Acetic acid
- Formula: C2H4O2
- Molecular weight: 60.0520
- IUPAC Standard InChIKey: QTBSBXVTEAMEQO-UHFFFAOYSA-N
- CAS Registry Number: 64-19-7
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Isotopologues:
- Other names: Ethanoic acid; Ethylic acid; Glacial acetic acid; Methanecarboxylic acid; Vinegar acid; CH3COOH; Acetasol; Acide acetique; Acido acetico; Azijnzuur; Essigsaeure; Octowy kwas; Acetic acid, glacial; Kyselina octova; UN 2789; Aci-jel; Shotgun; Ethanoic acid monomer; NSC 132953
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Reaction thermochemistry data: reactions 51 to 79
- Henry's Law data
- Gas phase ion energetics data
- Ion clustering data
- UV/Visible spectrum
- Gas Chromatography
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | -103.5 ± 0.6 | kcal/mol | AVG | N/A | Average of 8 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
S°gas | 67.600 | cal/mol*K | N/A | Weltner W., 1955 | Other third-law entropy values at 298.15 K are 284.5 [ Chao J., 1986] and 290.37(4.18) J/mol*K [ Halford J.O., 1941].; GT |
Constant pressure heat capacity of gas
Cp,gas (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
9.450 | 50. | Chao J., 1986 | p=1 bar. Selected entropies and heat capacities differ from other statistically calculated values [ Weltner W., 1955] by 1.0-1.3 J/mol*K for S(T) and 3.1-5.4 J/mol*K for Cp(T). Please also see Chao J., 1978.; GT |
9.661 | 100. | ||
10.22 | 150. | ||
11.55 | 200. | ||
14.19 | 273.15 | ||
15.16 ± 0.026 | 298.15 | ||
15.23 | 300. | ||
19.04 | 400. | ||
22.45 | 500. | ||
25.378 | 600. | ||
27.875 | 700. | ||
29.995 | 800. | ||
31.785 | 900. | ||
33.284 | 1000. | ||
34.527 | 1100. | ||
35.554 | 1200. | ||
36.401 | 1300. | ||
37.098 | 1400. | ||
37.674 | 1500. |
Condensed phase thermochemistry data
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°liquid | -115.56 ± 0.086 | kcal/mol | Ccb | Steele, Chirico, et al., 1997 | ALS |
ΔfH°liquid | -115.80 ± 0.05 | kcal/mol | Ccb | Lebedeva, 1964 | ALS |
ΔfH°liquid | -115.7 ± 0.1 | kcal/mol | Ccb | Evans and Skinner, 1959 | ALS |
ΔfH°liquid | -116.4 | kcal/mol | Cm | Carson and Skinner, 1949 | Unpublished result by Rossini; ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°liquid | -209.17 ± 0.081 | kcal/mol | Ccb | Steele, Chirico, et al., 1997 | Corresponding ΔfHºliquid = -115.56 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°liquid | -208.94 ± 0.05 | kcal/mol | Ccb | Lebedeva, 1964 | Corresponding ΔfHºliquid = -115.79 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°liquid | -209.0 ± 0.1 | kcal/mol | Ccb | Evans and Skinner, 1959 | Corresponding ΔfHºliquid = -115.7 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°liquid | -208.5 | kcal/mol | Ccb | Schjanberg, 1935 | Corresponding ΔfHºliquid = -116.2 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS |
Quantity | Value | Units | Method | Reference | Comment |
S°liquid | 37.76 | cal/mol*K | N/A | Martin and Andon, 1982 | DH |
S°liquid | 46.30 | cal/mol*K | N/A | Parks and Kelley, 1925 | Extrapolation below 90 K. 76.82 J/mol*K.; DH |
Constant pressure heat capacity of liquid
Cp,liquid (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
29.42 | 298.15 | Martin and Andon, 1982 | T = 13 to 450 K. Data also given by equation.; DH |
33.39 | 332. | Swietoslawski and Zielenkiewicz, 1958 | Mean value 22 to 96°C.; DH |
28.80 | 298. | Radulescu and Jula, 1934 | DH |
28.99 | 297.1 | Neumann, 1932 | T = 23.9 to 80.5°C. Value is unsmoothed experimental datum.; DH |
38.19 | 298.1 | Parks, Kelley, et al., 1929 | Extrapolation below 90 K, 42.68 J/mol*K. Revision of previous data.; DH |
29.49 | 294.7 | Parks and Kelley, 1925 | T = 87 to 295 K. Value is unsmoothed experimental datum.; DH |
32.7 | 287. to 335. | Pickering, 1895 | T = 260 to 335 K.; DH |
29.52 | 298. | von Reis, 1881 | T = 292 to 358 K.; DH |
Phase change data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 391.2 ± 0.6 | K | AVG | N/A | Average of 80 out of 90 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Tfus | 289.6 ± 0.5 | K | AVG | N/A | Average of 8 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Ttriple | 289.8 | K | N/A | Wilhoit, Chao, et al., 1985 | Uncertainty assigned by TRC = 0.05 K; TRC |
Ttriple | 289.69 | K | N/A | Martin and Andon, 1982, 2 | Uncertainty assigned by TRC = 0.04 K; TRC |
Ttriple | 289.8 | K | N/A | Parks and Kelley, 1925, 2 | Uncertainty assigned by TRC = 0.15 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Tc | 593. ± 3. | K | AVG | N/A | Average of 10 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Pc | 57.05 | atm | N/A | Andereya and Chase, 1990 | Uncertainty assigned by TRC = 0.20 atm; TRC |
Pc | 57.5279 | atm | N/A | D'Souza and Teja, 1987 | Uncertainty assigned by TRC = 0.89 atm; Ambrose's procedure; TRC |
Pc | 57.10 | atm | N/A | Ambrose, Ellender, et al., 1977 | Uncertainty assigned by TRC = 0.08 atm; TRC |
Pc | 57.11 | atm | N/A | Young, 1910 | Uncertainty assigned by TRC = 0.99995 atm; TRC |
Pc | 57.110 | atm | N/A | Young, 1891 | Uncertainty assigned by TRC = 0.2631 atm; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ρc | 5.84 | mol/l | N/A | Vandana and Teja, 1995 | Uncertainty assigned by TRC = 0.02 mol/l; TRC |
ρc | 5.838 | mol/l | N/A | Young, 1910 | Uncertainty assigned by TRC = 0.02 mol/l; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ΔvapH° | 12.0 | kcal/mol | CGC | Verevkin, 2000 | Based on data from 303. to 378. K.; AC |
ΔvapH° | 12.3 | kcal/mol | N/A | Majer and Svoboda, 1985 | |
ΔvapH° | 12.3 ± 0.36 | kcal/mol | C | Konicek and Wadso, 1970 | ALS |
ΔvapH° | 12.3 ± 0.38 | kcal/mol | C | Konicek, Wadsö, et al., 1970 | AC |
Enthalpy of vaporization
ΔvapH (kcal/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
5.66 | 391.1 | N/A | Majer and Svoboda, 1985 | |
9.35 | 360. | EB | Muñoz and Krähenbühl, 2001 | Based on data from 345. to 383. K.; AC |
9.78 | 335. | N/A | Vercher, Vázquez, et al., 2001 | Based on data from 320. to 395. K.; AC |
9.06 | 406. | A | Stephenson and Malanowski, 1987 | Based on data from 391. to 550. K.; AC |
10.0 | 305. | A | Stephenson and Malanowski, 1987 | Based on data from 290. to 396. K.; AC |
9.25 | 406. | A | Stephenson and Malanowski, 1987 | Based on data from 391. to 447. K.; AC |
9.11 | 452. | A | Stephenson and Malanowski, 1987 | Based on data from 437. to 535. K.; AC |
