2-Pentanone
- Formula: C5H10O
- Molecular weight: 86.1323
- IUPAC Standard InChIKey: XNLICIUVMPYHGG-UHFFFAOYSA-N
- CAS Registry Number: 107-87-9
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: Ethyl acetone; Methyl n-propyl ketone; Methyl propyl ketone; Propyl methyl ketone; n-C3H7COCH3; Pentan-2-one; Metylopropyloketon; UN 1249; n-Propyl methyl ketone; Pentanone-2; NSC 5350
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Condensed phase thermochemistry data
Go To: Top, Reaction thermochemistry data, Henry's Law data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°liquid | -71.05 ± 0.25 | kcal/mol | Ccb | Harrop, Head, et al., 1970 | ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°liquid | -740.8 ± 0.2 | kcal/mol | Ccb | Harrop, Head, et al., 1970 | Corresponding ΔfHºliquid = -71.054 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS |
Quantity | Value | Units | Method | Reference | Comment |
S°liquid | 65.51 | cal/mol*K | N/A | Andon, Counsell, et al., 1968 | DH |
S°liquid | 65.110 | cal/mol*K | N/A | Oetting, 1965 | DH |
Constant pressure heat capacity of liquid
Cp,liquid (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
44.31 | 298.15 | Saluja, Peacock, et al., 1979 | DH |
44.24 | 298.15 | Grolier, Benson, et al., 1975 | DH |
44.05 | 298.15 | Harrop, Head, et al., 1970 | DH |
44.02 | 298.15 | Andon, Counsell, et al., 1968 | T = 10 to 360 K.; DH |
44.061 | 298.15 | Oetting, 1965 | T = 12 to 330 K.; DH |
Reaction thermochemistry data
Go To: Top, Condensed phase thermochemistry data, Henry's Law data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
B - John E. Bartmess
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
RCD - Robert C. Dunbar
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
C5H9O- + =
By formula: C5H9O- + H+ = C5H10O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 367.1 ± 2.1 | kcal/mol | TDEq | Burkell, Fridgen, et al., 2003 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 359.6 ± 2.0 | kcal/mol | TDEq | Burkell, Fridgen, et al., 2003 | gas phase; B |
(CAS Reg. No. 117951-43-6 • 4294967295) + = CAS Reg. No. 117951-43-6
By formula: (CAS Reg. No. 117951-43-6 • 4294967295C5H10O) + C5H10O = CAS Reg. No. 117951-43-6
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 40.0 ± 2.1 | kcal/mol | N/A | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy.; B |
By formula: C7H16O2 + H2O = C5H10O + 2CH4O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 4.666 ± 0.014 | kcal/mol | Cm | Wiberg and Squires, 1979 | liquid phase; Heat of hydrolysis; ALS |
By formula: Na+ + C5H10O = (Na+ • C5H10O)
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
24.9 | 298. | IMRE | McMahon and Ohanessian, 2000 | Anchor alanine=39.89; RCD |
By formula: C5H12O = C5H10O + H2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 13.1 ± 0.07 | kcal/mol | Eqk | Connett, 1970 | liquid phase; ALS |
Henry's Law data
Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Rolf Sander
Henry's Law constant (water solution)
kH(T) = k°H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
k°H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)
k°H (mol/(kg*bar)) | d(ln(kH))/d(1/T) (K) | Method | Reference |
---|---|---|---|
12. | X | N/A | |
9.1 | 4600. | X | N/A |
16. | M | Buttery, Ling, et al., 1969 |
References
Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Harrop, Head, et al., 1970
Harrop, D.; Head, A.J.; Lewis, G.B.,
Thermodynamic properties of organic oxygen compounds. 22. Enthalpies of combustion of some aliphatic ketones,
J. Chem. Thermodyn., 1970, 2, 203-210. [all data]
Andon, Counsell, et al., 1968
Andon, R.J.L.; Counsell, J.F.; Martin, J.F.,
Thermodynamic properties of organic oxygen compounds. Part XX. The low-temperature heat capacity and entropy of C4 and C5 ketones,
J. Chem. Soc. A, 1968, 1894-1897. [all data]
Oetting, 1965
Oetting, F.L.,
Absolute entropies of the methyl alkyl ketones at 298.15 K,
J. Chem. Eng. Data, 1965, 10, 122-125. [all data]
Saluja, Peacock, et al., 1979
Saluja, P.P.S.; Peacock, L.A.; Fuchs, R.,
Enthalpies of interaction of aliphatic ketones with polar and nonpolar solvents,
J. Am. Chem. Soc., 1979, 101, 1958-1962. [all data]
Grolier, Benson, et al., 1975
Grolier, J-P.E.; Benson, G.C.; Picker, P.,
Simultaneous measurements of heat capacities and densities of organic liquid mixtures-systems containing ketones,
J. Chem. Eng. Data, 1975, 20, 243-246. [all data]
Burkell, Fridgen, et al., 2003
Burkell, J.L.; Fridgen, T.D.; McMahon, T.B.,
Gas-phase acidities and sites of deprotonation of 2-ketones and structures of the corresponding enolates,
Int. J. Mass Spectrom., 2003, 227, 3, 497-508, https://doi.org/10.1016/S1387-3806(03)00102-7
. [all data]
Haas and Harrison, 1993
Haas, M.J.; Harrison, A.G.,
The Fragmentation of Proton-Bound Cluster Ions and the Gas-Phase Acidities of Alcohols,
Int. J. Mass Spectrom. Ion Proc., 1993, 124, 2, 115, https://doi.org/10.1016/0168-1176(93)80003-W
. [all data]
Wiberg and Squires, 1979
Wiberg, K.B.; Squires, R.R.,
Thermodynamics of hydrolysis aliphatic ketals. An entropy component of steric effects,
J. Am. Chem. Soc., 1979, 101, 5512-5515. [all data]
McMahon and Ohanessian, 2000
McMahon, T.B.; Ohanessian, G.,
An Experimental and Ab Initio Study of the Nature of the Binding in Gas-Phase Complexes of Sodium Ions,
Chem. Eur. J., 2000, 6, 16, 2931, https://doi.org/10.1002/1521-3765(20000818)6:16<2931::AID-CHEM2931>3.0.CO;2-7
. [all data]
Connett, 1970
Connett, J.E.,
Chemical equilibria. Part III. Dehydrogenation of pentan-1-ol, pentan-2-ol, and 3-methylbutan-2-ol,
J. Chem. Soc. A, 1970, 1284-1286. [all data]
Buttery, Ling, et al., 1969
Buttery, R.G.; Ling, L.C.; Guadagni, D.G.,
Volatilities Aldehydes, Ketones, and Esters in Dilute Water Solution,
J. Agric. Food Chem., 1969, 17, 385-389. [all data]
Notes
Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, References
- Symbols used in this document:
Cp,liquid Constant pressure heat capacity of liquid S°liquid Entropy of liquid at standard conditions T Temperature d(ln(kH))/d(1/T) Temperature dependence parameter for Henry's Law constant k°H Henry's Law constant at 298.15K ΔcH°liquid Enthalpy of combustion of liquid at standard conditions ΔfH°liquid Enthalpy of formation of liquid at standard conditions ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.