Propiolactone

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Phase change data, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas-286.2kJ/molN/ADmitriev, Kotovich, et al., 1988Value computed using ΔfHliquid° value of -333.2±1.2 kj/mol from Dmitriev, Kotovich, et al., 1988 and ΔvapH° value of 47.0 kj/mol from Borjesson, Nakase, et al., 1966.; DRB
Δfgas-282.9kJ/molN/AYevstroprov, Lebedev, et al., 1979Value computed using ΔfHliquid° value of -329.9±0.8 kj/mol from Yevstroprov, Lebedev, et al., 1979 and ΔvapH° value of 47.0 kj/mol from Borjesson, Nakase, et al., 1966.; DRB
Δfgas-282.9 ± 0.84kJ/molCcrBorjesson, Nakase, et al., 1966ALS

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
38.83100.Kudchadker S.A., 1975Selected values are in close agreement with results of statistical calculation by [ Joshi R.M., 1970].; GT
44.84150.
52.42200.
66.15273.15
71.24298.15
71.62300.
91.57400.
108.86500.
123.02600.
134.58700.
144.13800.
152.11900.
158.831000.
164.541100.
169.401200.
173.561300.
177.141400.
180.231500.

Phase change data

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
AC - William E. Acree, Jr., James S. Chickos
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Tboil435.2KN/AAldrich Chemical Company Inc., 1990BS
Quantity Value Units Method Reference Comment
Ttriple239.86KN/ALebedev and Yevstropov, 1983Uncertainty assigned by TRC = 0.02 K; TRC
Ttriple239.86KN/AEvstropov, Lebedev, et al., 1979Uncertainty assigned by TRC = 0.01 K; TRC
Quantity Value Units Method Reference Comment
Δvap47.03 ± 0.04kJ/molCBorjesson, Nakase, et al., 1966ALS
Δvap47.0kJ/molN/ABorjesson, Nakase, et al., 1966DRB
Δvap47.0 ± 0.1kJ/molCBorjesson, Nakase, et al., 1966AC

Enthalpy of vaporization

ΔvapH (kJ/mol) Temperature (K) Method Reference Comment
46.4339.AStephenson and Malanowski, 1987Based on data from 324. to 435. K.; AC

Enthalpy of fusion

ΔfusH (kJ/mol) Temperature (K) Reference Comment
9.410239.86Lebedev and Yevstropov, 1983, 2DH
9.410239.86Evstropov, Lebedev, et al., 1979DH
9.41239.9Domalski and Hearing, 1996AC

Entropy of fusion

ΔfusS (J/mol*K) Temperature (K) Reference Comment
39.23239.86Lebedev and Yevstropov, 1983, 2DH
39.23239.86Evstropov, Lebedev, et al., 1979DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

Propiolactone = C3H4O2

By formula: C3H4O2 = C3H4O2

Quantity Value Units Method Reference Comment
Δr74.8 ± 3.8kJ/molCmYevstroprov, Lebedev, et al., 1979liquid phase; Hfusion=9.41±0.01 kJ/mol at 239.86 K

References

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Dmitriev, Kotovich, et al., 1988
Dmitriev, Yu.G.; Kotovich, K.Z.; Kochubei, V.V.; Mineravina, L.O., Heats of combustion of alkyl derivatives of β-propiolactones, Vestn. L'vov. Politekhn. Inst., 1988, 221, 34-35. [all data]

Borjesson, Nakase, et al., 1966
Borjesson, B.; Nakase, Y.; Sunner, S., The heat of combustion and polymerization of β-propiolactone, Acta Chem. Scand., 1966, 20, 803-810. [all data]

Yevstroprov, Lebedev, et al., 1979
Yevstroprov, A.A.; Lebedev, B.V.; Kulagina, T.G.; Lyudvig, Ye.B.; Belenkaya, B.G., The thermodynamic proerties of β-propiolactone, its polymer, and its polymerization in the 0-400°K range, Polym. Sci. USSR, 1979, 21, 2249-2256. [all data]

Kudchadker S.A., 1975
Kudchadker S.A., Thermodynamic properties of oxygen compounds. II. beta-Propiolactone, gamma-butyrolactone, and gamma-butyrolactam (2-pyrrolidone), Thermochim. Acta, 1975, 12, 11-17. [all data]

Joshi R.M., 1970
Joshi R.M., Thermodynamic properties of some monomeric compounds in the standard ideal gas state, J. Polym. Sci., Part A-2, 1970, 8, 679-687. [all data]

Aldrich Chemical Company Inc., 1990
Aldrich Chemical Company Inc., Catalog Handbook of Fine Chemicals, Aldrich Chemical Company, Inc., Milwaukee WI, 1990, 1. [all data]

Lebedev and Yevstropov, 1983
Lebedev, B.V.; Yevstropov, A.A. (see evstro aa), Thermodynamics of β-propiolactone, γ-butyrolactone, δ- valerolactone, and ε-caprolactone from 13.8 to 340 K, J. Chem. Thermodyn., 1983, 15, 115. [all data]

Evstropov, Lebedev, et al., 1979
Evstropov, A.A.; Lebedev, B.V.; Kulagina, T.G.; Lyudvig, E.B., and Belen'kaya, B.G. Thermodynamic parameters of β-propiolactone, poly-β-propiolactone, and β-propiolactone polymerization at 0 to 400 K, Vysokomol. Soedin., Ser., 1979, A 21(9), 2038-2044. [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Lebedev and Yevstropov, 1983, 2
Lebedev, B.V.; Yevstropov, A.A., Thermodynamics of β-propiolactone, t-butyrolactone, d-valerolactone, and e-caprolactone from 13.8 to 340 K, J. Chem. Thermodynam., 1983, 15, 115-128. [all data]

Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D., Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III, J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985 . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, References