Glycerin

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.

Quantity Value Units Method Reference Comment
Δfgas-577.9 ± 1.1kJ/molCcbBastos, Nilsson, et al., 1988Uc=-1653.1±0.4 kJ/mol; ALS
Δfgas-576.9kJ/molN/AParks, West, et al., 1946Value computed using ΔfHliquid° value of -668.6±0.4 kj/mol from Parks, West, et al., 1946 and ΔvapH° value of 91.7 kj/mol from Bastos, Nilsson, et al., 1988.; DRB

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfliquid-669.6 ± 0.6kJ/molCcbBastos, Nilsson, et al., 1988Uc=-1653.1±0.4 kJ/mol; ALS
Δfliquid-668.60 ± 0.42kJ/molCcbParks, West, et al., 1946ALS
Quantity Value Units Method Reference Comment
Δcliquid-1654.3 ± 0.4kJ/molCcbBastos, Nilsson, et al., 1988Uc=-1653.1±0.4 kJ/mol; Corresponding Δfliquid = -669.6 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcliquid-1654.1kJ/molCmParks and Manchester, 1952From heat of solution; Corresponding Δfliquid = -669.73 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcliquid-1655.3 ± 1.0kJ/molCcbParks, West, et al., 1946Corresponding Δfliquid = -668.52 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcliquid-1665.1kJ/molCcbEmery and Benedict, 1911Corresponding Δfliquid = -658.8 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Quantity Value Units Method Reference Comment
solid,1 bar37.87J/mol*KN/AAhlberg, Blanchard, et al., 1937DH
solid,1 bar42.34J/mol*KN/AAhlberg, Blanchard, et al., 1937glass phase; Value S-S0; zero point entropy calculated as 19.41 J/mol*K.; DH

Constant pressure heat capacity of liquid

Cp,liquid (J/mol*K) Temperature (K) Reference Comment
218.9298.15Bastos, Nilsson, et al., 1988DH
229.3313.15Chen and Ge, 1982T = 20 to 60 K. Cp given as 2.49 kJ/kg*K at 40°C. Cp at 25°C estimated from graph to be ca. 2.43 kJ/kg*K or 223 J/mol*K.; DH
219.2293.15Atalla, El-Sharkawy, et al., 1981DH
221.9298.15Murthy and Subrahmanyam, 1977DH
221.7301.2Paz Andrade, Paz, et al., 1970T = 28, 40°C.; DH
221.18293.15Omel'chenko, 1962T = 273 to 523 K. A reexamination of the literature. Cp(liq) = 32.9 + 0.0761T - 0.0000269T2(T in K) cal/mol*K (0 to 250°C).; DH
218.5298.Rabinovich and Nikolaev, 1962T = 10 to 55°C.; DH
213.8298.Ernst, Watkins, et al., 1936DH
207.9298.1Parks, Kelley, et al., 1929Extrapolation below 90 K, 41.4 J/mol*K.; DH
223.4299.4Gibson and Giauque, 1923T = 70.2 to 299.4 K. Value is unsmoothed experimental datum. Cp also measured for glass.; DH
225.9289.7Simon, 1922T = 19 to 294 K. Value is unsmoothed experimental datum. Cp also measured for glass.; DH

Constant pressure heat capacity of solid

Cp,solid (J/mol*K) Temperature (K) Reference Comment
49.7986.92Ahlberg, Blanchard, et al., 1937T = 3 to 87 K. Value is unsmoothed experimental datum.; DH
50.2185.12Ahlberg, Blanchard, et al., 1937glass phase; T = 2.3 to 95 K. Value is unsmoothed experimental datum.; DH
150.279. to 284.Volmer and Marder, 1931T = 279 to 284 K. Cp measured for the solid phase is an average value over the temperature range.; DH

