Pyrazine

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Quantity Value Units Method Reference Comment
Δfgas196.1 ± 1.5kJ/molCcbTjebbes, 1962 

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfliquid139.8 ± 1.2kJ/molCcbTjebbes, 1962ALS
Quantity Value Units Method Reference Comment
Δcliquid-2285.5 ± 1.2kJ/molCcbTjebbes, 1962ALS

Constant pressure heat capacity of solid

Cp,solid (J/mol*K) Temperature (K) Reference Comment
180.298.Boyd, Comper, et al., 1979crystaline, III phase; T = 295 to 312 K. Data graphically only.; DH

Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
RCD - Robert C. Dunbar

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

C4H3N2- + Hydrogen cation = Pyrazine

By formula: C4H3N2- + H+ = C4H4N2

Quantity Value Units Method Reference Comment
Δr1643. ± 10.kJ/molTDEqMeot-ner and Kafafi, 1988gas phase; anchored to 88MEO scale, not the "87 acidity scale". The Kiefer, Zhang, et al., 1997 BDE is for ortho.; B
Quantity Value Units Method Reference Comment
Δr1604.6 ± 1.7kJ/molN/AWren, Vogelhuber, et al., 2012gas phase; B
Δr1603. ± 8.4kJ/molTDEqMeot-ner and Kafafi, 1988gas phase; anchored to 88MEO scale, not the "87 acidity scale". The Kiefer, Zhang, et al., 1997 BDE is for ortho.; B

3Hydrogen + Pyrazine = Piperazine

By formula: 3H2 + C4H4N2 = C4H10N2

Quantity Value Units Method Reference Comment
Δr207.2 ± 2.8kJ/molChydHafelinger and Steinmann, 1977liquid phase; solvent: Acetic acid; ALS

Lithium ion (1+) + Pyrazine = (Lithium ion (1+) • Pyrazine)

By formula: Li+ + C4H4N2 = (Li+ • C4H4N2)

Quantity Value Units Method Reference Comment
Δr149. ± 14.kJ/molCIDTAmunugama and Rodgers, 2000RCD

Sodium ion (1+) + Pyrazine = (Sodium ion (1+) • Pyrazine)

By formula: Na+ + C4H4N2 = (Na+ • C4H4N2)

Quantity Value Units Method Reference Comment
Δr108. ± 3.kJ/molCIDTAmunugama and Rodgers, 2000RCD

Potassium ion (1+) + Pyrazine = (Potassium ion (1+) • Pyrazine)

By formula: K+ + C4H4N2 = (K+ • C4H4N2)

Quantity Value Units Method Reference Comment
Δr67. ± 4.kJ/molCIDTAmunugama and Rodgers, 2000RCD

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Tjebbes, 1962
Tjebbes, J., The heats of combustion and formation of the three diazines and their resonance energies, Acta Chem. Scand., 1962, 16, 916-921. [all data]

Boyd, Comper, et al., 1979
Boyd, R.K.; Comper, J.; Ferguson, G., Entropy changes and structural implications for crystalline phases of pyrazine, Can. J. Chem., 1979, 57, 3056-3060. [all data]

Meot-ner and Kafafi, 1988
Meot-ner, M.; Kafafi, S.A., Carbon Acidities of Aromatic Compounds, J. Am. Chem. Soc., 1988, 110, 19, 6297, https://doi.org/10.1021/ja00227a003 . [all data]

Kiefer, Zhang, et al., 1997
Kiefer, J.H.; Zhang, Q.; Kern, R.D.; Yao, J.; Jursic, B., Pyrolysis of Aromatic Azines: Pyrazine, Pyrimidine, and Pyridine, J. Phys. Chem. A, 1997, 101, 38, 7061, https://doi.org/10.1021/jp970211z . [all data]

Wren, Vogelhuber, et al., 2012
Wren, S.W.; Vogelhuber, K.M.; Garver, J.M.; Kato, S.; Sheps, L.; Bierbaum, V.M.; Lineberger, W.C., C-H Bond Strengths and Acidities in Aromatic Systems: Effects of Nitrogen Incorporation in Mono-, Di-, and Triazines, J. Am. Chem. Soc., 2012, 134, 15, 6584-6595, https://doi.org/10.1021/ja209566q . [all data]

Hafelinger and Steinmann, 1977
Hafelinger, G.; Steinmann, L., Heat of hydrogenation of compounds containing isolated and conjugted C=N bouble bonds, Angew. Chem. Int. Ed. Engl., 1977, 16, 47-48. [all data]

Amunugama and Rodgers, 2000
Amunugama, R.; Rodgers, M.T., Absolute Alkali Metal Ion Binding Affinities of Several Azines Determined by Threshold Collision-Induced Dissociation and Ab Initio Theory, Int. J. Mass Spectrom., 2000, 195/196, 439, https://doi.org/10.1016/S1387-3806(99)00145-1 . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, References