Gas-phase reactions of the acetyl anion, J. Am. Chem. Soc., 1985, 107, 3385. [all data]

Graul and Squires, 1990
Graul, S.T.; Squires, R.R., Gas-Phase Acidities Derived from Threshold Energies for Activated Reactions, J. Am. Chem. Soc., 1990, 112, 7, 2517, https://doi.org/10.1021/ja00163a007 . [all data]

Graul and Squires, 1988
Graul, S.T.; Squires, R.R., On the Existence of Alkyl Carbanions in the Gas Phase, J. Am. Chem. Soc., 1988, 110, 2, 607, https://doi.org/10.1021/ja00210a054 . [all data]

Larson and McMahon, 1984
Larson, J.W.; McMahon, T.B., Hydrogen bonding in gas phase anions. An experimental investigation of the interaction between chloride ion and bronsted acids from ICR chloride exchange equilibria, J. Am. Chem. Soc., 1984, 106, 517. [all data]

Larson and McMahon, 1984, 2
Larson, J.W.; McMahon, T.B., Gas phase negative ion chemistry of alkylchloroformates, Can. J. Chem., 1984, 62, 675. [all data]

Meot-ner, 1988
Meot-ner, M., Ionic Hydrogen Bond and Ion Solvation. 6. Interaction Energies of the Acetate Ion with Organic Molecules. Comparison of CH3COO- with Cl-, CN-, and SH-, J. Am. Chem. Soc., 1988, 110, 12, 3854, https://doi.org/10.1021/ja00220a022 . [all data]

Dolliver, Gresham, et al., 1938
Dolliver, M.A.; Gresham, T.L.; Kistiakowsky, G.B.; Smith, E.A.; Vaughan, W.E., Heats of organic reactions. VI. Heats of hydrogenation of some oxygen-containing compounds, J. Am. Chem. Soc., 1938, 60, 440-450. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Ramond, Davico, et al., 2000
Ramond, T.M.; Davico, G.E.; Schwartz, R.L.; Lineberger, W.C., Vibronic structure of alkoxy radicals via photoelectron spectroscopy, J. Chem. Phys., 2000, 112, 3, 1158-1169, https://doi.org/10.1063/1.480767 . [all data]

Reents and Freiser, 1981
Reents, W.D.; Freiser, B.S., Gas-Phase Binding Energies and Spectroscopic Properties of NO+ Charge-Transfer Complexes, J. Am. Chem. Soc., 1981, 103, 2791. [all data]

Farid and McMahon, 1978
Farid, R.; McMahon, T.B., Gas-Phase Ion-Molecule Reactions of Alkyl Nitrites by Ion Cyclotron Resonance Spectroscopy, Int. J. Mass Spectrom. Ion Phys., 1978, 27, 2, 163, https://doi.org/10.1016/0020-7381(78)80037-0 . [all data]

Staley and Beauchamp, 1975
Staley, R.H.; Beauchamp, J.L., Intrinsic Acid - Base Properties of Molecules. Binding Energies of Li+ to pi - and n - Donor Bases, J. Am. Chem. Soc., 1975, 97, 20, 5920, https://doi.org/10.1021/ja00853a050 . [all data]

Berman and Beauchamp, 1986
Berman, D.W.; Beauchamp, J.L., Quoted in Keesee and Castleman, 1986, 1986. [all data]

Dzidic and Kebarle, 1970
Dzidic, I.; Kebarle, P., Hydration of the Alkali Ions in the Gas Phase. Enthalpies and Entropies of Reactions M+(H2O)n-1 + H2O = M+(H2O)n, J. Phys. Chem., 1970, 74, 7, 1466, https://doi.org/10.1021/j100702a013 . [all data]

Krasnov, Ozherel'eva, et al., 1983
Krasnov, V.L.; Ozherel'eva, N.K.; Trub, E.P.; Tsvetkov, V.G.; Bodrikov, I.V., Trimerization of aldehydes under the action of sulfur dioxide, J. Gen. Chem. USSR, 1983, 53, 2135-2138. [all data]

Busfield, Lee, et al., 1973
Busfield, W.K.; Lee, R.M.; Merifold, D., Gas phase equilibrium between acetaldehyde and paraldehyde, thermodynamic values for the trimerisation of acetaldehyde and the polymerisability of paraldehyde, J. Chem. Soc. Faraday Trans. 1, 1973, 69, 936-940. [all data]

Operti, Tews, et al., 1988
Operti, L.; Tews, E.C.; Freiser, B.S., Determination of Gas-Phase Ligand Binding Energies to Mg+ by FTMS Techniques, J. Am. Chem. Soc., 1988, 110, 12, 3847, https://doi.org/10.1021/ja00220a020 . [all data]

Wiberg, 1980
Wiberg, K.B., Energies of organic compounds, Rept. DOE-E(11-1)4060 Prepared for US Dept. of Energy by Yale Univ., New Haven, CT. Avail. NTIS, 1980, 1-24. [all data]

Birley and Skinner, 1970
Birley, G.I.; Skinner, H.A., Enthalpies of hydrolysis of dimethoxymethane and 1,1-dimethoxyethane, Trans. Faraday Soc., 1970, 66, 791-793. [all data]

Wiberg, Morgan, et al., 1994
Wiberg, K.B.; Morgan, K.M.; Maltz, H., Thermochemistry of carbonyl reactions. 6. A study of hydration equilibria, J. Am. Chem. Soc., 1994, 116, 11067-11077. [all data]

Walsh and Benson, 1966
Walsh, R.; Benson, S.W., The heats of formation of acetyl iodide and the acetyl radical, J. Phys. Chem., 1966, 70, 3751-3753. [all data]

Landrieu, 1905
Landrieu, M.Ph., Thermochimie. - Thermochimie des hydrazones, Compt. Rend., 1905, 141, 358-361. [all data]

Armentrout and Rodgers, 2000
Armentrout, P.B.; Rodgers, M.T., An Absolute Sodium Cation Affinity Scale: Threshold Collision-Induced Dissociation Experiments and ab Initio Theory, J. Phys. Chem A, 2000, 104, 11, 2238, https://doi.org/10.1021/jp991716n . [all data]

Ho, Yang, et al., 1997
Ho, Y.-P.; Yang, Y.-C.; Klippenstein, S.J.; Dunbar, R.C., Binding Energies of Ag+ and Cd+ Complexes from Analysis of Radiative Association Kinetics, J. Phys. Chem. A, 1997, 101, 18, 3338, https://doi.org/10.1021/jp9637284 . [all data]

Buttery, Ling, et al., 1969
Buttery, R.G.; Ling, L.C.; Guadagni, D.G., Volatilities Aldehydes, Ketones, and Esters in Dilute Water Solution, J. Agric. Food Chem., 1969, 17, 385-389. [all data]

Fillet and Letort, 1956
Fillet, P.; Letort, M., J. Chim. Phis., 1956, 53, 8. [all data]

Shimanouchi, 1972
Shimanouchi, T., Tables of Molecular Vibrational Frequencies Consolidated Volume I, National Bureau of Standards, 1972, 1-160. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Vibrational and/or electronic energy levels, References