Phase change data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
BS - Robert L. Brown and Stephen E. Stein
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
AC - William E. Acree, Jr., James S. Chickos
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Tboil550. ± 40.KAVGN/AAverage of 6 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus290. ± 5.KAVGN/AAverage of 9 values; Individual data points
Quantity Value Units Method Reference Comment
Ttriple291.8KN/AWilhoit, Chao, et al., 1985Uncertainty assigned by TRC = 0.2 K; TRC
Ttriple291.0KN/AGibson and Giauque, 1923Uncertainty assigned by TRC = 0.2 K; TRC
Quantity Value Units Method Reference Comment
Tc850.KN/ANikitin, Pavlov, et al., 1993Uncertainty assigned by TRC = 4. K; TRC
Quantity Value Units Method Reference Comment
Pc75.00barN/ANikitin, Pavlov, et al., 1993Uncertainty assigned by TRC = 2.00 bar; TRC
Quantity Value Units Method Reference Comment
Δvap91.7 ± 0.9kJ/molCBastos, Nilsson, et al., 1988Uc=-1653.1±0.4 kJ/mol; ALS
Δvap91.7kJ/molN/ABastos, Nilsson, et al., 1988DRB
Δvap91.7 ± 0.9kJ/molCBastos, Nilsson, et al., 1988AC
Δvap85.8kJ/molVRoss and Heideger, 1962ALS

Reduced pressure boiling point

Tboil (K) Pressure (bar) Reference Comment
455.20.027Aldrich Chemical Company Inc., 1990BS

Enthalpy of vaporization

ΔvapH (kJ/mol) Temperature (K) Method Reference Comment
78.5484.AStephenson and Malanowski, 1987Based on data from 469. to 563. K.; AC
85.8308.MEStephenson and Malanowski, 1987Based on data from 293. to 343. K. See also Ross and Heideger, 1962 and Dykyj, 1970.; AC
86.8316.MECammenga, Schulze, et al., 1977Based on data from 291. to 341. K.; AC
67.5343.GCNováková and Novák, 1977AC
66.8353.GCNováková and Novák, 1977AC
66.2363.GCNováková and Novák, 1977AC
65.5373.GCNováková and Novák, 1977AC
64.8383.GCNováková and Novák, 1977AC
71.5300.N/AMcFeely and Somorjai, 1972Based on data from 278. to 323. K.; AC
86.471.N/ARichardson, 1886Based on data from 456. to 553. K.; AC

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (bar)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
456.40 to 533.63.937371411.531-200.566Richardson, 1886, 2Coefficents calculated by NIST from author's data.

Enthalpy of fusion

ΔfusH (kJ/mol) Temperature (K) Reference Comment
18.303292.Yoshida, 1944DH
18.285291.0Gibson and Giauque, 1923DH
18.28293.Acree, 1991AC
18.476291.75Volmer and Marder, 1931DH

Entropy of fusion

ΔfusS (J/mol*K) Temperature (K) Reference Comment
62.7292.Yoshida, 1944DH
62.8291.0Gibson and Giauque, 1923DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

Glycerin + Nitric acid = 1,2,3-Propanetriol, 1-nitrate + Water

By formula: C3H8O3 + HNO3 = C3H7NO5 + H2O

Quantity Value Units Method Reference Comment
Δr-19. ± 2.kJ/molEqkKazakov, Kirpichev, et al., 1990liquid phase; Heat of Nitration; ALS
Δr-10.0kJ/molCmTsvetkov, Sopin, et al., 1986liquid phase; ALS

C3H9O3+ + Glycerin = (C3H9O3+ • Glycerin)

By formula: C3H9O3+ + C3H8O3 = (C3H9O3+ • C3H8O3)

Bond type: Hydrogen bonds of the type OH-O between organics

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
57.3500.PHPMSSunner, Kulatunga, et al., 1986gas phase; M

Glycerin + Nitric acid = Glycerol-2-nitrate + Water

By formula: C3H8O3 + HNO3 = C3H7NO5 + H2O

Quantity Value Units Method Reference Comment
Δr-10. ± 3.kJ/molEqkKazakov, Kirpichev, et al., 1990liquid phase; Heat of nitration; ALS