9.27 | 540. | A | Stephenson and Malanowski, 1987 | Based on data from 525. to 593. K.; AC |
9.94 | 304. | A | Stephenson and Malanowski, 1987 | Based on data from 289. to 392. K. See also Dykyj, 1970.; AC |
10.3 | 308. | N/A | Tamir, Dragoescu, et al., 1983 | AC |
9.63 | 340. | N/A | McDonald, Shrader, et al., 1959 | Based on data from 325. to 391. K.; AC |
9.94 | 318. | MM | Potter and Ritter, 1954 | Based on data from 303. to 399. K.; AC |
Enthalpy of vaporization
ΔvapH = A exp(-αTr)
(1 − Tr)β
ΔvapH =
Enthalpy of vaporization (at saturation pressure)
(kcal/mol)
Tr = reduced temperature (T / Tc)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | 298. to 392. |
---|---|
A (kcal/mol) | 5.459 |
α | 0.0184 |
β | -0.0454 |
Tc (K) | 592.7 |
Reference | Majer and Svoboda, 1985 |
Antoine Equation Parameters
log10(P) = A − (B / (T + C))
P = vapor pressure (atm)
T = temperature (K)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A | B | C | Reference |
---|---|---|---|---|
290.26 to 391.01 | 4.67635 | 1642.54 | -39.764 | McDonald, Shrader, et al., 1959 |
Enthalpy of sublimation
ΔsubH (kcal/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
16.1 ± 0.2 | 223. | TE,ME | Calis-Van Ginkel, Calis, et al., 1978 | Based on data from 213. to 230. K.; AC |
17. ± 0.2 | 213. | TE,ME | Calis-Van Ginkel, Calis, et al., 1978 | Based on data from 213. to 230. K.; AC |
Enthalpy of fusion
ΔfusH (kcal/mol) | Temperature (K) | Reference | Comment |
---|---|---|---|
2.801 | 298.7 | Domalski and Hearing, 1996 | See also Martin and Andon, 1982.; AC |
2.8031 | 289.9 | Parks and Kelley, 1925 | DH |
2.588 | 289.8 | Louguinine and Dupont, 1911 | AC |
2.753 | 283.7 | Meyer, 1910 | AC |
2.6592 | 290.06 | Pickering, 1895 | DH |
Entropy of fusion
ΔfusS (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
9.673 | 289.9 | Parks and Kelley, 1925 | DH |
9.168 | 290.06 | Pickering, 1895 | DH |
Enthalpy of phase transition
ΔHtrs (kcal/mol) | Temperature (K) | Initial Phase | Final Phase | Reference | Comment |
---|---|---|---|---|---|
2.8011 | 298.69 | crystaline, I | liquid | Martin and Andon, 1982 | DH |
Entropy of phase transition
ΔStrs (cal/mol*K) | Temperature (K) | Initial Phase | Final Phase | Reference | Comment |
---|---|---|---|---|---|
9.68 | 298.69 | crystaline, I | liquid | Martin and Andon, 1982 | DH |
Reaction thermochemistry data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Reactions 1 to 50
By formula: F- + C2H4O2 = (F- • C2H4O2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 44.1 ± 2.0 | kcal/mol | IMRE | Larson and McMahon, 1983 | gas phase; These relative affinities are ca. 10 kcal/mol weaker than threshold values (see Wenthold and Squires, 1995) for donors greater than ca. 27 kcal/mol in free energy. This discrepancy has not yet been resolved, though the stronger value appears preferable.; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 25.6 | cal/mol*K | N/A | Larson and McMahon, 1983 | gas phase; switching reaction(F-)H2O, Entropy change calculated or estimated; Arshadi, Yamdagni, et al., 1970; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 36.5 ± 2.0 | kcal/mol | IMRE | Larson and McMahon, 1983 | gas phase; These relative affinities are ca. 10 kcal/mol weaker than threshold values (see Wenthold and Squires, 1995) for donors greater than ca. 27 kcal/mol in free energy. This discrepancy has not yet been resolved, though the stronger value appears preferable.; B,M |
By formula: C2H5O+ + C2H4O2 = (C2H5O+ • C2H4O2)
Bond type: Hydrogen bonds of the type OH-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 28.1 | kcal/mol | PHPMS | Meot-Ner (Mautner), 1992 | gas phase; M |
ΔrH° | 29.5 | kcal/mol | ICR | Larson and McMahon, 1982 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 28.3 | cal/mol*K | PHPMS | Meot-Ner (Mautner), 1992 | gas phase; M |
ΔrS° | 27.9 | cal/mol*K | N/A | Larson and McMahon, 1982 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 21.2 | kcal/mol | ICR | Larson and McMahon, 1982 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M |
By formula: Cl- + C2H4O2 = (Cl- • C2H4O2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 24.40 ± 0.20 | kcal/mol | TDAs | Sieck, 1985 | gas phase; B,M |
ΔrH° | 21.6 ± 2.0 | kcal/mol | TDAs | Yamdagni and Kebarle, 1971 | gas phase; B,M |
ΔrH° | 23.9 ± 2.0 | kcal/mol | IMRE | Larson and McMahon, 1984 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 19.6 | cal/mol*K | PHPMS | Sieck, 1985 | gas phase; M |
ΔrS° | 24.0 | cal/mol*K | N/A | Larson and McMahon, 1984, 2 | gas phase; switching reaction(Cl-)t-C4H9OH, Entropy change calculated or estimated; French, Ikuta, et al., 1982; M |
ΔrS° | 19.3 | cal/mol*K | PHPMS | Yamdagni and Kebarle, 1971 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 18.60 ± 0.30 | kcal/mol | TDAs | Sieck, 1985 | gas phase; B |
ΔrG° | 15.8 ± 2.0 | kcal/mol | TDAs | Yamdagni and Kebarle, 1971 | gas phase; B |
ΔrG° | 16.7 ± 2.0 | kcal/mol | IMRE | Larson and McMahon, 1984 | gas phase; B,M |
By formula: C2H3O2- + H+ = C2H4O2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 348.2 ± 1.4 | kcal/mol | CIDC | Angel and Ervin, 2006 | gas phase; B |
ΔrH° | 348.1 ± 2.2 | kcal/mol | G+TS | Taft and Topsom, 1987 | gas phase; B |
ΔrH° | 348.6 ± 2.1 | kcal/mol | G+TS | Cumming and Kebarle, 1978 | gas phase; B |
ΔrH° | 348.7 ± 2.2 | kcal/mol | G+TS | Fujio, McIver, et al., 1981 | gas phase; value altered from reference due to change in acidity scale; B |
ΔrH° | 343.20 ± 0.70 | kcal/mol | EIAE | Muftakhov, Vasil'ev, et al., 1999 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 341.1 ± 2.0 | kcal/mol | IMRE | Taft and Topsom, 1987 | gas phase; B |
ΔrG° | 341.5 ± 2.0 | kcal/mol | IMRE | Cumming and Kebarle, 1978 | gas phase; B |
ΔrG° | 341.7 ± 2.0 | kcal/mol | IMRE | Fujio, McIver, et al., 1981 | gas phase; value altered from reference due to change in acidity scale; B |
By formula: C2H7O+ + C2H4O2 = (C2H7O+ • C2H4O2)
Bond type: Hydrogen bonds of the type OH-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 29.3 | kcal/mol | ICR | Larson and McMahon, 1982 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 28.4 | cal/mol*K | N/A | Larson and McMahon, 1982 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 20.8 | kcal/mol | ICR | Larson and McMahon, 1982 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M |
