Isopropyl Alcohol

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas-272.8kJ/molEqkBuckley and Herington, 1965ALS
Δfgas-271.1kJ/molN/AChao and Rossini, 1965Value computed using ΔfHliquid° value of -317.0±0.3 kj/mol from Chao and Rossini, 1965 and ΔvapH° value of 45.9 kj/mol from Snelson and Skinner, 1961.; DRB
Δfgas-272.3 ± 0.92kJ/molCcbSnelson and Skinner, 1961ALS
Δfgas-272.8kJ/molN/AParks, Mosley, et al., 1950Value computed using ΔfHliquid° value of -318.7 kj/mol from Parks, Mosley, et al., 1950 and ΔvapH° value of 45.9 kj/mol from Snelson and Skinner, 1961.; DRB

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
35.3250.Thermodynamics Research Center, 1997p=1 bar. Discrepancies with other statistically calculated values [ Green J.H.S., 1963] and [51KOB] increase at high temperatures up to 5 and 9 J/mol*K, respectively, in Cp(T). There is a good agreement with results [ Chao J., 1986]. Please also see Chao J., 1986, 2.; GT
46.04100.
57.98150.
68.28200.
83.72273.15
89.32 ± 0.15298.15
89.74300.
112.15400.
131.96500.
148.30600.
161.75700.
173.04800.
182.67900.
190.971000.
198.161100.
204.411200.
209.851300.
214.601400.
218.751500.
227.01750.
233.12000.
237.62250.
241.02500.
243.72750.
245.73000.

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
103.06358.72Stromsoe E., 1970Ideal gas heat capacities are given by [ Stromsoe E., 1970] as a linear function Cp=f1*(a+bT). This expression approximates the experimental values with the average deviation of 1.59 J/mol*K. The accuracy of the experimental heat capacities [ Stromsoe E., 1970] is estimated as less than 0.3%. Other experimental values of Cp [ Parks G.S., 1940] (118.83 at 427.9 K, 127.61 at 457.7 K, and 135.56 J/mol*K at 480.3 K) are believed to be less reliable. Please also see Hales J.L., 1963, Berman N.S., 1964.; GT
105.7 ± 1.6365.75
105.77371.15
106.29373.15
108.1 ± 1.6378.85
109.2 ± 1.6384.95
110.08391.15
110.8 ± 1.6393.65
111.65398.15
113.0 ± 1.6405.35
114.35411.15
117.02423.15
118.70431.15
122.10448.15
122.80451.15
121.7 ± 1.6453.15
124.2 ± 1.6466.75
127.01473.15
126.7 ± 1.6480.55
130.3 ± 1.6499.75
132.9 ± 1.6513.95
137.5 ± 1.6539.05
142.6 ± 1.6567.05
148.1 ± 1.6597.25

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfliquid-317.0 ± 0.3kJ/molCcbChao and Rossini, 1965see Rossini, 1934; ALS
Δfliquid-318.2 ± 0.71kJ/molCcbSnelson and Skinner, 1961ALS
Δfliquid-318.7kJ/molCcbParks, Mosley, et al., 1950see Parks and Moore, 1939; ALS
Quantity Value Units Method Reference Comment
Δcliquid-2006.9 ± 0.2kJ/molCcbChao and Rossini, 1965see Rossini, 1934; Corresponding Δfliquid = -316.9 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcliquid-2005.8 ± 0.4kJ/molCcbSnelson and Skinner, 1961Corresponding Δfliquid = -318.1 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcliquid-2005.1kJ/molCcbParks, Mosley, et al., 1950see Parks and Moore, 1939; Corresponding Δfliquid = -318.7 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Quantity Value Units Method Reference Comment
liquid180.58J/mol*KN/AAndon, Counsell, et al., 1963DH
liquid179.9J/mol*KN/AKelley, 1929DH
liquid192.9J/mol*KN/AParks and Kelley, 1928Extrapolation below 70 K, 43.56 J/mol*K.; DH
liquid190.8J/mol*KN/AParks and Kelley, 1925Extrapolation below 90 K, 53.22 J/mol*K.; DH

Constant pressure heat capacity of liquid

Cp,liquid (J/mol*K) Temperature (K) Reference Comment
161.2298.15Roux, Roberts, et al., 1980DH
154.75298.15Brown and Ziegler, 1979T = 185 to 304 K. Results as equation only.; DH
165.6311.6Griigo'ev, Yanin, et al., 1979T = 311 to 453 K. p = 0.98 bar.; DH
154.43298.15Andon, Counsell, et al., 1963T = 10 to 330 K.; DH
162.8298.2Katayama, 1962T = 10 to 60°C.; DH
180.3324.Swietoslawski and Zielenkiewicz, 1958Mean value 21 to 81°C.; DH
154.0298.Ginnings and Corruccini, 1948T = 0 to 200°C.; DH
159.99298.04Zhdanov, 1945T = 7 to 41°C. Value is unsmoothed experimental datum.; DH
172.4303.2Phillip, 1939DH
163.6298.Trew and Watkins, 1933DH
149.75292.84Kelley, 1929T = 16 to 298 K. Value is unsmoothed experimental datum.; DH
180.3298.1Parks, Kelley, et al., 1929Extrapolation below 90 K, 42.68 J/mol*K.; DH
151.0293.1Parks and Kelley, 1928T = 71 to 293 K. Value is unsmoothed experimental datum.; DH
152.3293.1Parks and Kelley, 1925T = 71 to 293 K. Value is unsmoothed experimental datum.; DH
169.9303.Willams and Daniels, 1924T = 303 to 323 K. Equation only.; DH

Phase change data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
BS - Robert L. Brown and Stephen E. Stein
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Tboil355.5 ± 0.4KAVGN/AAverage of 102 out of 118 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus185.75KN/AOgimachi, Corcoran, et al., 1961Uncertainty assigned by TRC = 0.5 K; TRC
Tfus185.35KN/AAnonymous, 1958TRC
Quantity Value Units Method Reference Comment
Ttriple184.9 ± 0.6KAVGN/AAverage of 6 values; Individual data points
Quantity Value Units Method Reference Comment
Tc509. ± 2.KAVGN/AAverage of 19 out of 20 values; Individual data points
Quantity Value Units Method Reference Comment
Pc49. ± 5.barAVGN/AAverage of 10 values; Individual data points
Quantity Value Units Method Reference Comment
Vc0.222l/molN/AGude and Teja, 1995 
Vc0.223l/molN/AAmbrose, Counsell, et al., 1978Uncertainty assigned by TRC = 0.003 l/mol; PVT compatible with values chosen.; TRC
Quantity Value Units Method Reference Comment
ρc4.51 ± 0.02mol/lN/AGude and Teja, 1995 
ρc4.54mol/lN/ATeja, Lee, et al., 1989TRC
ρc4.538mol/lN/AAmbrose and Townsend, 1963TRC
Quantity Value Units Method Reference Comment
Δvap45. ± 3.kJ/molAVGN/AAverage of 11 values; Individual data points