Glycerin + 3Nitric acid = Nitroglycerin + 3Water

By formula: C3H8O3 + 3HNO3 = C3H5N3O9 + 3H2O

Quantity Value Units Method Reference Comment
Δr-36. ± 2.kJ/molCmKazakov, Lagodzinskaya, et al., 1989liquid phase; ALS

Henry's Law data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Rolf Sander

Henry's Law constant (water solution)

kH(T) = H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)

H (mol/(kg*bar)) d(ln(kH))/d(1/T) (K) Method Reference Comment
>6.0×10+8 EN/AValue obtained by missing citation using the group contribution method.
<4.0×10+11 EN/AValue obtained by missing citation using the group contribution method.
60000. MN/A missing citation say that this value is unreliable.

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Ion clustering data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias

Data compiled as indicated in comments:
MM - Michael M. Meot-Ner (Mautner)

Quantity Value Units Method Reference Comment
Proton affinity (review)874.8kJ/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity820.kJ/molN/AHunter and Lias, 1998HL

Proton affinity at 298K

Proton affinity (kJ/mol) Reference Comment
>840.7Bouchoux, Buisson, et al., 2003MM
>835.8Bouchoux, Buisson, et al., 2003MM
>848.6 ± 1.2Bouchoux, Buisson, et al., 2003MM

Gas basicity at 298K

Gas basicity (review) (kJ/mol) Reference Comment
810.2Bouchoux, Buisson, et al., 2003MM
805.5Bouchoux, Buisson, et al., 2003MM
818.9 ± 0.5Bouchoux, Buisson, et al., 2003MM

Ion clustering data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Michael M. Meot-Ner (Mautner) and Sharon G. Lias

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.

Clustering reactions

C3H9O3+ + Glycerin = (C3H9O3+ • Glycerin)

By formula: C3H9O3+ + C3H8O3 = (C3H9O3+ • C3H8O3)

Bond type: Hydrogen bonds of the type OH-O between organics

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
57.3500.PHPMSSunner, Kulatunga, et al., 1986gas phase

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Bastos, Nilsson, et al., 1988
Bastos, M.; Nilsson, S-O.; Ribeiro Da Silva, M.D.M.C.; Ribeiro Da Silva, M.A.V.; Wadso, I., Thermodynamic properties of glycerol enthalpies of combustion and vaporization and the heat capacity at 298.15 K. Enthalpies of solution in water at 288.15, 298.15, and 308.15 K, J. Chem. Thermodyn., 1988, 20, 1353-1359. [all data]

Parks, West, et al., 1946
Parks, G.S.; West, T.J.; Naylor, B.F.; Fujii, P.S.; McClaine, L.A., Thermal data on organic compounds. XXIII. Modern combustion data for fourteen hydrocarbons and five polyhydroxy alcohols, J. Am. Chem. Soc., 1946, 68, 2524-2527. [all data]

Parks and Manchester, 1952
Parks, G.S.; Manchester, K.E., The heats of solution of erythritol, mannitol and dulcitol; combustion values for liquid polyhydroxy alcohols, J. Am. Chem. Soc., 1952, 74, 3435-34. [all data]

Emery and Benedict, 1911
Emery, A.G.; Benedict, F.G., The heat of combustion of compounds of physiological importance, Am. J. Physiol., 1911, 28, 301-307. [all data]

Ahlberg, Blanchard, et al., 1937
Ahlberg, J.E.; Blanchard, E.R.; Lundberg, W.O., The heat capacities of benzene, methyl alcohol and glycerol at very low temperatures, J. Chem. Phys., 1937, 5, 537-551. [all data]