By formula: CH6N+ + C2H4O2 = (CH6N+ • C2H4O2)
Bond type: Hydrogen bonds of the type NH+-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 22.0 | kcal/mol | PHPMS | Meot-Ner, 1984 | gas phase; M |
ΔrH° | 21.4 | kcal/mol | PHPMS | Meot-Ner, 1984 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 24.3 | cal/mol*K | PHPMS | Meot-Ner, 1984 | gas phase; M |
ΔrS° | 24. | cal/mol*K | N/A | Meot-Ner, 1984 | gas phase; Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
10.3 | 459. | PHPMS | Meot-Ner, 1984 | gas phase; Entropy change calculated or estimated; M |
By formula: (C2H5O+ • 3C2H4O2) + C2H4O2 = (C2H5O+ • 4C2H4O2)
Bond type: Hydrogen bonds of the type OH-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 12. | kcal/mol | PHPMS | Meot-Ner (Mautner), 1992 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 25. | cal/mol*K | N/A | Meot-Ner (Mautner), 1992 | gas phase; Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
6.2 | 245. | PHPMS | Meot-Ner (Mautner), 1992 | gas phase; Entropy change calculated or estimated; M |
By formula: (C2H3O2- • 2C2H4O2 • H2O) + C2H4O2 = (C2H3O2- • 3C2H4O2 • H2O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 12.50 ± 0.60 | kcal/mol | N/A | Meot-ner, Elmore, et al., 1999 | gas phase; B |
ΔrH° | 16.2 ± 1.0 | kcal/mol | TDAs | Meot-Ner and Sieck, 1986 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 5.73 | kcal/mol | TDAs | Meot-ner, Elmore, et al., 1999 | gas phase; B |
ΔrG° | 6.2 ± 1.0 | kcal/mol | TDAs | Meot-Ner and Sieck, 1986 | gas phase; B |
By formula: (C2H3O2- • C2H4O2 • H2O) + C2H4O2 = (C2H3O2- • 2C2H4O2 • H2O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 19.69 ± 0.50 | kcal/mol | N/A | Meot-ner, Elmore, et al., 1999 | gas phase; B |
ΔrH° | 16.2 ± 1.0 | kcal/mol | TDAs | Meot-Ner and Sieck, 1986 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 10.81 | kcal/mol | TDAs | Meot-ner, Elmore, et al., 1999 | gas phase; B |
ΔrG° | 6.2 ± 1.0 | kcal/mol | TDAs | Meot-Ner and Sieck, 1986 | gas phase; B |
By formula: C2H3ClO + H2O = C2H4O2 + HCl
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -22.58 | kcal/mol | Cm | Devore and O'Neal, 1969 | liquid phase; Heat of hydrolysis; ALS |
ΔrH° | -22.06 | kcal/mol | Cm | Pritchard and Skinner, 1950 | liquid phase; Heat of hydrolysis at 298 K, see Carson and Skinner, 1949; ALS |
ΔrH° | -22.09 | kcal/mol | Cm | Carson and Skinner, 1949 | liquid phase; ALS |
By formula: C4H6O3 + H2O = 2C2H4O2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -13.53 ± 0.96 | kcal/mol | Cm | Becker and Maelicke, 1967 | liquid phase; ALS |
ΔrH° | -14.00 ± 0.09 | kcal/mol | Cm | Wadso, 1962 | liquid phase; ALS |
ΔrH° | -14.0 ± 0.1 | kcal/mol | Cm | Conn, Kistiakowsky, et al., 1942 | liquid phase; Heat of hydrolysis at 303 K; ALS |
By formula: I- + C2H4O2 = (I- • C2H4O2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 16.9 ± 1.0 | kcal/mol | TDAs | Caldwell and Kebarle, 1984 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 21.3 | cal/mol*K | PHPMS | Caldwell and Kebarle, 1984 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 10.5 ± 1.0 | kcal/mol | TDAs | Caldwell and Kebarle, 1984 | gas phase; B |
C2H3O2- + =
By formula: C2H3O2- + H+ = C2H4O2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 368.0 ± 3.1 | kcal/mol | G+TS | Grabowski and Cheng, 1989 | gas phase; B |
ΔrH° | 367.8 ± 4.6 | kcal/mol | EIAE | Muftakhov, Vasil'ev, et al., 1999 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 361.2 ± 3.0 | kcal/mol | IMRB | Grabowski and Cheng, 1989 | gas phase; B |
By formula: C6H5NO2- + C2H4O2 = (C6H5NO2- • C2H4O2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 22.60 ± 0.10 | kcal/mol | TDAs | Sieck, 1985 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 26.8 | cal/mol*K | PHPMS | Sieck, 1985 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 14.60 ± 0.20 | kcal/mol | TDAs | Sieck, 1985 | gas phase; B |
By formula: C6H5O- + C2H4O2 = (C6H5O- • C2H4O2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 27.4 | kcal/mol | PHPMS | Meot-Ner and Sieck, 1986 | gas phase; calculated from CH3COO-.C6H5OH; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 24.0 | cal/mol*K | PHPMS | Meot-Ner and Sieck, 1986 | gas phase; calculated from CH3COO-.C6H5OH; M |
By formula: (C2H5O+ • 2C2H4O2) + C2H4O2 = (C2H5O+ • 3C2H4O2)
Bond type: Hydrogen bonds of the type OH-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 13.1 | kcal/mol | PHPMS | Meot-Ner (Mautner), 1992 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 22.4 | cal/mol*K | PHPMS | Meot-Ner (Mautner), 1992 | gas phase; M |
By formula: (C2H5O+ • C2H4O2) + C2H4O2 = (C2H5O+ • 2C2H4O2)
Bond type: Hydrogen bonds of the type OH-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 18.5 | kcal/mol | PHPMS | Meot-Ner (Mautner), 1992 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 24.5 | cal/mol*K | PHPMS | Meot-Ner (Mautner), 1992 | gas phase; M |
By formula: C6H12NO3+ + C2H4O2 = (C6H12NO3+ • C2H4O2)
Bond type: Hydrogen bonds with polydentate bonding in positive ions
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 18.1 | kcal/mol | PHPMS | Meot-Ner, 1984, 2 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 27.2 | cal/mol*K | PHPMS | Meot-Ner, 1984, 2 | gas phase; M |
By formula: C4H7NO2 + H2O = C2H5NO + C2H4O2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -4.33 ± 0.05 | kcal/mol | Cm | Hill and Wadso, 1968 | solid phase; Heat of hydrolysis; ALS |
ΔrH° | -4.33 ± 0.05 | kcal/mol | Cm | Wadso, 1965 | solid phase; Heat of hydrolysis; ALS |
By formula: C4H10NO+ + C2H4O2 = (C4H10NO+ • C2H4O2)
Bond type: Hydrogen bonds of the type OH-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 18.4 | kcal/mol | PHPMS | Meot-Ner, 1984, 2 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 24.7 | cal/mol*K | PHPMS | Meot-Ner, 1984, 2 | gas phase; M |
By formula: C2H3IO + H2O = HI + C2H4O2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -22.46 | kcal/mol | Cm | Devore and O'Neal, 1969 | liquid phase; Heat of hydrolysis; ALS |
ΔrH° | -21.59 | kcal/mol | Cm | Carson and Skinner, 1949 | liquid phase; Heat of hydrolysis; ALS |
