Thiophene
- Formula: C4H4S
- Molecular weight: 84.140
- IUPAC Standard InChIKey: YTPLMLYBLZKORZ-UHFFFAOYSA-N
- CAS Registry Number: 110-02-1
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: Thiacyclopentadiene; CP 34; Furan, thio-; Huile HSO; Huile H50; Thiaphene; Thiofuram; Thiofuran; Thiofurfuran; Thiole; Thiophen; Thiotetrole; Divinylene sulfide; USAF EK-1860; Thiofen; UN 2414; Hopkin's lactic acid reagent; NSC 405073
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Condensed phase thermochemistry data
Go To: Top, Reaction thermochemistry data, Henry's Law data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°liquid | Ccb | Zaheeruddin and Lodhi, 1991 | uncertain value: 43.728 kcal/mol; Author's hf_SO2=-320.5 kJ/mol; ALS | ||
ΔfH°liquid | 19.35 ± 0.15 | kcal/mol | Ccr | Sunner, 1963 | Correction of Sunner, 1955; ALS |
ΔfH°liquid | 19.02 ± 0.25 | kcal/mol | Ccb | Hubbard, Scott, et al., 1955 | Reanalyzed by Cox and Pilcher, 1970, Original value = 19.20 ± 0.24 kcal/mol; see Waddington, Knowlton, et al., 1949; ALS |
ΔfH°liquid | 19.44 ± 0.61 | kcal/mol | Ccb | Moore, Renquist, et al., 1940 | Reanalyzed by Cox and Pilcher, 1970, Original value = 19.54 kcal/mol; hf_H2SO4=-135.01; ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°liquid | Ccb | Zaheeruddin and Lodhi, 1991 | uncertain value: -633.172 kcal/mol; Author's hf_SO2=-320.5 kJ/mol; ALS | ||
ΔcH°liquid | -676.09 | kcal/mol | Ccr | Sunner, 1963 | Correction of Sunner, 1955; ALS |
ΔcH°liquid | -675.81 ± 0.22 | kcal/mol | Ccb | Hubbard, Scott, et al., 1955 | Reanalyzed by Cox and Pilcher, 1970, Original value = -675.55 ± 0.22 kcal/mol; see Waddington, Knowlton, et al., 1949; ALS |
ΔcH°liquid | -676.23 ± 0.60 | kcal/mol | Ccb | Moore, Renquist, et al., 1940 | Reanalyzed by Cox and Pilcher, 1970, Original value = -667.39 ± 0.60 kcal/mol; hf_H2SO4=-135.01; ALS |
Quantity | Value | Units | Method | Reference | Comment |
S°liquid | 43.31 | cal/mol*K | N/A | Figuiere, Szwarc, et al., 1985 | DH |
S°liquid | 43.301 | cal/mol*K | N/A | Waddington, Knowlton, et al., 1949 | DH |
S°liquid | 42.21 | cal/mol*K | N/A | Jacobs and Parks, 1934 | Details of extrapolation below 90 K not given. Scatter in data for solid introduce uncertainty. Value good to about 4 J/mol*K.; DH |
Constant pressure heat capacity of liquid
Cp,liquid (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
29.254 | 298.14 | Figuiere, Szwarc, et al., 1985 | T = 13 to 300 K. Value is unsmoothed experimental datum.; DH |
29.601 | 297.45 | Waddington, Knowlton, et al., 1949 | T = 11 to 336 K. Value is unsmoothed experimental datum.; DH |
29.450 | 289.3 | Jacobs and Parks, 1934 | T = 93 to 294 K. Data for solid, 90 to 237 K, not given (table omitted, apparently). Value is unsmoothed experimental datum.; DH |
Reaction thermochemistry data
Go To: Top, Condensed phase thermochemistry data, Henry's Law data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
C4H3S- + =
By formula: C4H3S- + H+ = C4H4S
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 381.2 ± 3.1 | kcal/mol | G+TS | DePuy, Kass, et al., 1988 | gas phase; Between MeOH, EtOH. D exchange implies anion at C-2.; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 373.0 ± 3.0 | kcal/mol | IMRB | DePuy, Kass, et al., 1988 | gas phase; Between MeOH, EtOH. D exchange implies anion at C-2.; B |
By formula: C4H4S+ + C4H4S = (C4H4S+ • C4H4S)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 16.9 | kcal/mol | PHPMS | Hiraoka, Takimoto, et al., 1987 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 23.1 | cal/mol*K | PHPMS | Hiraoka, Takimoto, et al., 1987 | gas phase; M |