Enthalpy of vaporization

ΔvapH (kJ/mol) Temperature (K) Method Reference Comment
39.85355.4N/AMajer and Svoboda, 1985 
43.2337.N/ASegura, Galindo, et al., 2002Based on data from 322. to 355. K.; AC
39.8355.N/AWormald and Vine, 2000AC
29.7423.N/AWormald and Vine, 2000AC
23.7453.N/AWormald and Vine, 2000AC
16.5483.N/AWormald and Vine, 2000AC
10.5503.N/AWormald and Vine, 2000AC
44.8315.N/AAucejo, Gonzalez-Alfaro, et al., 1995Based on data from 300. to 355. K.; AC
50.3213.AStephenson and Malanowski, 1987Based on data from 195. to 228. K.; AC
42.0355.AStephenson and Malanowski, 1987Based on data from 347. to 368. K.; AC
41.3365.AStephenson and Malanowski, 1987Based on data from 350. to 383. K.; AC
39.2394.AStephenson and Malanowski, 1987Based on data from 379. to 461. K.; AC
35.3468.AStephenson and Malanowski, 1987Based on data from 453. to 508. K.; AC
43.1340.A,EBStephenson and Malanowski, 1987Based on data from 325. to 362. K. See also Ambrose, Counsell, et al., 1970.; AC
45.7288.N/AWilhoit and Zwolinski, 1973Based on data from 273. to 374. K.; AC
45.5303.N/AVan Ness, Soczek, et al., 1967Based on data from 288. to 348. K.; AC
42.7 ± 0.1330.CBerman, Larkam, et al., 1964AC
41.0 ± 0.1346.CBerman, Larkam, et al., 1964AC
39.8 ± 0.1355.CBerman, Larkam, et al., 1964AC
38.9 ± 0.1363.CBerman, Larkam, et al., 1964AC
39.1410.N/AAmbrose and Townsend, 1963, 2Based on data from 395. to 508. K.; AC
42.8344.EBBiddiscombe, Collerson, et al., 1963Based on data from 329. to 363. K.; AC
43.2324.CHales, Cox, et al., 1963AC
41.7339.CHales, Cox, et al., 1963AC
39.8355.CHales, Cox, et al., 1963AC
43.40 ± 0.08324.11VWilliamson and Harrison, 1957ALS
41.1369.N/AFoz Gazulla, Morcilio, et al., 1955Based on data from 354. to 420. K.; AC

Enthalpy of vaporization

ΔvapH = A exp(-αTr) (1 − Tr)β
    ΔvapH = Enthalpy of vaporization (at saturation pressure) (kJ/mol)
    Tr = reduced temperature (T / Tc)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) 298. to 380.
A (kJ/mol) 53.38
α -0.708
β 0.6538
Tc (K) 508.3
ReferenceMajer and Svoboda, 1985

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (bar)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
395.1 to 508.244.577951221.423-87.474Ambrose and Townsend, 1963, 3Coefficents calculated by NIST from author's data.
329.92 to 362.414.86101357.427-75.814Biddiscombe, Collerson, et al., 1963, 2Coefficents calculated by NIST from author's data.

Enthalpy of fusion

ΔfusH (kJ/mol) Temperature (K) Reference Comment
5.410185.20Andon, Counsell, et al., 1963DH
5.372184.67Kelley, 1929DH
5.41185.2Domalski and Hearing, 1996AC
5.301184.6Parks and Kelley, 1928DH
5.297184.6Parks and Kelley, 1925DH

Entropy of fusion

ΔfusS (J/mol*K) Temperature (K) Reference Comment
29.21185.20Andon, Counsell, et al., 1963DH
29.09184.67Kelley, 1929DH
28.72184.6Parks and Kelley, 1928DH
28.7184.6Parks and Kelley, 1925DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
RCD - Robert C. Dunbar

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

C3H7O- + Hydrogen cation = Isopropyl Alcohol

By formula: C3H7O- + H+ = C3H8O

Quantity Value Units Method Reference Comment
Δr1569. ± 4.2kJ/molD-EARamond, Davico, et al., 2000gas phase; B
Δr1571. ± 8.8kJ/molG+TSBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B
Δr1576. ± 4.2kJ/molCIDTDeTuri and Ervin, 1999gas phase; B
Δr1572. ± 8.4kJ/molCIDCHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.; B
Quantity Value Units Method Reference Comment
Δr1542. ± 4.6kJ/molH-TSRamond, Davico, et al., 2000gas phase; B
Δr1543. ± 8.4kJ/molIMREBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B
Δr1544. ± 8.8kJ/molH-TSHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.; B

Chlorine anion + Isopropyl Alcohol = (Chlorine anion • Isopropyl Alcohol)

By formula: Cl- + C3H8O = (Cl- • C3H8O)

Quantity Value Units Method Reference Comment
Δr81.17 ± 0.84kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Δr76.6 ± 4.2kJ/molTDAsHiraoka and Mizuse, 1987gas phase; B,M
Δr73.6 ± 8.4kJ/molIMRELarson and McMahon, 1984gas phase; B,M
Quantity Value Units Method Reference Comment
Δr103.J/mol*KPHPMSHiraoka and Mizuse, 1987gas phase; M
Δr97.1J/mol*KN/ALarson and McMahon, 1984gas phase; switching reaction(cl-)t-C4H9OH, Entropy change calculated or estimated; Larson and McMahon, 1984, 2; M
Quantity Value Units Method Reference Comment
Δr47.36kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Δr45.61kJ/molTDAsHiraoka and Mizuse, 1987gas phase; B
Δr44.8 ± 8.4kJ/molIMRELarson and McMahon, 1984gas phase; B,M

C2H7O+ + Isopropyl Alcohol = (C2H7O+ • Isopropyl Alcohol)

By formula: C2H7O+ + C3H8O = (C2H7O+ • C3H8O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr133.kJ/molICRBomse and Beauchamp, 1981gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984; M
Quantity Value Units Method Reference Comment
Δr124.J/mol*KN/ABomse and Beauchamp, 1981gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984; M
Quantity Value Units Method Reference Comment
Δr96.7kJ/molICRBomse and Beauchamp, 1981gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984; M

C3H9O+ + Isopropyl Alcohol = (C3H9O+ • Isopropyl Alcohol)

By formula: C3H9O+ + C3H8O = (C3H9O+ • C3H8O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr133.kJ/molICRBomse and Beauchamp, 1981gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984; M
Quantity Value Units Method Reference Comment
Δr124.J/mol*KN/ABomse and Beauchamp, 1981gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984; M
Quantity Value Units Method Reference Comment
Δr96.7kJ/molICRBomse and Beauchamp, 1981gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984; M

C4H11O+ + Isopropyl Alcohol = (C4H11O+ • Isopropyl Alcohol)

By formula: C4H11O+ + C3H8O = (C4H11O+ • C3H8O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr128.kJ/molICRBomse and Beauchamp, 1981gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984; M
Quantity Value Units Method Reference Comment
Δr118.J/mol*KN/ABomse and Beauchamp, 1981gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984; M
Quantity Value Units Method Reference Comment
Δr92.5kJ/molICRBomse and Beauchamp, 1981gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984; M

C4H11O+ + Isopropyl Alcohol = (C4H11O+ • Isopropyl Alcohol)