By formula: (C2H3O2- • H2O) + C2H4O2 = (C2H3O2- • C2H4O2 • H2O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 29.3 ± 1.0 | kcal/mol | TDAs | Meot-Ner and Sieck, 1986 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 20.4 ± 1.6 | kcal/mol | TDAs | Meot-Ner and Sieck, 1986 | gas phase; B |
By formula: C4H6O3 + C4H11N = C6H13NO + C2H4O2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -27.06 ± 0.11 | kcal/mol | Cm | Wadso, 1962 | liquid phase; ALS |
ΔrH° | -39.13 ± 0.06 | kcal/mol | Cm | Wadso, 1958 | liquid phase; Heat of aminolysis; ALS |
By formula: C2H3BrO + H2O = HBr + C2H4O2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -23.31 | kcal/mol | Cm | Devore and O'Neal, 1969 | liquid phase; Heat of hydrolysis; ALS |
ΔrH° | -23.06 | kcal/mol | Cm | Carson and Skinner, 1949 | liquid phase; ALS |
+ = C8H9O2S-
By formula: C6H5S- + C2H4O2 = C8H9O2S-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 20.30 ± 0.10 | kcal/mol | TDAs | Sieck and Meot-ner, 1989 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 12.50 ± 0.40 | kcal/mol | TDAs | Sieck and Meot-ner, 1989 | gas phase; B |
By formula: (C2H3O2- • 2C2H4O2) + C2H4O2 = (C2H3O2- • 3C2H4O2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 16.2 | kcal/mol | PHPMS | Meot-Ner and Sieck, 1986 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 33.2 | cal/mol*K | PHPMS | Meot-Ner and Sieck, 1986 | gas phase; M |
By formula: (C2H3O2- • C2H4O2) + C2H4O2 = (C2H3O2- • 2C2H4O2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 19.6 | kcal/mol | PHPMS | Meot-Ner and Sieck, 1986 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 28.6 | cal/mol*K | PHPMS | Meot-Ner and Sieck, 1986 | gas phase; M |
By formula: C6H5S- + C2H4O2 = (C6H5S- • C2H4O2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 20.3 | kcal/mol | PHPMS | Sieck and Meot-ner, 1989 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 26.2 | cal/mol*K | PHPMS | Sieck and Meot-ner, 1989 | gas phase; M |
By formula: Li+ + C2H4O2 = (Li+ • C2H4O2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 41.5 | kcal/mol | ICR | Staley and Beauchamp, 1975 | gas phase; switching reaction(Li+)H2O, from graph; Dzidic and Kebarle, 1970 interpolated; M |
By formula: C2H3O2- + C2H4O2 = (C2H3O2- • C2H4O2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 29.3 | kcal/mol | PHPMS | Meot-Ner and Sieck, 1986 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 29.6 | cal/mol*K | PHPMS | Meot-Ner and Sieck, 1986 | gas phase; M |
By formula: C8H14O4 + 2H2O = C4H10O2 + 2C2H4O2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -5.33 ± 0.50 | kcal/mol | Cm | Shlechter, Othmer, et al., 1945 | liquid phase; Heat of formation derived by Cox and Pilcher, 1970; ALS |
By formula: C5H6N2O + H2O = C3H4N2 + C2H4O2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -4.83 ± 0.05 | kcal/mol | Cm | Wadso, 1960 | liquid phase; solvent: Aqueous; Heat of hydrolysis; ALS |
By formula: C4H10O2 + 2C2H4O2 = C8H14O4 + 2H2O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 5.330 | kcal/mol | Eqk | Shlechter, Othmer, et al., 1945 | liquid phase; Heat of esterification at 338-453 K; ALS |
By formula: C6H12O3 + C2H4O2 = C8H14O4 + H2O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 0.441 | kcal/mol | Eqk | Shlechter, Othmer, et al., 1945 | liquid phase; Heat of esterification at 338-453 K; ALS |
By formula: C6H9NO3 + 2H2O = C2H5NO + 2C2H4O2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -24.74 ± 0.02 | kcal/mol | Cm | Hill and Wadso, 1968 | liquid phase; Heat of hydrolysis; ALS |
By formula: 2H2O + C4H8O2 = C2H4O2 + 2CH4O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -17.79 ± 0.86 | kcal/mol | Cm | Guthrie and Liu, 1995 | liquid phase; Heat of hydrolysis; ALS |
By formula: C10H14 + C2H4O2 = C12H18O2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -43.49 ± 0.08 | kcal/mol | Cac | Wiberg, Connon, et al., 1979 | liquid phase; solvent: Acetic acid; ALS |
By formula: C2H4OS + H2O = C2H4O2 + H2S
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -0.64 ± 0.07 | kcal/mol | Cm | Sunner and Wadso, 1957 | liquid phase; Heat of hydrolysis; ALS |
By formula: C2H5NO + H2O = C2H4O2 + H3N
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 18.2 ± 0.33 | kcal/mol | Cm | Hill and Wadso, 1968 | solid phase; Heat of hydrolysis; ALS |
By formula: C6H13NO + C2H4O2 = C8H15NO2 + H2O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 9.68 ± 0.12 | kcal/mol | Cm | Wadso, 1965 | liquid phase; Heat of hydrolysis; ALS |
By formula: C5H10OS + H2O = C3H8S + C2H4O2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -0.93 ± 0.06 | kcal/mol | Cm | Wadso, 1957 | liquid phase; Heat of hydrolysis; ALS |
+ = C10H11NO2 +
By formula: C8H9NO + C2H4O2 = C10H11NO2 + H2O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 10.88 ± 0.07 | kcal/mol | Cm | Wadso, 1965 | solid phase; Heat of hydrolysis; ALS |
By formula: C9H10O2 + H2O = C7H8O + C2H4O2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -4.39 ± 0.14 | kcal/mol | Cm | Sunner, 1957 | liquid phase; Heat of hydrolysis; ALS |
By formula: H2O + C6H12OS = C4H10S + C2H4O2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -1.09 ± 0.06 | kcal/mol | Cm | Wadso, 1957 | liquid phase; Heat of hydrolysis; ALS |
By formula: C3H4N4O + H2O = CH2N4 + C2H4O2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -10.31 ± 0.09 | kcal/mol | Cm | Wadso, 1960 | solid phase; Heat of hydrolysis; ALS |
By formula: C9H8O3S + H2O = C7H6O2S + C2H4O2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -2.75 ± 0.09 | kcal/mol | Cm | Nelander, 1964 | solid phase; Heat of hydrolysis; ALS |
By formula: C8H9NO + H2O = C6H7N + C2H4O2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -10.05 ± 0.06 | kcal/mol | Cm | Wadso, 1965 | solid phase; Heat of hydrolysis; ALS |
By formula: C2H4O2 + C3H6O = C5H8O2 + H2O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 14.39 ± 0.06 | kcal/mol | Cm | Sunner, 1957 | liquid phase; Heat of hydrolysis; ALS |
By formula: C4H8OS + H2O = C2H4O2 + C2H6S
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -0.95 ± 0.06 | kcal/mol | Cm | Wadso, 1957 | liquid phase; Heat of hydrolysis; ALS |
By formula: H2O + C5H10OS = C2H4O2 + C3H8S
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -1.39 ± 0.07 | kcal/mol | Cm | Wadso, 1957 | liquid phase; Heat of hydrolysis; ALS |
IR Spectrum
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, References, Notes
Data compiled by: Coblentz Society, Inc.