Chen and Ge, 1982
Chen, Z.S.; Ge, X.S., A multifunctional apparatus for the simultaneous measurement of the specific heat, thermal conductivity and heat of fusion of materials undergoing phase transformations, Proc. Symp. Thermophys. Prop., 8th, 1982, (2), 115-121. [all data]

Atalla, El-Sharkawy, et al., 1981
Atalla, S.R.; El-Sharkawy, A.A.; Gasser, F.A., Measurement of thermal properties of liquids with an AC heated-wire technique, Inter. J. Thermophys., 1981, 2(2), 155-162. [all data]

Murthy and Subrahmanyam, 1977
Murthy, N.M.; Subrahmanyam, S.V., Behaviour of excess heat capacity of aqueous non-electrolytes, Indian J. Pure Appl. Phys., 1977, 15, 485-489. [all data]

Paz Andrade, Paz, et al., 1970
Paz Andrade, M.I.; Paz, J.M.; Recacho, E., Contribucion a la microcalorimetria de los calores especificos de solidos y liquidos, An. Quim., 1970, 66, 961-967. [all data]

Omel'chenko, 1962
Omel'chenko, F.S., On the heat capacity of glycerol, Izv. Vysshikh. Uchebn. Zaved., Pishchevaya Tekhnol., 1962, (3), 97-98. [all data]

Rabinovich and Nikolaev, 1962
Rabinovich, I.B.; Nikolaev, P.N., Isotopic effect in the specific heat of some deutero compounds, Dokl. Akad. Nauk, 1962, SSSR 142, 1335-1338. [all data]

Ernst, Watkins, et al., 1936
Ernst, R.C.; Watkins, C.H.; Ruwe, H.H., The physical properties of the ternary system ethyl alcohol-glycerin-water, J. Phys. Chem., 1936, 40, 627-635. [all data]

Parks, Kelley, et al., 1929
Parks, G.S.; Kelley, K.K.; Huffman, H.M., Thermal data on organic compounds. V. A revision of the entropies and free energies of nineteen organic compounds, J. Am. Chem. Soc., 1929, 51, 1969-1973. [all data]

Gibson and Giauque, 1923
Gibson, G.E.; Giauque, W.F., The third law of thermodynamics. Evidence from the specific heats of glycerol that the entropy of a glass exceeds that of a crystal at the absolute zero, J. Am. Chem. Soc., 1923, 45, 93-104. [all data]

Simon, 1922
Simon, F., Untersuchungen über die spezifische Wärme bei tiefen Temperaturen, Ann. Physik. [4], 1922, 68, 241-280. [all data]

Volmer and Marder, 1931
Volmer, M.; Marder, M., Zur theorie der linearen kristallistionsgeschwindigkeit unterkuhlter schmelzen und unterkuhlter fester modifikationen, Z. Physik. Chem., 1931, 154A, 97-112. [all data]

Wilhoit, Chao, et al., 1985
Wilhoit, R.C.; Chao, J.; Hall, K.R., Thermodynamic Properties of Key Organic Compounds in the Carbon Range C1 to C4. Part 1. Properties of Condensed Phases, J. Phys. Chem. Ref. Data, 1985, 14, 1. [all data]

Nikitin, Pavlov, et al., 1993
Nikitin, E.D.; Pavlov, P.A.; Skripov, P.V., Measurement of the critical properties of thermally unstable substances and mixtures by the pulse-heating method, J. Chem. Thermodyn., 1993, 25, 869-80. [all data]

Ross and Heideger, 1962
Ross, G.R.; Heideger, W.J., Vapor pressure of glycerol, J. Chem. Eng. Data, 1962, 7, 505-507. [all data]

Aldrich Chemical Company Inc., 1990
Aldrich Chemical Company Inc., Catalog Handbook of Fine Chemicals, Aldrich Chemical Company, Inc., Milwaukee WI, 1990, 1. [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Dykyj, 1970
Dykyj, J., Petrochemica, 1970, 10, 2, 51. [all data]