By formula: C4H11O+ + C3H8O = (C4H11O+ • C3H8O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr134.kJ/molICRBomse and Beauchamp, 1981gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984; M
Quantity Value Units Method Reference Comment
Δr115.J/mol*KN/ABomse and Beauchamp, 1981gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984; M
Quantity Value Units Method Reference Comment
Δr99.6kJ/molICRBomse and Beauchamp, 1981gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984; M

CN- + Isopropyl Alcohol = (CN- • Isopropyl Alcohol)

By formula: CN- + C3H8O = (CN- • C3H8O)

Quantity Value Units Method Reference Comment
Δr69.9 ± 3.3kJ/molTDAsLarson, Szulejko, et al., 1988gas phase; B,M
Δr76. ± 15.kJ/molIMRELarson and McMahon, 1987gas phase; B,M
Quantity Value Units Method Reference Comment
Δr110.J/mol*KPHPMSLarson, Szulejko, et al., 1988gas phase; M
Δr104.J/mol*KN/ALarson and McMahon, 1987gas phase; switching reaction,Thermochemical ladder(CN-)H2O, Entropy change calculated or estimated; Payzant, Yamdagni, et al., 1971; M
Quantity Value Units Method Reference Comment
Δr37.7 ± 0.84kJ/molTDAsLarson, Szulejko, et al., 1988gas phase; B
Δr44.8 ± 9.6kJ/molIMRELarson and McMahon, 1987gas phase; B,M

Fluorine anion + Isopropyl Alcohol = (Fluorine anion • Isopropyl Alcohol)

By formula: F- + C3H8O = (F- • C3H8O)

Quantity Value Units Method Reference Comment
Δr140.2 ± 2.9kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Δr135. ± 8.4kJ/molIMRELarson and McMahon, 1983gas phase; B,M
Δr139. ± 9.2kJ/molCIDTDeTuri and Ervin, 1999gas phase; B
Quantity Value Units Method Reference Comment
Δr107.J/mol*KN/ALarson and McMahon, 1983gas phase; switching reaction(F-)H2O, Entropy change calculated or estimated; Arshadi, Yamdagni, et al., 1970; M
Quantity Value Units Method Reference Comment
Δr107.5kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Δr103. ± 8.4kJ/molIMRELarson and McMahon, 1983gas phase; B,M

C3H9Si+ + Isopropyl Alcohol = (C3H9Si+ • Isopropyl Alcohol)

By formula: C3H9Si+ + C3H8O = (C3H9Si+ • C3H8O)

Quantity Value Units Method Reference Comment
Δr184.kJ/molPHPMSWojtyniak and Stone, 1986gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)H2O, Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr129.J/mol*KN/AWojtyniak and Stone, 1986gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)H2O, Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
123.468.PHPMSWojtyniak and Stone, 1986gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)H2O, Entropy change calculated or estimated; M

(Chlorine anion • 2Isopropyl Alcohol) + Isopropyl Alcohol = (Chlorine anion • 3Isopropyl Alcohol)

By formula: (Cl- • 2C3H8O) + C3H8O = (Cl- • 3C3H8O)

Quantity Value Units Method Reference Comment
Δr62.3 ± 2.1kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Δr52.3 ± 4.2kJ/molTDAsHiraoka and Mizuse, 1987gas phase; B,M
Quantity Value Units Method Reference Comment
Δr109.J/mol*KPHPMSHiraoka and Mizuse, 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr22.2kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Δr20. ± 4.2kJ/molTDAsHiraoka and Mizuse, 1987gas phase; B

(Chlorine anion • Isopropyl Alcohol) + Isopropyl Alcohol = (Chlorine anion • 2Isopropyl Alcohol)

By formula: (Cl- • C3H8O) + C3H8O = (Cl- • 2C3H8O)

Quantity Value Units Method Reference Comment
Δr69.9 ± 1.3kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Δr65.3 ± 4.2kJ/molTDAsHiraoka and Mizuse, 1987gas phase; B,M
Quantity Value Units Method Reference Comment
Δr105.J/mol*KPHPMSHiraoka and Mizuse, 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr32.1kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Δr34. ± 4.2kJ/molTDAsHiraoka and Mizuse, 1987gas phase; B

(Chlorine anion • 7Isopropyl Alcohol) + Isopropyl Alcohol = (Chlorine anion • 8Isopropyl Alcohol)

By formula: (Cl- • 7C3H8O) + C3H8O = (Cl- • 8C3H8O)

Quantity Value Units Method Reference Comment
Δr45.6 ± 4.2kJ/molTDAsHiraoka and Mizuse, 1987gas phase; Estimated entropy; single temperature measurement; B,M
Quantity Value Units Method Reference Comment
Δr130.J/mol*KN/AHiraoka and Mizuse, 1987gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr6.7 ± 4.2kJ/molTDAsHiraoka and Mizuse, 1987gas phase; Estimated entropy; single temperature measurement; B

Iodide + Isopropyl Alcohol = (Iodide • Isopropyl Alcohol)

By formula: I- + C3H8O = (I- • C3H8O)

Quantity Value Units Method Reference Comment
Δr54.81 ± 0.84kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Δr51.0 ± 4.2kJ/molTDAsCaldwell and Kebarle, 1984gas phase; B,M
Quantity Value Units Method Reference Comment
Δr79.9J/mol*KPHPMSCaldwell and Kebarle, 1984gas phase; M
Quantity Value Units Method Reference Comment
Δr26.5kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Δr27. ± 4.2kJ/molTDAsCaldwell and Kebarle, 1984gas phase; B

Hydrogen + Acetone = Isopropyl Alcohol

By formula: H2 + C3H6O = C3H8O

Quantity Value Units Method Reference Comment
Δr-68.74 ± 0.42kJ/molCmWiberg, Crocker, et al., 1991liquid phase; ALS
Δr-55.23kJ/molEqkBuckley and Herington, 1965gas phase; ALS
Δr-55.40 ± 0.42kJ/molChydDolliver, Gresham, et al., 1938gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -56.1 ± 0.4 kJ/mol; At 355 °K; ALS

Bromine anion + Isopropyl Alcohol = C3H8BrO-

By formula: Br- + C3H8O = C3H8BrO-

Quantity Value Units Method Reference Comment
Δr60.25 ± 0.84kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Quantity Value Units Method Reference Comment
Δr34.9kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Δr38. ± 8.4kJ/molIMRETanabe, Morgon, et al., 1996gas phase; Anchored to H2O..Br- of Hiraoka, Mizure, et al., 19882; B

Sodium ion (1+) + Isopropyl Alcohol = (Sodium ion (1+) • Isopropyl Alcohol)

By formula: Na+ + C3H8O = (Na+ • C3H8O)

Quantity Value Units Method Reference Comment
Δr113. ± 4.2kJ/molCIDTArmentrout and Rodgers, 2000RCD
Δr113. ± 4.6kJ/molCIDTRodgers and Armentrout, 1999RCD

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
85.4298.IMREMcMahon and Ohanessian, 2000Anchor alanine=39.89; RCD
0.00.CIDTRodgers and Armentrout, 1999RCD