- GAS (15 mmHg, N2 ADDED, TOTAL PRESSURE 600 mmHg); DOW KBr FOREPRISM-GRATING; DIGITIZED BY COBLENTZ SOCIETY (BATCH I) FROM HARD COPY; 2 cm-1 resolution
- SOLUTION (10% IN CCl4 FOR 3800-1300, 10% IN CS2 FOR 1300-650, 10% IN CCl4 FOR 650-250 CM-1) VERSUS SOLVENT; PERKIN-ELMER 521 (GRATING); DIGITIZED BY NIST FROM HARD COPY (FROM TWO SEGMENTS); 4 cm-1 resolution
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Mass spectrum (electron ionization)
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Vibrational and/or electronic energy levels, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
Due to licensing restrictions, this spectrum cannot be downloaded.
Owner | NIST Mass Spectrometry Data Center Collection (C) 2014 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
---|---|
Origin | Japan AIST/NIMC Database- Spectrum MS-NW- 80 |
NIST MS number | 227635 |
Vibrational and/or electronic energy levels
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Takehiko Shimanouchi
Symmetry: Cs Symmetry Number σ = 1
Sym. | No | Approximate | Selected Freq. | Infrared | Raman | Comments | ||||
---|---|---|---|---|---|---|---|---|---|---|
Species | type of mode | Value | Rating | Value | Phase | Value | Phase | |||
a' | 1 | OH str | 3583 | B | 3583 M | gas | ||||
a' | 2 | CH3 d-str | 3051 | B | 3051 VW | gas | ||||
a' | 3 | CH3 s-str | 2944 | B | 2944 VW | gas | ||||
a' | 4 | C=O str | 1788 | B | 1788 VS | gas | ||||
a' | 5 | CH3 d-deform | 1430 | C | 1430 sh | gas | SF(ν14) | |||
a' | 6 | CH3 s-deform | 1382 | B | 1382 M | gas | ||||
a' | 7 | OH bend | 1264 | B | 1264 M | gas | ||||
a' | 8 | C-O str | 1182 | B | 1182 S | gas | ||||
a' | 9 | CH3 rock | 989 | B | 989 M | gas | ||||
a' | 10 | CC str | 847 | B | 847 W | gas | ||||
a' | 11 | OCO deform | 657 | B | 657 S | gas | ||||
a' | 12 | CCO deform | 581 | B | 581 M | gas | ||||
a | 13 | CH3 d-str | 2996 | B | 2996 VW | gas | ||||
a | 14 | CH3 d-deform | 1430 | C | 1430 sh | gas | SF(ν5) | |||
a | 15 | CH3 rock | 1048 | B | 1048 W | gas | ||||
a | 16 | C=O op-bend | 642 | B | 642 S | gas | ||||
a | 17 | C-O torsion | 534 | B | 534 M | gas | ||||
a | 18 | CH3 torsion | 93 | E | CF | |||||
Source: Shimanouchi, 1972
Notes
VS | Very strong |
S | Strong |
M | Medium |
W | Weak |
VW | Very weak |
sh | Shoulder |
CF | Calculated frequency |
SF | Calculation shows that the frequency approximately equals that of the vibration indicated in the parentheses. |
B | 1~3 cm-1 uncertainty |
C | 3~6 cm-1 uncertainty |
E | 15~30 cm-1 uncertainty |
References
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Weltner W., 1955
Weltner W., Jr.,
The vibrational spectrum, associative and thermodynamic properties of acetic acid vapor,
J. Am. Chem. Soc., 1955, 77, 3941-3950. [all data]
Chao J., 1986
Chao J.,
Thermodynamic properties of key organic oxygen compounds in the carbon range C1 to C4. Part 2. Ideal gas properties,
J. Phys. Chem. Ref. Data, 1986, 15, 1369-1436. [all data]
Halford J.O., 1941
Halford J.O.,
The entropy of acetic acid,
J. Chem. Phys., 1941, 9, 859-863. [all data]
Chao J., 1978
Chao J.,
Ideal gas thermodynamic properties of methanoic and ethanoic acids,
J. Phys. Chem. Ref. Data, 1978, 7, 363-377. [all data]
Steele, Chirico, et al., 1997
Steele, W.V.; Chirico, R.D.; Cowell, A.B.; Knipmeyer, S.E.; Nguyen, A.,
Thermodynamic properties and ideal-gas enthalpies of formation for 2-aminoisobutyric acid (2-methylalanine), acetic acid, (4-methyl-3-penten-2-one), 4-methylpent-1-ene, 2,2'-bis(phenylthio)propane, and glycidyl phenyl ether (1,2-epoxy-3-phenoxypropane),
J. Chem. Eng. Data, 1997, 42, 1052-1066. [all data]
Lebedeva, 1964
Lebedeva, N.D.,
Heats of combustion of monocarboxylic acids,
Russ. J. Phys. Chem. (Engl. Transl.), 1964, 38, 1435-1437. [all data]
Evans and Skinner, 1959
Evans, F.W.; Skinner, H.A.,
The heat of combustion of acetic acid,
Trans. Faraday Soc., 1959, 55, 260-261. [all data]
Carson and Skinner, 1949
Carson, A.S.; Skinner, H.A.,
201. Carbon-halogen bond energies in the acetyl halides,
J. Chem. Soc., 1949, 936-939. [all data]
Schjanberg, 1935
Schjanberg, E.,
Die Verbrennungswarmen und die Refraktionsdaten einiger chlorsubstituierter Fettsauren und Ester.,
Z. Phys. Chem. Abt. A, 1935, 172, 197-233. [all data]
Martin and Andon, 1982
Martin, J.F.; Andon, R.J.L.,
Thermodynamic properties of organic oxygen compounds. Part LII. Molar heat capacity of ethanoic, propanoic, and butanoic acids,
J. Chem. Thermodynam., 1982, 14, 679-688. [all data]
Parks and Kelley, 1925
Parks, G.S.; Kelley, K.K.,
Thermal data on organic compounds. II. The heat capacities of five organic compounds. The entropies and free energies of some homologous series of aliphatic compounds,
J. Am. Chem. Soc., 1925, 47, 2089-2097. [all data]
Swietoslawski and Zielenkiewicz, 1958
Swietoslawski, W.; Zielenkiewicz, A.,
Mean specific heat of some ternary azeotropes,
Bull. Acad. Pol. Sci. Ser. Sci. Chim., 1958, 6, 365-366. [all data]
Radulescu and Jula, 1934
Radulescu, D.; Jula, O.,
Beiträge zur Bestimmung der Abstufung der Polarität des Aminstickstoffes in den organischen Verbindungen,
Z. Phys. Chem., 1934, B26, 390-393. [all data]
Neumann, 1932
Neumann, M.B.,
Die Untersuchung der Wärmekapazität vom binären System CH3COOH + H2O bei verschiedenen Temperaturen,