Cammenga, Schulze, et al., 1977
Cammenga, Heiko K.; Schulze, Friedrich W.; Theuerl, Wilhelm, Vapor pressure and evaporation coefficient of glycerol, J. Chem. Eng. Data, 1977, 22, 2, 131-134, https://doi.org/10.1021/je60073a004 . [all data]

Nováková and Novák, 1977
Nováková, N.; Novák, J., Measurement of heats of vaporization by means of a gas chromatograph, Journal of Chromatography A, 1977, 135, 1, 13-24, https://doi.org/10.1016/S0021-9673(00)86297-4 . [all data]

McFeely and Somorjai, 1972
McFeely, F.R.; Somorjai, G.A., Vaporization kinetics of hydrogen-bonded liquids, J. Phys. Chem., 1972, 76, 6, 914-918, https://doi.org/10.1021/j100650a022 . [all data]

Richardson, 1886
Richardson, Arthur, LXXIII.?Determinations of vapour-pressures of alcohols and organic acids, and the relations existing between the vapour-pressures of the alcohols and organic acids, J. Chem. Soc., Trans., 1886, 49, 761, https://doi.org/10.1039/ct8864900761 . [all data]

Richardson, 1886, 2
Richardson, A., LXXIII. Determinations of Vapour-Pressures of Alcohols and Organic Acids, and the Relations Existing Between the Vapour-Pressures of the Alcohols and Organic Acids, J. Chem. Soc., 1886, 49, 761-776, https://doi.org/10.1039/ct8864900761 . [all data]

Yoshida, 1944
Yoshida, U., Structural relaxation of amorphous solids and the cybotactic structure of super-cooled liquids, Mem. Coll. Sci. Kyoto Imp. Univ., 1944, 24A, 135-148. [all data]

Acree, 1991
Acree, William E., Thermodynamic properties of organic compounds: enthalpy of fusion and melting point temperature compilation, Thermochimica Acta, 1991, 189, 1, 37-56, https://doi.org/10.1016/0040-6031(91)87098-H . [all data]

Kazakov, Kirpichev, et al., 1990
Kazakov, A.I.; Kirpichev, E.P.; Lagodzinskaya, G.V.; Andrienko, L.P.; Yunda, N.G.; Korolev, A.M.; Rubstov, Yu.I.; Manelis, G.B.; Eremenko, L.T., Study of nitration equilibrium in the glycerin-aqueous nitric acid system. 2. Changes in ΔH and ΔS in the nitration reaction, Bull. Acad. Sci. USSR, Div. Chem. Sci., 1990, 1565-1570. [all data]

Tsvetkov, Sopin, et al., 1986
Tsvetkov, V.G.; Sopin, V.P.; Tsvetkova, L.Ya.; Marchenko, G.N., Enthalpy of reaction of nitric acid with some organic compounds, J. Gen. Chem. USSR, 1986, 56, 471-474. [all data]

Sunner, Kulatunga, et al., 1986
Sunner, J.A.; Kulatunga, R.; Kebarle, P., Fast Atom Bombardment Mass Spectrometry and Gas Phase Basicities, Anal. Chem., 1986, 58, 7, 1312, https://doi.org/10.1021/ac00298a010 . [all data]

Kazakov, Lagodzinskaya, et al., 1989
Kazakov, A.I.; Lagodzinskaya, E.P.; Kirpichev, E.P.; Andrienko, L.P.; Yunda, N.G.; Korolev, A.M.; Robtsov, Yu.I.; Manelis, G.V.; Eremenko, L.T., Thermodynamics of nitration of glycerol, Dokl. Phys. Chem. (Engl. Transl.), 1989, 305, 287-291. [all data]

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Bouchoux, Buisson, et al., 2003
Bouchoux, G.; Buisson, D.A.; Bourcier, S.; Sablier, M., Application of the kinetic method to bifunctional bases. ESI tandem quadrupole experiments, Int. J. Mass Spectrom., 2003, 228, 1035. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, References