(Chlorine anion • 3Isopropyl Alcohol) + Isopropyl Alcohol = (Chlorine anion • 4Isopropyl Alcohol)

By formula: (Cl- • 3C3H8O) + C3H8O = (Cl- • 4C3H8O)

Quantity Value Units Method Reference Comment
Δr49.8 ± 4.2kJ/molTDAsHiraoka and Mizuse, 1987gas phase; B,M
Quantity Value Units Method Reference Comment
Δr120.J/mol*KPHPMSHiraoka and Mizuse, 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr14. ± 4.2kJ/molTDAsHiraoka and Mizuse, 1987gas phase; B

(Chlorine anion • 4Isopropyl Alcohol) + Isopropyl Alcohol = (Chlorine anion • 5Isopropyl Alcohol)

By formula: (Cl- • 4C3H8O) + C3H8O = (Cl- • 5C3H8O)

Quantity Value Units Method Reference Comment
Δr48.5 ± 4.2kJ/molTDAsHiraoka and Mizuse, 1987gas phase; B,M
Quantity Value Units Method Reference Comment
Δr128.J/mol*KPHPMSHiraoka and Mizuse, 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr10. ± 4.2kJ/molTDAsHiraoka and Mizuse, 1987gas phase; B

(Chlorine anion • 5Isopropyl Alcohol) + Isopropyl Alcohol = (Chlorine anion • 6Isopropyl Alcohol)

By formula: (Cl- • 5C3H8O) + C3H8O = (Cl- • 6C3H8O)

Quantity Value Units Method Reference Comment
Δr47.3 ± 4.2kJ/molTDAsHiraoka and Mizuse, 1987gas phase; B,M
Quantity Value Units Method Reference Comment
Δr130.J/mol*KPHPMSHiraoka and Mizuse, 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr8.4 ± 4.2kJ/molTDAsHiraoka and Mizuse, 1987gas phase; B

(Chlorine anion • 6Isopropyl Alcohol) + Isopropyl Alcohol = (Chlorine anion • 7Isopropyl Alcohol)

By formula: (Cl- • 6C3H8O) + C3H8O = (Cl- • 7C3H8O)

Quantity Value Units Method Reference Comment
Δr46.4 ± 4.2kJ/molTDAsHiraoka and Mizuse, 1987gas phase; B,M
Quantity Value Units Method Reference Comment
Δr131.J/mol*KPHPMSHiraoka and Mizuse, 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr7.1 ± 4.2kJ/molTDAsHiraoka and Mizuse, 1987gas phase; B

MeS anion + Isopropyl Alcohol = (MeS anion • Isopropyl Alcohol)

By formula: CH3S- + C3H8O = (CH3S- • C3H8O)

Quantity Value Units Method Reference Comment
Δr71.55 ± 0.84kJ/molTDAsSieck and Meot-ner, 1989gas phase; B,M
Quantity Value Units Method Reference Comment
Δr96.7J/mol*KPHPMSSieck and Meot-ner, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr42.7 ± 3.3kJ/molTDAsSieck and Meot-ner, 1989gas phase; B

Fluorine anion + 2Isopropyl Alcohol = C6H16FO2-

By formula: F- + 2C3H8O = C6H16FO2-

Quantity Value Units Method Reference Comment
Δr87.03 ± 0.84kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Quantity Value Units Method Reference Comment
Δr55.48kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B

thiophenoxide anion + Isopropyl Alcohol = C9H13OS-

By formula: C6H5S- + C3H8O = C9H13OS-

Quantity Value Units Method Reference Comment
Δr62.76 ± 0.42kJ/molTDAsSieck and Meot-ner, 1989gas phase; B
Quantity Value Units Method Reference Comment
Δr30.5 ± 1.7kJ/molTDAsSieck and Meot-ner, 1989gas phase; B

Fluorine anion + 3Isopropyl Alcohol = C9H24FO3-

By formula: F- + 3C3H8O = C9H24FO3-

Quantity Value Units Method Reference Comment
Δr73.64 ± 0.84kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Quantity Value Units Method Reference Comment
Δr35.0kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B

Iodide + 2Isopropyl Alcohol = C6H16IO2-

By formula: I- + 2C3H8O = C6H16IO2-

Quantity Value Units Method Reference Comment
Δr46.0 ± 1.3kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Quantity Value Units Method Reference Comment
Δr19.5kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B

Bromine anion + 2Isopropyl Alcohol = C6H16BrO2-

By formula: Br- + 2C3H8O = C6H16BrO2-

Quantity Value Units Method Reference Comment
Δr51.46 ± 0.84kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Quantity Value Units Method Reference Comment
Δr22.8kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B

Iodide + 3Isopropyl Alcohol = C9H24IO3-

By formula: I- + 3C3H8O = C9H24IO3-

Quantity Value Units Method Reference Comment
Δr39.7 ± 2.9kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Quantity Value Units Method Reference Comment
Δr14.8kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B

1-Propene, 2-methyl- + Isopropyl Alcohol = Propane, 2-methyl-2-(1-methylethoxy)-

By formula: C4H8 + C3H8O = C7H16O

Quantity Value Units Method Reference Comment
Δr-22.9 ± 1.3kJ/molEqkCalderon, Tejero, et al., 1997liquid phase; ALS
Δr-21.7 ± 1.6kJ/molCmSola, Pericas, et al., 1997liquid phase; ALS

Isopropyl Alcohol = Hydrogen + Acetone

By formula: C3H8O = H2 + C3H6O

Quantity Value Units Method Reference Comment
Δr55.23kJ/molEqkBuckley and Herington, 1965gas phase; ALS
Δr56.543kJ/molEqkKolb and Burwell, 1945gas phase; ALS

Fluorine anion + Isopropyl Alcohol = C3H7D8FO-

By formula: F- + C3H8O = C3H7D8FO-

Quantity Value Units Method Reference Comment
Δr102. ± 8.4kJ/molIMREWilkinson, Szulejko, et al., 1992gas phase; Reported relative to ROH..F-, 0.5 kcal/mol weaker.; B

Magnesium ion (1+) + Isopropyl Alcohol = (Magnesium ion (1+) • Isopropyl Alcohol)

By formula: Mg+ + C3H8O = (Mg+ • C3H8O)

Quantity Value Units Method Reference Comment
Δr270. ± 20.kJ/molICROperti, Tews, et al., 1988gas phase; switching reaction,Thermochemical ladder(Mg+)CH3OH; M

Isopropyl acetate + Water = Acetic acid + Isopropyl Alcohol

By formula: C5H10O2 + H2O = C2H4O2 + C3H8O

Quantity Value Units Method Reference Comment
Δr2.3 ± 0.2kJ/molCmWadso, 1958liquid phase; Heat of Hydrolysis; ALS

Isopropyl Alcohol + Chloral = 2,2,2-trichloro-1-isopropoxyethanol

By formula: C3H8O + C2HCl3O = 2,2,2-trichloro-1-isopropoxyethanol

Quantity Value Units Method Reference Comment
Δr-41.6kJ/molEqkJensen and Pedersen, 1971liquid phase; solvent: Heptane; ALS