Z. Phys. Chem., 1932, A158, 258-264. [all data]
Parks, Kelley, et al., 1929
Parks, G.S.; Kelley, K.K.; Huffman, H.M.,
Thermal data on organic compounds. V. A revision of the entropies and free energies of nineteen organic compounds,
J. Am. Chem. Soc., 1929, 51, 1969-1973. [all data]
Pickering, 1895
Pickering, S.U.,
A comparison of some properties of acetic acid and its chloro- and bromo-derivatives,
J. Chem. Soc., 1895, 67, 664-684. [all data]
von Reis, 1881
von Reis, M.A.,
Die specifische Wärme flüssiger organischer Verbindungen und ihre Beziehung zu deren Moleculargewicht,
Ann. Physik [3], 1881, 13, 447-464. [all data]
Wilhoit, Chao, et al., 1985
Wilhoit, R.C.; Chao, J.; Hall, K.R.,
Thermodynamic Properties of Key Organic Compounds in the Carbon Range C1 to C4. Part 1. Properties of Condensed Phases,
J. Phys. Chem. Ref. Data, 1985, 14, 1. [all data]
Martin and Andon, 1982, 2
Martin, J.F.; Andon, R.J.L.,
Thermodynamic properties of organic oxygen compounds. Part LII. Molar heat capacity of ethanoic, propanoic, and butanoic acids.,
J. Chem. Thermodyn., 1982, 14, 679-88. [all data]
Parks and Kelley, 1925, 2
Parks, G.S.; Kelley, K.K.,
Thermal Data on Organic Compounds II. The Heat Capacities of Five Organic Compounds. The Entropies and Free Energies of Some Homologous Series of Aliphatic Compounds,
J. Am. Chem. Soc., 1925, 47, 2089-97. [all data]
Andereya and Chase, 1990
Andereya, E.; Chase, J.D.,
Chem. Eng. Technol., 1990, 13, 304-12. [all data]
D'Souza and Teja, 1987
D'Souza, R.; Teja, A.S.,
The prediction of the vapor pressures of carboxylic acids,
Chem. Eng. Commun., 1987, 61, 13. [all data]
Ambrose, Ellender, et al., 1977
Ambrose, D.; Ellender, J.H.; Sprake, C.H.S.; Townsend, R.,
Thermo. Prop. of Org. Oxygen Compounds XLV. The Vapor Pressure of Acetic Acid,
J. Chem. Thermodyn., 1977, 9, 735. [all data]
Young, 1910
Young, S.,
The Internal Heat of Vaporization constants of thirty pure substances,
Sci. Proc. R. Dublin Soc., 1910, 12, 374. [all data]
Young, 1891
Young, S.,
J. Chem. Soc., 1891, 59, 903. [all data]
Vandana and Teja, 1995
Vandana, V.; Teja, A.S.,
The critical temperatures and densities of acetic acid-water mixtures,
Fluid Phase Equilib., 1995, 103, 113-18. [all data]
Verevkin, 2000
Verevkin, S.P.,
Measurement and Prediction of the Monocarboxylic Acids Thermochemical Properties,
J. Chem. Eng. Data, 2000, 45, 5, 953-960, https://doi.org/10.1021/je990282m
. [all data]
Majer and Svoboda, 1985
Majer, V.; Svoboda, V.,
Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]
Konicek and Wadso, 1970
Konicek, J.; Wadso, I.,
Enthalpies of vaporization of organic compounds. VII. Some carboxylic acids,
Acta Chem. Scand., 1970, 24, 2612-26. [all data]
Konicek, Wadsö, et al., 1970
Konicek, Jiri; Wadsö, Ingemar; Munch-Petersen, J.; Ohlson, Ragnar; Shimizu, Akira,
Enthalpies of Vaporization of Organic Compounds. VII. Some Carboxylic Acids.,
Acta Chem. Scand., 1970, 24, 2612-2616, https://doi.org/10.3891/acta.chem.scand.24-2612
. [all data]
Muñoz and Krähenbühl, 2001
Muñoz, Laura A.L.; Krähenbühl, M. Alvina,
Isobaric Vapor Liquid Equilibrium (VLE) Data of the Systems n -Butanol + Butyric Acid and n -Butanol + Acetic Acid,
J. Chem. Eng. Data, 2001, 46, 1, 120-124, https://doi.org/10.1021/je000033u
. [all data]
Vercher, Vázquez, et al., 2001
Vercher, Ernesto; Vázquez, M. Isabel; Martínez-Andreu, Antoni,
Isobaric Vapor-Liquid Equilibria for Water + Acetic Acid + Lithium Acetate,
J. Chem. Eng. Data, 2001, 46, 6, 1584-1588, https://doi.org/10.1021/je010106p
. [all data]
Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw,
Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2
. [all data]
Dykyj, 1970
Dykyj, J.,
Petrochemica, 1970, 10, 2, 51. [all data]
Tamir, Dragoescu, et al., 1983
Tamir, Abraham; Dragoescu, Claudia; Apelblat, Alexander; Wisniak, Jaime,
Heats of vaporization and vapor-liquid equilibria in associated solutions containing formic acid, acetic acid, propionic acid and carbon tetrachloride,
Fluid Phase Equilibria, 1983, 10, 1, 9-42, https://doi.org/10.1016/0378-3812(83)80002-8
. [all data]
McDonald, Shrader, et al., 1959
McDonald, R.A.; Shrader, S.A.; Stull, D.R.,
Vapor Pressures and Freezing Points of Thirty Pure Organic Compounds.,
J. Chem. Eng. Data, 1959, 4, 4, 311-313, https://doi.org/10.1021/je60004a009
. [all data]
Potter and Ritter, 1954
Potter, Andrew E.; Ritter, H.L.,
The Vapor Pressure of Acetic Acid and Acetic-d 3 Acid-d. The Liquid Density of Acetic-d 3 Acid-d,
J. Phys. Chem., 1954, 58, 11, 1040-1042, https://doi.org/10.1021/j150521a025
. [all data]
Calis-Van Ginkel, Calis, et al., 1978
Calis-Van Ginkel, C.H.D.; Calis, G.H.M.; Timmermans, C.W.M.; de Kruif, C.G.; Oonk, H.A.J.,
Enthalpies of sublimation and dimerization in the vapour phase of formic, acetic, propanoic, and butanoic acids,
The Journal of Chemical Thermodynamics, 1978, 10, 11, 1083-1088, https://doi.org/10.1016/0021-9614(78)90082-4
. [all data]
Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D.,
Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III,
J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985
. [all data]
Louguinine and Dupont, 1911
Louguinine, W.; Dupont, G.,
Bull. Soc. Chim. Fr., 1911, 9, 219. [all data]
Meyer, 1910
Meyer, J.,
Z. Phys. Chem., Stoechiom. Verwandtschaftsl., 1910, 72, 225. [all data]
