Methane, bromo-

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, IR Spectrum, Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Quantity Value Units Method Reference Comment
Δfgas-8.2 ± 0.2kcal/molEqkFerguson, Okafo, et al., 1973 
Δfgas-9.0 ± 0.32kcal/molChydAdams, Carson, et al., 1966 
Δfgas-8.97 ± 0.35kcal/molChydFowell, Lacher, et al., 1965 

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, IR Spectrum, Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfliquid-14.49 ± 0.32kcal/molChydAdams, Carson, et al., 1966Reanalyzed by Cox and Pilcher, 1970, Original value = -14.6 ± 0.32 kcal/mol; ALS
Quantity Value Units Method Reference Comment
liquid37.079cal/mol*KN/AEgan and Kemp, 1938DH

Constant pressure heat capacity of liquid

Cp,liquid (cal/mol*K) Temperature (K) Reference Comment
27.39283.Kurbatov, 1948T = -67 to 9°C. Mean Cp, three temperatures.; DH
18.84280.Egan and Kemp, 1938T = 15 to 280 K.; DH

IR Spectrum

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Vibrational and/or electronic energy levels, References, Notes

Data compiled by: Coblentz Society, Inc.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Data compiled by: Pamela M. Chu, Franklin R. Guenther, George C. Rhoderick, and Walter J. Lafferty


Vibrational and/or electronic energy levels

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, IR Spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Takehiko Shimanouchi

Symmetry:   C     Symmetry Number σ = 3


 Sym.   No   Approximate   Selected Freq.  Infrared   Raman   Comments 
 Species   type of mode   Value   Rating   Value  Phase  Value  Phase

a1 1 CH3 s-str 2935  E 2972 M gas 2972 VS liq. FR(2ν5)
a1 1 CH3 s-str 2935  E 2862.1 M gas 2862 W liq. FR(2ν5)
a1 2 CH3 s-deform 1306  A 1305.9 S gas 1309 W liq.
a1 3 CBr str 611  A 611.1 S gas 609 S liq.
e 4 CH3 d-str 3056  A 3056.35 S gas 3068 VS liq.
e 5 CH3 d-deform 1443  A 1442.7 M gas 1456 M liq.
e 6 CH3 rock 955  A 954.7 M gas 956 VW liq.

Source: Shimanouchi, 1972

Notes

VSVery strong
SStrong
MMedium
WWeak
VWVery weak
FRFermi resonance with an overtone or a combination tone indicated in the parentheses.
A0~1 cm-1 uncertainty
E15~30 cm-1 uncertainty

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, IR Spectrum, Vibrational and/or electronic energy levels, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Ferguson, Okafo, et al., 1973
Ferguson, K.C.; Okafo, E.N.; Whittle, E., Bond dissociation energies from equilibrium studies Part 4.-The equilibrium Br2 + CH4 = HBr + CH3Br. Determination of D(CH3-Br) and ΔHf°(CH3Br,g), J. Chem. Soc. Faraday Trans. 1, 1973, 69, 295-301. [all data]

Adams, Carson, et al., 1966
Adams, G.P.; Carson, A.S.; Laye, P.G., Thermochemistry of reductions caused by lithium aluminium hydride. Part 4.-Heat of formation of methyl bromide, Trans. Faraday Soc., 1966, 62, 1447-1449. [all data]

Fowell, Lacher, et al., 1965
Fowell, P.; Lacher, J.R.; Park, J.D., Reaction heats of organic compounds. Part 3.-Heats of hydrogenation of methyl bromide and ethyl bromide, Trans. Faraday Soc., 1965, 61, 1324-1327. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Egan and Kemp, 1938
Egan, C.J.; Kemp, J.D., Methyl bromide. The heat capacity, vapor pressure, heats of transition, fusion and vaporization. Entropy and density of the gas, J. Am. Chem. Soc., 1938, 60, 2097-2101. [all data]

Kurbatov, 1948
Kurbatov, V.Ya., Heat capacity of liquids. 2. Heat capacity and the temperature dependence of heat capacity from halogen derivatives of acylic hydrocarbons, Zh. Obshch. Kim., 1948, 18, 372-389. [all data]

Shimanouchi, 1972
Shimanouchi, T., Tables of Molecular Vibrational Frequencies Consolidated Volume I, National Bureau of Standards, 1972, 1-160. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, IR Spectrum, Vibrational and/or electronic energy levels, References