Cyclohexanol + Acetone = Cyclohexanone + Isopropyl Alcohol

By formula: C6H12O + C3H6O = C6H10O + C3H8O

Quantity Value Units Method Reference Comment
Δr9.9 ± 1.9kJ/molEqkFedoseenko, Yursha, et al., 1983gas phase; At 503 K; ALS

Isopropyl Alcohol + Ethene, 1,1-dichloro-2,2-difluoro- = C5H8Cl2F2O

By formula: C3H8O + C2Cl2F2 = C5H8Cl2F2O

Quantity Value Units Method Reference Comment
Δr-183. ± 1.kJ/molEqkKennedy, Lacher, et al., 1969gas phase; ALS

Cyclohexanone + Isopropyl Alcohol = Cyclohexanol + Acetone

By formula: C6H10O + C3H8O = C6H12O + C3H6O

Quantity Value Units Method Reference Comment
Δr-9.9 ± 1.9kJ/molEqkKabo, Yursha, et al., 1988gas phase; ALS

Isopropyl Alcohol + Nitric acid = Nitric acid, 1-methylethyl ester + Water

By formula: C3H8O + HNO3 = C3H7NO3 + H2O

Quantity Value Units Method Reference Comment
Δr-23.4kJ/molEqkRubtsov, 1986liquid phase; ALS

Ketene + Isopropyl Alcohol = Isopropyl acetate

By formula: C2H2O + C3H8O = C5H10O2

Quantity Value Units Method Reference Comment
Δr-150.2kJ/molCmRice and Greenberg, 1934liquid phase; ALS

Lithium ion (1+) + Isopropyl Alcohol = (Lithium ion (1+) • Isopropyl Alcohol)

By formula: Li+ + C3H8O = (Li+ • C3H8O)

Quantity Value Units Method Reference Comment
Δr173. ± 7.9kJ/molCIDTRodgers and Armentrout, 2000RCD

IR Spectrum

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Mass spectrum (electron ionization), References, Notes

Data compiled by: Coblentz Society, Inc.

Data compiled by: Tanya L. Myers, Russell G. Tonkyn, Ashley M. Oeck, Tyler O. Danby, John S. Loring, Matthew S. Taubman, Stephen W. Sharpe, Jerome C. Birnbaum, and Timothy J. Johnson

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Data compiled by: Pamela M. Chu, Franklin R. Guenther, George C. Rhoderick, and Walter J. Lafferty


Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin VERIFINN
NIST MS number 289584

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Buckley and Herington, 1965
Buckley, E.; Herington, E.F.G., Equilibria in some secondary alcohol + hydrogen + ketone systems, Trans. Faraday Soc., 1965, 61, 1618-1625. [all data]

Chao and Rossini, 1965
Chao, J.; Rossini, F.D., Heats of combustion, formation, and isomerization of nineteen alkanols, J. Chem. Eng. Data, 1965, 10, 374-379. [all data]

Snelson and Skinner, 1961
Snelson, A.; Skinner, H.A., Heats of combustion: sec-propanol, 1,4-dioxan, 1,3-dioxan and tetrahydropyran, Trans. Faraday Soc., 1961, 57, 2125-2131. [all data]

Parks, Mosley, et al., 1950
Parks, G.S.; Mosley, J.R.; Peterson, P.V., Jr., Heats of combustion and formation of some organic compounds containing oxygen, J. Chem. Phys., 1950, 18, 152. [all data]

Thermodynamics Research Center, 1997
Thermodynamics Research Center, Selected Values of Properties of Chemical Compounds., Thermodynamics Research Center, Texas A&M University, College Station, Texas, 1997. [all data]

Green J.H.S., 1963
Green J.H.S., Thermodynamic properties of organic oxygen compounds. Part 12. Vibrational assignment and calculated thermodynamic properties 0-1000 K of isopropyl alcohol, Trans. Faraday Soc., 1963, 59, 1559-1563. [all data]

Chao J., 1986
Chao J., Ideal gas thermodynamic properties of simple alkanols, Int. J. Thermophys., 1986, 7, 431-442. [all data]

Chao J., 1986, 2
Chao J., Thermodynamic properties of key organic oxygen compounds in the carbon range C1 to C4. Part 2. Ideal gas properties, J. Phys. Chem. Ref. Data, 1986, 15, 1369-1436. [all data]

Stromsoe E., 1970
Stromsoe E., Heat capacity of alcohol vapors at atmospheric pressure, J. Chem. Eng. Data, 1970, 15, 286-290. [all data]

Parks G.S., 1940
Parks G.S., Some heat capacity data for isopropyl alcohol vapor, J. Chem. Phys., 1940, 8, 429. [all data]

Hales J.L., 1963
Hales J.L., Thermodynamic properties of organic oxygen compounds. Part 10. Measurement of vapor heat capacities and latent heats of vaporization of isopropyl alcohol, Trans. Faraday Soc., 1963, 59, 1544-1554. [all data]

Berman N.S., 1964
Berman N.S., Vapor heat capacity and heat of vaporization of 2-propanol, J. Chem. Eng. Data, 1964, 9, 218-219. [all data]

Rossini, 1934
Rossini, F.D., Heats of combustion and of formation of the normal aliphatic alcohols in the gaseous and liquid states, and the energies of their atomic linkages, J. Res. NBS, 1934, 13, 189-197. [all data]

Parks and Moore, 1939
Parks, G.S.; Moore, G.E., The heat of combustion of isopropanol, J. Chem. Phys., 1939, 7, 1066-1067. [all data]

Andon, Counsell, et al., 1963
Andon, R.J.L.; Counsell, J.F.; Martin, J.F., Thermodynamic properties of organic oxygen compounds. Part II. The thermodynamic properties from 10 to 330 K of isopropyl alcohol, Trans. Faraday Soc., 1963, 59, 1555-1558. [all data]

Kelley, 1929
Kelley, K.K., The heats capacities of isopropyl alcohol and acetone from 16 to 298 °K and the corresponding entropies and free energies, J. Am. Chem. Soc., 1929, 51, 1145-1150. [all data]

Parks and Kelley, 1928
Parks, G.S.; Kelley, K.K., The application of the third law of thermodynamics to some organic reactions, J. Phys. Chem., 1928, 32, 734-750. [all data]

Parks and Kelley, 1925
Parks, G.S.; Kelley, K.K., Thermal data on organic compounds. II. The heat capacities of five organic compounds. The entropies and free energies of some homologous series of aliphatic compounds, J. Am. Chem. Soc., 1925, 47, 2089-2097. [all data]

Roux, Roberts, et al., 1980
Roux, G.; Roberts, D.; Perron, G.; Desnoyers, J.E., Microheterogeneity in aqueous-organic solutions: heat capacities, volumes and expansibilities of some alcohols, aminoalcohol and tertiary amines in water, J. Solution Chem., 1980, 9(9), 629-647. [all data]

Brown and Ziegler, 1979
Brown, G.N., Jr.; Ziegler, W.T., Temperature dependence of excess thermodynamic properties of ethanol + n-heptane and 2-propanol + n-heptane solutions, J. Chem. Eng. Data, 1979, 24, 319-330. [all data]