Larson and McMahon, 1983
Larson, J.W.; McMahon, T.B.,
Strong hydrogen bonding in gas-phase anions. An ion cyclotron resonance determination of fluoride binding energetics to bronsted acids from gas-phase fluoride exchange equilibria measurements,
J. Am. Chem. Soc., 1983, 105, 2944. [all data]
Wenthold and Squires, 1995
Wenthold, P.G.; Squires, R.R.,
Bond dissociation energies of F2(-) and HF2(-). A gas-phase experimental and G2 theoretical study,
J. Phys. Chem., 1995, 99, 7, 2002, https://doi.org/10.1021/j100007a034
. [all data]
Arshadi, Yamdagni, et al., 1970
Arshadi, M.; Yamdagni, R.; Kebarle, P.,
Hydration of Halide Negative Ions in the Gas Phase. II. Comparison of Hydration Energies for the Alkali Positive and Halide Negative Ions,
J. Phys. Chem., 1970, 74, 7, 1475, https://doi.org/10.1021/j100702a014
. [all data]
Meot-Ner (Mautner), 1992
Meot-Ner (Mautner), M.,
Intermolecular Forces in Organic Clusters,
J. Am. Chem. Soc., 1992, 114, 9, 3312, https://doi.org/10.1021/ja00035a024
. [all data]
Larson and McMahon, 1982
Larson, J.W.; McMahon, T.B.,
Formation, Thermochemistry, and Relative Stabilities of Proton - Bound dimers of Oxygen n - Donor Bases from Ion Cyclotron Resonance Solvent - Exchange Equilibria Measurements,
J. Am. Chem. Soc., 1982, 104, 23, 6255, https://doi.org/10.1021/ja00387a016
. [all data]
Grimsrud and Kebarle, 1973
Grimsrud, E.P.; Kebarle, P.,
Gas Phase Ion Equilibria Studies of the Solvation of the Hydrogen Ion by Methanol, Dimethyl Ether and Water. Effect of Hydrogen Bonding,
J. Am. Chem. Soc., 1973, 95, 24, 7939, https://doi.org/10.1021/ja00805a002
. [all data]
Lias, Liebman, et al., 1984
Lias, S.G.; Liebman, J.F.; Levin, R.D.,
Evaluated gas phase basicities and proton affinities of molecules heats of formation of protonated molecules,
J. Phys. Chem. Ref. Data, 1984, 13, 695. [all data]
Keesee and Castleman, 1986
Keesee, R.G.; Castleman, A.W., Jr.,
Thermochemical data on Ggs-phase ion-molecule association and clustering reactions,
J. Phys. Chem. Ref. Data, 1986, 15, 1011. [all data]
Sieck, 1985
Sieck, L.W.,
Thermochemistry of Solvation of NO2- and C6H5NO2- by Polar Molecules in the Vapor Phase. Comparison with Cl- and Variation with Ligand Structure.,
J. Phys. Chem., 1985, 89, 25, 5552, https://doi.org/10.1021/j100271a049
. [all data]
Yamdagni and Kebarle, 1971
Yamdagni, R.; Kebarle, P.,
Hydrogen bonding energies to negative ions from gas phase measurements of ionic equilibria,
J. Am. Chem. Soc., 1971, 93, 7139. [all data]
Larson and McMahon, 1984
Larson, J.W.; McMahon, T.B.,
Hydrogen bonding in gas phase anions. An experimental investigation of the interaction between chloride ion and bronsted acids from ICR chloride exchange equilibria,
J. Am. Chem. Soc., 1984, 106, 517. [all data]
Larson and McMahon, 1984, 2
Larson, J.W.; McMahon, T.B.,
Gas phase negative ion chemistry of alkylchloroformates,
Can. J. Chem., 1984, 62, 675. [all data]
French, Ikuta, et al., 1982
French, M.A.; Ikuta, S.; Kebarle, P.,
Hydrogen bonding of O-H and C-H hydrogen donors to Cl-. Results from mass spectrometric measurement of the ion-molecule equilibria RH + Cl- = RHCl-,
Can. J. Chem., 1982, 60, 1907. [all data]
Angel and Ervin, 2006
Angel, L.A.; Ervin, K.M.,
Gas-phase acidities and O-H bond dissociation enthalpies of phenol, 3-methylphenol, 2,4,6-trimethylphenol, and ethanoic acid,
J. Phys. Chem. A, 2006, 110, 35, 10392-10403, https://doi.org/10.1021/jp0627426
. [all data]
Taft and Topsom, 1987
Taft, R.W.; Topsom, R.D.,
The Nature and Analysis of Substituent Effects,
Prog. Phys. Org. Chem., 1987, 16, 1. [all data]
Cumming and Kebarle, 1978
Cumming, J.B.; Kebarle, P.,
Summary of gas phase measurements involving acids AH. Entropy changes in proton transfer reactions involving negative ions. Bond dissociation energies D(A-H) and electron affinities EA(A),
Can. J. Chem., 1978, 56, 1. [all data]
Fujio, McIver, et al., 1981
Fujio, M.; McIver, R.T., Jr.; Taft, R.W.,
Effects on the acidities of phenols from specific substituent-solvent interactions. Inherent substituent parameters from gas phase acidities,
J. Am. Chem. Soc., 1981, 103, 4017. [all data]
Muftakhov, Vasil'ev, et al., 1999
Muftakhov, M.V.; Vasil'ev, Y.V.; Mazunov, V.A.,
Determination of electron affinity of carbonyl radicals by means of negative ion mass spectrometry,
Rapid Commun. Mass Spectrom., 1999, 13, 12, 1104-1108, https://doi.org/10.1002/(SICI)1097-0231(19990630)13:12<1104::AID-RCM619>3.0.CO;2-C
. [all data]
Meot-Ner, 1984
Meot-Ner, (Mautner)M.,
The Ionic Hydrogen Bond and Ion Solvation. 1. -NH+ O-, -NH+ N- and -OH+ O- Bonds. Correlations with Proton Affinity. Deviations Due to Structural Effects,
J. Am. Chem. Soc., 1984, 106, 5, 1257, https://doi.org/10.1021/ja00317a015
. [all data]
Meot-ner, Elmore, et al., 1999
Meot-ner, M.; Elmore, D.E.; Scheiner, S.,
Ionic Hydrogen Bond Effects on the Acidities, Basicities, Solvation, Solvent Bridging and Self-assembly of Carboxylic Groups,
J. Am. Chem. Soc., 1999, 121, 33, 7625, https://doi.org/10.1021/ja982173i
. [all data]
Meot-Ner and Sieck, 1986
Meot-Ner, M.; Sieck, L.W.,
The ionic hydrogen bond and ion solvation. 5. OH...O- bonds. Gas phase solvation and clustering of alkoxide and carboxylate anions,
J. Am. Chem. Soc., 1986, 108, 7525. [all data]
Devore and O'Neal, 1969
Devore, J.A.; O'Neal, H.E.,