By formula: (C4H4S+ • C4H4S) + C4H4S = (C4H4S+ • 2C4H4S)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 7.5 | kcal/mol | PHPMS | Hiraoka, Takimoto, et al., 1987 | gas phase; ΔrH<; M |
By formula: C4H5S+ + C4H4S = (C4H5S+ • C4H4S)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 11.5 | kcal/mol | PHPMS | Hiraoka, Takimoto, et al., 1987 | gas phase; ΔrH<; M |
Henry's Law data
Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Rolf Sander
Henry's Law constant (water solution)
kH(T) = k°H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
k°H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)
k°H (mol/(kg*bar)) | d(ln(kH))/d(1/T) (K) | Method | Reference | Comment |
---|---|---|---|---|
0.34 | Q | N/A | missing citation give several references for the Henry's law constants but don't assign them to specific species. | |
0.44 | 3700. | M | N/A |
References
Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Zaheeruddin and Lodhi, 1991
Zaheeruddin, M.; Lodhi, Z.H.,
Enthalpies of formation of some cyclic compounds,
Phys. Chem. (Peshawar Pak.), 1991, 10, 111-118. [all data]
Sunner, 1963
Sunner, S.,
Corrected heat of combustion and formation values for a number of organic sulphur compounds,
Acta Chem. Scand., 1963, 17, 728-730. [all data]
Sunner, 1955
Sunner, S.,
Thermochemical investigations on organic sulfur compounds. V. On the resonance energy of thiolacetic acid, thiourea, thiosemicarbzaide, thiophene and thianthrene,
Acta Chem. Scand., 1955, 9, 847-854. [all data]
Hubbard, Scott, et al., 1955
Hubbard, W.N.; Scott, D.W.; Frow, F.R.; Waddington, G.,
Thiophene: Heat of combustion and chemical thermodynamic properties,
J. Am. Chem. Soc., 1955, 77, 5855-58. [all data]
Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G.,
Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]
Waddington, Knowlton, et al., 1949
Waddington, G.; Knowlton, J.W.; Scott, D.W.; Oliver, G.D.; Todd, S.S.; Hubbard, W.N.; Smith, J.C.; Huffman, H.M.,
Thermodynamic propertie of thiophene,
J. Am. Chem. Soc., 1949, 71, 797-808. [all data]
Moore, Renquist, et al., 1940
Moore, G.E.; Renquist, M.L.; Parks, G.S.,
Thermal data on organic compounds. XX. Modern combustion data for two methylnonanes, methyl ethyl ketone, thiophene and six cycloparaffins,
J. Am. Chem. Soc., 1940, 62, 1505-1507. [all data]
Figuiere, Szwarc, et al., 1985
Figuiere, P.; Szwarc, H.; Oguni, M.; Suga, H.,
Calorimetric study of thiophene from 13 to 300 K. Emergence of two glassy crystalline states,
J. Chem. Thermodynam., 1985, 17, 949-966. [all data]
Jacobs and Parks, 1934
Jacobs, C.J.; Parks, G.S.,
Thermal data on organic compounds. XIV. Some heat capacity, entropy and free energy data for cyclic substances,
J. Am. Chem. Soc., 1934, 56, 1513-1517. [all data]
DePuy, Kass, et al., 1988
DePuy, C.H.; Kass, S.R.; Bean, G.P.,
Formation and Reactions of Heteroaromatic Anions in the Gas Phase,
J. Org. Chem., 1988, 53, 19, 4427, https://doi.org/10.1021/jo00254a001
. [all data]
Hiraoka, Takimoto, et al., 1987
Hiraoka, K.; Takimoto, H.; Yamabe, S.,
Stabilities and Structures in Cluster Ions of Five-Membered Heterocyclic Compounds Containing O, N and S Atoms,
J. Am. Chem. Soc., 1987, 109, 24, 7346, https://doi.org/10.1021/ja00258a018
. [all data]
Notes
Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, References
- Symbols used in this document:
Cp,liquid Constant pressure heat capacity of liquid S°liquid Entropy of liquid at standard conditions d(ln(kH))/d(1/T) Temperature dependence parameter for Henry's Law constant k°H Henry's Law constant at 298.15K ΔcH°liquid Enthalpy of combustion of liquid at standard conditions ΔfH°liquid Enthalpy of formation of liquid at standard conditions ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.