Griigo'ev, Yanin, et al., 1979
Griigo'ev, B.A.; Yanin, G.S.; Rastorguev, Yu.L.; Thermophysical parameters of alcohols, Tr. GIAP, 54, 1979, 57-64. [all data]

Katayama, 1962
Katayama, T., Heats of mixing, liquid heat capacities and enthalpy, concentration charts for methanol-water and isopropanol-water systems, Kagaku Kogaku, 1962, 26, 361-372. [all data]

Swietoslawski and Zielenkiewicz, 1958
Swietoslawski, W.; Zielenkiewicz, A., Mean specific heats of binary positive azeotropes, Bull. Acad. Pol. Sci. Ser. Sci. Chim., 1958, 6, 367-369. [all data]

Ginnings and Corruccini, 1948
Ginnings, D.C.; Corruccini, R.J., Liquid isopropyl alcohol. Enthalpy, entropy, and specific heat from 0° to 200°C, Ind. Eng. Chem., 1948, 40, 1990-1991. [all data]

Zhdanov, 1945
Zhdanov, A.K., On the thermal capacity of some pure liquids and azeotropic mixtures, Zhur. Obshch. Khim., 1945, 15, 895-902. [all data]

Phillip, 1939
Phillip, N.M., Adiabatic and isothermal compressibilities of liquids, Proc. Indian Acad. Sci., 1939, A9, 109-120. [all data]

Trew and Watkins, 1933
Trew, V.C.G.; Watkins, G.M.C., Some physical properties of mixtures of certain organic liquids, Trans. Faraday Soc., 1933, 29, 1310-1318. [all data]

Parks, Kelley, et al., 1929
Parks, G.S.; Kelley, K.K.; Huffman, H.M., Thermal data on organic compounds. V. A revision of the entropies and free energies of nineteen organic compounds, J. Am. Chem. Soc., 1929, 51, 1969-1973. [all data]

Willams and Daniels, 1924
Willams, J.W.; Daniels, F., The specific heats of certain organic liquids at elevated temperatures, J. Am. Chem. Soc., 1924, 46, 903-917. [all data]

Ogimachi, Corcoran, et al., 1961
Ogimachi, N.N.; Corcoran, J.M.; Kruse. H.W., Thermal Analysis of Systems of Hydrazine with Propyl Alcohol, Isopropyl Alcohol, and Allyl Alcohol, J. Chem. Eng. Data, 1961, 6, 238. [all data]

Anonymous, 1958
Anonymous, X., Am. Pet. Inst. Res. Proj. 50, 1958, Unpublished, 1958. [all data]

Gude and Teja, 1995
Gude, M.; Teja, A.S., Vapor-Liquid Critical Properties of Elements and Compounds. 4. Aliphatic Alkanols, J. Chem. Eng. Data, 1995, 40, 1025-1036. [all data]

Ambrose, Counsell, et al., 1978
Ambrose, D.; Counsell, J.F.; Lawrenson, I.J.; Lewis, G.B., Thermodynamic properties of organic oxygen compounds XLVII. Pressure, volume, temperature relations and thermodynamic properties of propan-2-ol, J. Chem. Thermodyn., 1978, 10, 1033-1043. [all data]

Teja, Lee, et al., 1989
Teja, A.S.; Lee, R.J.; Rosenthal, D.J.; Anselme, M.J., Correlation of the Critical Properties of Alkanes and Alkanols in 5th IUPAC Conference on Alkanes and AlkanolsGradisca, 1989. [all data]

Ambrose and Townsend, 1963
Ambrose, D.; Townsend, R., Thermodynamic Properties of Organic Oxygen Compounds IX. The Critical Properties and Vapor Pressures Above Five Atmospheres of Six Aliphatic Alcohols, J. Chem. Soc., 1963, 54, 3614-25. [all data]

Majer and Svoboda, 1985
Majer, V.; Svoboda, V., Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]

Segura, Galindo, et al., 2002
Segura, Hugo; Galindo, Graciela; Reich, Ricardo; Wisniak, Jaime; Loras, Sonia, Isobaric Vapor-Liquid Equilibria and Densities for the System Methyl 1,1-Dimethylethyl Ether +2-Propanol, Physics and Chemistry of Liquids, 2002, 40, 3, 277-294, https://doi.org/10.1080/0031910021000004865 . [all data]

Wormald and Vine, 2000
Wormald, C.J.; Vine, M.D., Specific enthalpy increments for propan-2-ol at temperatures up to 563.2 K and pressures up to 11.3 MPa, The Journal of Chemical Thermodynamics, 2000, 32, 5, 659-669, https://doi.org/10.1006/jcht.1999.0631 . [all data]

Aucejo, Gonzalez-Alfaro, et al., 1995
Aucejo, Antonio; Gonzalez-Alfaro, Vicenta; Monton, Juan B.; Vazquez, M. Isabel, Isobaric Vapor-Liquid Equilibria of Trichloroethylene with 1-Propanol and 2-Propanol at 20 and 100 kPa, J. Chem. Eng. Data, 1995, 40, 1, 332-335, https://doi.org/10.1021/je00017a073 . [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Ambrose, Counsell, et al., 1970
Ambrose, D.; Counsell, J.F.; Davenport, A.J., The use of Chebyshev polynomials for the representation of vapour pressures between the triple point and the critical point, The Journal of Chemical Thermodynamics, 1970, 2, 2, 283-294, https://doi.org/10.1016/0021-9614(70)90093-5 . [all data]

Wilhoit and Zwolinski, 1973
Wilhoit, R.C.; Zwolinski, B.J., Physical and thermodynamic properties of aliphatic alcohols, J. Phys. Chem. Ref. Data Suppl., 1973, 1, 2, 1. [all data]

Van Ness, Soczek, et al., 1967
Van Ness, Hendrick C.; Soczek, C.A.; Peloquin, G.L.; Machado, R.L., Thermodynamic excess properties of three alcohol-hydrocarbon systems, J. Chem. Eng. Data, 1967, 12, 2, 217-224, https://doi.org/10.1021/je60033a017 . [all data]

Berman, Larkam, et al., 1964
Berman, Neil S.; Larkam, Charles W.; McKetta, John J., Vapor Heat Capacity and Heat of Vaporization of 2-Propanol., J. Chem. Eng. Data, 1964, 9, 2, 218-219, https://doi.org/10.1021/je60021a020 . [all data]

Ambrose and Townsend, 1963, 2
Ambrose, D.; Townsend, R., 681. Thermodynamic properties of organic oxygen compounds. Part IX. The critical properties and vapour pressures, above five atmospheres, of six aliphatic alcohols, J. Chem. Soc., 1963, 3614, https://doi.org/10.1039/jr9630003614 . [all data]

Biddiscombe, Collerson, et al., 1963
Biddiscombe, D.P.; Collerson, R.R.; Handley, R.; Herington, E.F.G.; Martin, J.F.; Sprake, C.H.S., 364. Thermodynamic properties of organic oxygen compounds. Part VIII. Purification and vapour pressures of the propyl and butyl alcohols, J. Chem. Soc., 1963, 1954, https://doi.org/10.1039/jr9630001954 . [all data]