Heats of formation of the acetyl halides and of the acetyl radical,
J. Phys. Chem., 1969, 73, 2644-2648. [all data]
Pritchard and Skinner, 1950
Pritchard, H.O.; Skinner, H.A.,
The heats of hydrolysis of the chloro-substituted acetyl chlorides,
J. Chem. Soc., 1950, 272-276. [all data]
Becker and Maelicke, 1967
Becker, F.; Maelicke, A.,
Thermokinetische Messungen nach dem Prinzip der Wärmefluβkalorimetrie,
Z. Phys. Chem. (Neue Folge), 1967, 55, 280-295. [all data]
Wadso, 1962
Wadso, I.,
Heats of aminolysis and hydrolysis of some N-acetyl compounds and of acetic anhydride,
Acta Chem. Scand., 1962, 16, 471-478. [all data]
Conn, Kistiakowsky, et al., 1942
Conn, J.B.; Kistiakowsky, G.B.; Roberts, R.M.; Smith, E.A.,
Heats of organic reactions. XIII. Heats of hydrolysis of some acid anhydrides,
J. Am. Chem. Soc., 1942, 64, 1747-17. [all data]
Caldwell and Kebarle, 1984
Caldwell, G.; Kebarle, P.,
Binding energies and structural effects in halide anion-ROH and -RCOOH complexes from gas phase equilibria measurements,
J. Am. Chem. Soc., 1984, 106, 967. [all data]
Grabowski and Cheng, 1989
Grabowski, J.J.; Cheng, X.,
Gas-Phase Formation of the Enolate Monoanion of Acetic Acid by Proton Abstraction,
J. Am. Chem. Soc., 1989, 111, 8, 3106, https://doi.org/10.1021/ja00190a078
. [all data]
Meot-Ner, 1984, 2
Meot-Ner, (Mautner),
The Ionic Hydrogen Bond. 4. Intramolecular and Multiple Bonds. Proton Affinities, Hydration and Complexes of Amides and Amino Acid Derivatives,
J. Am. Chem. Soc., 1984, 106, 2, 278, https://doi.org/10.1021/ja00314a003
. [all data]
Hill and Wadso, 1968
Hill, J.O.; Wadso, I.,
Some thermochemical properties of N,N,N-triacetylammonia,
Acta Chem. Scand., 1968, 22, 1590-1594. [all data]
Wadso, 1965
Wadso, I.,
Thermochemical properties of diacetimide, N-butyldiacetimide and N-phenyldiacetimide,
Acta Chem. Scand., 1965, 19, 1079-1087. [all data]
Wadso, 1958
Wadso, I.,
The heats of aminolysis of n-butyl thiolacetate and acetic anhydride,
Acta Chem. Scand., 1958, 12, 635-640. [all data]
Sieck and Meot-ner, 1989
Sieck, L.W.; Meot-ner, M.,
Ionic Hydrogen Bond and Ion Solvation. 8. RS-..HOR Bond Strengths. Correlation with Acidities.,
J. Phys. Chem., 1989, 93, 4, 1586, https://doi.org/10.1021/j100341a079
. [all data]
Staley and Beauchamp, 1975
Staley, R.H.; Beauchamp, J.L.,
Intrinsic Acid - Base Properties of Molecules. Binding Energies of Li+ to pi - and n - Donor Bases,
J. Am. Chem. Soc., 1975, 97, 20, 5920, https://doi.org/10.1021/ja00853a050
. [all data]
Dzidic and Kebarle, 1970
Dzidic, I.; Kebarle, P.,
Hydration of the Alkali Ions in the Gas Phase. Enthalpies and Entropies of Reactions M+(H2O)n-1 + H2O = M+(H2O)n,
J. Phys. Chem., 1970, 74, 7, 1466, https://doi.org/10.1021/j100702a013
. [all data]
Shlechter, Othmer, et al., 1945
Shlechter, N.; Othmer, D.F.; Marshak, S.,
Esterification of 2,3-butylene glycol with acetic acid,
Ind. Eng. Chem., 1945, 37, 900-905. [all data]
Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G.,
Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]
Wadso, 1960
Wadso, I.,
Heats of hydrolysis of N-acetylated imidazole, 1,2,4-triazole and tetrazole,
Acta Chem. Scand., 1960, 14, 903-908. [all data]
Guthrie and Liu, 1995
Guthrie, J.P.; Liu, Z.,
The enols of acetic acid and methyl acetate,
Can. J. Chem., 1995, 73, 1395-2398. [all data]
Wiberg, Connon, et al., 1979
Wiberg, K.B.; Connon, H.A.; Pratt, W.E.,
Enthalpies of acetolysis of tricyclo[3.2.1.01,5]octane ([3.2.1]propellane) and 1,3-dehydroadamantane,
J. Am. Chem. Soc., 1979, 101, 6970-6972. [all data]
Sunner and Wadso, 1957
Sunner, S.; Wadso, I.,
The heat of hydrolysis of thiolacetic acid,
Trans. Faraday Soc., 1957, 53, 455-459. [all data]
Wadso, 1957
Wadso, I.,
The heats of hydrolysis of some alkyl thiolesters,
Acta Chem. Scand., 1957, 11, 1745-1751. [all data]
Sunner, 1957
Sunner, S.,
The heat of hydrolysis of i-propenyl acetate and m-cresyl acetate and the heat of formation of acetone,
Acta Chem. Scand., 1957, 11, 1757-1760. [all data]
Nelander, 1964
Nelander, L.,
The heats of hydrolysis of aspirin, thioaspirin, and their p-analogues,
Acta Chem. Scand., 1964, 18, 973-984. [all data]
Shimanouchi, 1972
Shimanouchi, T.,
Tables of Molecular Vibrational Frequencies Consolidated Volume I, National Bureau of Standards, 1972, 1-160. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, References
- Symbols used in this document:
Cp,gas Constant pressure heat capacity of gas Cp,liquid Constant pressure heat capacity of liquid Pc Critical pressure S°gas Entropy of gas at standard conditions S°liquid Entropy of liquid at standard conditions T Temperature Tboil Boiling point Tc Critical temperature Tfus Fusion (melting) point Ttriple Triple point temperature ΔHtrs Enthalpy of phase transition ΔStrs Entropy of phase transition ΔcH°liquid Enthalpy of combustion of liquid at standard conditions ΔfH°gas Enthalpy of formation of gas at standard conditions ΔfH°liquid Enthalpy of formation of liquid at standard conditions ΔfusH Enthalpy of fusion ΔfusS Entropy of fusion ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions ΔsubH Enthalpy of sublimation ΔvapH Enthalpy of vaporization ΔvapH° Enthalpy of vaporization at standard conditions ρc Critical density - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.