Hales, Cox, et al., 1963
Hales, J.L.; Cox, J.D.; Lees, E.B., Thermodynamic properties of organic oxygen compounds. Part 10.-Measurement of vapour heat capacities and latent heats of vaporization of isopropyl alcohol, Trans. Faraday Soc., 1963, 59, 1544. [all data]

Williamson and Harrison, 1957
Williamson, K.D.; Harrison, R.H., Heats of vaporization of 1,1,2-trichloroethane, 1-propanol, and 2-propanol; vapor heat capacity of 1,1,2-trichloroethane, J. Chem. Phys., 1957, 26, 1409-14. [all data]

Foz Gazulla, Morcilio, et al., 1955
Foz Gazulla, O.R.; Morcilio, J.; Perez-Masia, A.; Mendes, A., Anales Real Soc. Espan. Fis. Quim. (Madrid), 1955, 50B, 23. [all data]

Ambrose and Townsend, 1963, 3
Ambrose, D.; Townsend, R., Thermodynamic Properties of Organic Oxygen Compounds. Part 9. The Critical Properties and Vapour Pressures, above Five Atmospheres, of Six Aliphatic Alcohols, J. Chem. Soc., 1963, 3614-3625, https://doi.org/10.1039/jr9630003614 . [all data]

Biddiscombe, Collerson, et al., 1963, 2
Biddiscombe, D.P.; Collerson, R.R.; Handley, R.; Herington, E.F.G.; Martin, J.F.; Sprake, C.H.S., Thermodynamic Properties of Organic Oxygen Compounds. Part 8. Purification and Vapor Pressures of the Propyl and Butyl Alcohols, J. Chem. Soc., 1963, 1954-1957, https://doi.org/10.1039/jr9630001954 . [all data]

Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D., Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III, J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985 . [all data]

Ramond, Davico, et al., 2000
Ramond, T.M.; Davico, G.E.; Schwartz, R.L.; Lineberger, W.C., Vibronic structure of alkoxy radicals via photoelectron spectroscopy, J. Chem. Phys., 2000, 112, 3, 1158-1169, https://doi.org/10.1063/1.480767 . [all data]

Bartmess, Scott, et al., 1979
Bartmess, J.E.; Scott, J.A.; McIver, R.T., Jr., The gas phase acidity scale from methanol to phenol, J. Am. Chem. Soc., 1979, 101, 6047. [all data]

DeTuri and Ervin, 1999
DeTuri, V.F.; Ervin, K.M., Competitive threshold collision-induced dissociation: Gas-phase acidities and bond dissociation energies for a series of alcohols, J. Phys. Chem. A, 1999, 103, 35, 6911-6920, https://doi.org/10.1021/jp991459m . [all data]

Haas and Harrison, 1993
Haas, M.J.; Harrison, A.G., The Fragmentation of Proton-Bound Cluster Ions and the Gas-Phase Acidities of Alcohols, Int. J. Mass Spectrom. Ion Proc., 1993, 124, 2, 115, https://doi.org/10.1016/0168-1176(93)80003-W . [all data]

Bogdanov, Peschke, et al., 1999
Bogdanov, B.; Peschke, M.; Tonner, D.S.; Szulejko, J.E.; McMahon, T.B., Stepwise solvation of halides by alcohol molecules in the gas phase, Int. J. Mass Spectrom., 1999, 187, 707-725, https://doi.org/10.1016/S1387-3806(98)14180-5 . [all data]

Hiraoka and Mizuse, 1987
Hiraoka, K.; Mizuse, S., Gas-Phase Solvation of Cl- with H2O, CH3OH, C2H4OH, i-C3H7OH, n-C3H7OH, and t-C4H9OH, Chem. Phys., 1987, 118, 3, 457, https://doi.org/10.1016/0301-0104(87)85078-4 . [all data]

Larson and McMahon, 1984
Larson, J.W.; McMahon, T.B., Hydrogen bonding in gas phase anions. An experimental investigation of the interaction between chloride ion and bronsted acids from ICR chloride exchange equilibria, J. Am. Chem. Soc., 1984, 106, 517. [all data]

Larson and McMahon, 1984, 2
Larson, J.W.; McMahon, T.B., Gas phase negative ion chemistry of alkylchloroformates, Can. J. Chem., 1984, 62, 675. [all data]

Bomse and Beauchamp, 1981
Bomse, D.S.; Beauchamp, J.L., Slow Multiphoton Excitation as a Probe of Bimolecular and Unimolecular Reaction Energetics. Multiphoton Dissociation of Proton-Bound Alcohol Dimers, J. Am. Chem. Soc., 1981, 103, 12, 3292, https://doi.org/10.1021/ja00402a011 . [all data]

Grimsrud and Kebarle, 1973
Grimsrud, E.P.; Kebarle, P., Gas Phase Ion Equilibria Studies of the Solvation of the Hydrogen Ion by Methanol, Dimethyl Ether and Water. Effect of Hydrogen Bonding, J. Am. Chem. Soc., 1973, 95, 24, 7939, https://doi.org/10.1021/ja00805a002 . [all data]

Lias, Liebman, et al., 1984
Lias, S.G.; Liebman, J.F.; Levin, R.D., Evaluated gas phase basicities and proton affinities of molecules heats of formation of protonated molecules, J. Phys. Chem. Ref. Data, 1984, 13, 695. [all data]

Larson, Szulejko, et al., 1988
Larson, J.W.; Szulejko, J.E.; McMahon, T.B., Gas Phase Lewis Acid-Base Interactions. An Experimental Determination of Cyanide Binding Energies From Ion Cyclotron Resonance and High-Pressure Mass Spectrometric Equilibrium Measurements., J. Am. Chem. Soc., 1988, 110, 23, 7604, https://doi.org/10.1021/ja00231a004 . [all data]

Larson and McMahon, 1987
Larson, J.W.; McMahon, T.B., Hydrogen bonding in gas phase anions. The energetics of interaction between cyanide ion and bronsted acids, J. Am. Chem. Soc., 1987, 109, 6230. [all data]

Payzant, Yamdagni, et al., 1971
Payzant, J.D.; Yamdagni, R.; Kebarle, P., Hydration of CN-, NO2-, NO3-, and HO- in the gas phase, Can. J. Chem., 1971, 49, 3308. [all data]

Larson and McMahon, 1983
Larson, J.W.; McMahon, T.B., Strong hydrogen bonding in gas-phase anions. An ion cyclotron resonance determination of fluoride binding energetics to bronsted acids from gas-phase fluoride exchange equilibria measurements, J. Am. Chem. Soc., 1983, 105, 2944. [all data]

Arshadi, Yamdagni, et al., 1970
Arshadi, M.; Yamdagni, R.; Kebarle, P., Hydration of Halide Negative Ions in the Gas Phase. II. Comparison of Hydration Energies for the Alkali Positive and Halide Negative Ions, J. Phys. Chem., 1970, 74, 7, 1475, https://doi.org/10.1021/j100702a014 . [all data]

Wojtyniak and Stone, 1986
Wojtyniak, A.C.M.; Stone, A.J., A High-Pressure Mass Spectrometric Study of the Bonding of Trimethylsilylium to Oxygen and Aromatic Bases, Can. J. Chem., 1986, 74, 59. [all data]

Caldwell and Kebarle, 1984
Caldwell, G.; Kebarle, P., Binding energies and structural effects in halide anion-ROH and -RCOOH complexes from gas phase equilibria measurements, J. Am. Chem. Soc., 1984, 106, 967. [all data]

Wiberg, Crocker, et al., 1991
Wiberg, K.B.; Crocker, L.S.; Morgan, K.M., Thermochemical studies of carbonyl compounds. 5. Enthalpies of reduction of carbonyl groups, J. Am. Chem. Soc., 1991, 113, 3447-3450. [all data]

Dolliver, Gresham, et al., 1938
Dolliver, M.A.; Gresham, T.L.; Kistiakowsky, G.B.; Smith, E.A.; Vaughan, W.E., Heats of organic reactions. VI. Heats of hydrogenation of some oxygen-containing compounds, J. Am. Chem. Soc., 1938, 60, 440-450. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Tanabe, Morgon, et al., 1996
Tanabe, F.K.J.; Morgon, N.H.; Riveros, J.M., Relative Bromide and Iodide Affinity of Simple Solvent Molecules Determined by FT-ICR, J. Phys. Chem., 1996, 100, 8, 2862-2866, https://doi.org/10.1021/jp952290p . [all data]

Hiraoka, Mizure, et al., 1988
Hiraoka, K.; Mizure, S.; Yamabe, S.; Nakatsuji, Y., Gas Phase Clustering Reactions of CN- and CH2CN- with MeCN, Chem. Phys. Lett., 1988, 148, 6, 497, https://doi.org/10.1016/0009-2614(88)80320-8 . [all data]

Armentrout and Rodgers, 2000
Armentrout, P.B.; Rodgers, M.T., An Absolute Sodium Cation Affinity Scale: Threshold Collision-Induced Dissociation Experiments and ab Initio Theory, J. Phys. Chem A, 2000, 104, 11, 2238, https://doi.org/10.1021/jp991716n . [all data]

Rodgers and Armentrout, 1999
Rodgers, M.T.; Armentrout, P.B., Absolute Binding Energies of Sodium Ions to Short-Chain Alcohols, CnH2n+2O, n=1-4, Determined by Threshold Collision-Induced Dissociation Experiments and Ab Initio Theory, 1999, 4955. [all data]

McMahon and Ohanessian, 2000
McMahon, T.B.; Ohanessian, G., An Experimental and Ab Initio Study of the Nature of the Binding in Gas-Phase Complexes of Sodium Ions, Chem. Eur. J., 2000, 6, 16, 2931, https://doi.org/10.1002/1521-3765(20000818)6:16<2931::AID-CHEM2931>3.0.CO;2-7 . [all data]

Sieck and Meot-ner, 1989
Sieck, L.W.; Meot-ner, M., Ionic Hydrogen Bond and Ion Solvation. 8. RS-..HOR Bond Strengths. Correlation with Acidities., J. Phys. Chem., 1989, 93, 4, 1586, https://doi.org/10.1021/j100341a079 . [all data]

Calderon, Tejero, et al., 1997
Calderon, A.; Tejero, J.; Izuierdo, J.F.; Iborra, M.; Cunill, F., Equilibrium Constants for the liquid-phase synthesis of isopropyl tert-butyl ether from 2-propanol and isobutene, Ind. Eng. Chem. Res., 1997, 36, 896-902. [all data]

Sola, Pericas, et al., 1997
Sola, L.; Pericas, M.A.; Cunill, F.; Izquierdo, J.F., A comparative thermodynamic and kinetic study of the reaction between olefins and light alcohols leading to branced ethers. Reaction calorimetry study of the formation of tert-amyl methyl ether (TAME) and tert-butyl isopropyl ether (IPTBE), Ind. Eng. Chem. Res., 1997, 36, 2012-2018. [all data]

Kolb and Burwell, 1945
Kolb, H.J.; Burwell, R.L., Jr., Equilibrium in the dehydrogenation of secondary propyl and butyl alcohols, J. Am. Chem. Soc., 1945, 67, 1084-1088. [all data]

Wilkinson, Szulejko, et al., 1992
Wilkinson, F.E.; Szulejko, J.E.; Allison, C.E.; Mcmahon, T.B., Fourier Transform Ion Cyclotron Resonance Investigation of the Deuterium Isotope Effect on Gas Phase Ion/Molecule Hydrogen Bonding Interactions in Alcohol-Fluoride Adduct Ions, Int. J. Mass Spectrom., 1992, 117, 487-505, https://doi.org/10.1016/0168-1176(92)80110-M . [all data]

Operti, Tews, et al., 1988
Operti, L.; Tews, E.C.; Freiser, B.S., Determination of Gas-Phase Ligand Binding Energies to Mg+ by FTMS Techniques, J. Am. Chem. Soc., 1988, 110, 12, 3847, https://doi.org/10.1021/ja00220a020 . [all data]

Wadso, 1958
Wadso, I., The heats of hydrolysis of some alkyl acetates, Acta Chem. Scand., 1958, 12, 630-633. [all data]

Jensen and Pedersen, 1971
Jensen, R.B.; Pedersen, S.B., Reaction between chloral and alcohols. 9. Dissociation of chloral hemiacetals of some aliphatic primary and secondary alcohols, Acta Chem. Scand., 1971, 25, 2911-2930. [all data]

Fedoseenko, Yursha, et al., 1983
Fedoseenko, V.I.; Yursha, I.A.; Kabo, G.Ya., Equilibrium and thermodynamics of cyclohexanol dehydrogenation reactions, Dokl. Akad. Nauk BSSR, 1983, 27, 926-929. [all data]

Kennedy, Lacher, et al., 1969
Kennedy, M.B.; Lacher, J.R.; Park, J.D., Reaction heats of organic compounds. VI. Heats of addition of some alcohols to 1,1-dichloro-2,2-difluoroethylene, Trans. Faraday Soc., 1969, 65, 1435-1442. [all data]

Kabo, Yursha, et al., 1988
Kabo, G.J.; Yursha, I.A.; Frenkel, M.L.; Poleshchuk, P.A.; Fedoseenko, V.I.; Ladutko, A.I., Thermodynamic properties of cyclohexanol and cyclohexanone, J. Chem. Thermodyn., 1988, 20, 429-437. [all data]

Rubtsov, 1986
Rubtsov, Yu.I., Thermodynamic calculation of equilibrium in nitration of alcohols, Bull. Acad. Sci. USSR, Div. Chem. Sci., 1986, 19-22. [all data]

Rice and Greenberg, 1934
Rice, F.O.; Greenberg, J., Ketene. III. Heat of formation and heat of reaction with alcohols, J. Am. Chem. Soc., 1934, 38, 2268-2270. [all data]

Rodgers and Armentrout, 2000
Rodgers, M.T.; Armentrout, P.B., Noncovalent Metal-Ligand Bond Energies as Studied by Threshold Collision-Induced Dissociation, Mass Spectrom. Rev., 2000, 19, 4, 215, https://doi.org/10.1002/1098-2787(200007)19:4<215::AID-MAS2>3.0.CO;2-X . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), References