Benzonitrile
- Formula: C7H5N
- Molecular weight: 103.1213
- IUPAC Standard InChIKey: JFDZBHWFFUWGJE-UHFFFAOYSA-N
- CAS Registry Number: 100-47-0
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: Benzene, cyano-; Benzoic acid nitrile; Cyanobenzene; Phenyl cyanide; Benzenenitrile; Fenylkyanid; UN 2224
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | 219.0 | kJ/mol | N/A | Lebedev, Bykova, et al., 1985 | Value computed using ΔfHliquid° value of 163.2±1.5 kj/mol from Lebedev, Bykova, et al., 1985 and ΔvapH° value of 55.8 kj/mol from Evans and Skinner, 1959.; DRB |
ΔfH°gas | 219. | kJ/mol | Ccb | Evans and Skinner, 1959 | ALS |
Condensed phase thermochemistry data
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°liquid | 163.2 ± 1.5 | kJ/mol | Ccb | Lebedev, Bykova, et al., 1985 | see Lebedev, Bykova, et al., 1984; ALS |
ΔfH°liquid | 163.2 ± 1.5 | kJ/mol | Ccb | Evans and Skinner, 1959 | ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°liquid | -3632.3 ± 1.5 | kJ/mol | Ccb | Lebedev, Bykova, et al., 1985 | see Lebedev, Bykova, et al., 1984; ALS |
ΔcH°liquid | -3632.3 | kJ/mol | Ccb | Evans and Skinner, 1959 | ALS |
Quantity | Value | Units | Method | Reference | Comment |
S°liquid | 209.1 | J/mol*K | N/A | Lebedev, Bykova, et al., 1985, 2 | DH |
S°liquid | 209.1 | J/mol*K | N/A | Lebedev, Bykova, et al., 1984, 2 | DH |
S°liquid | 209.1 | J/mol*K | N/A | Bykova, Lebedev, et al., 1983 | DH |
Constant pressure heat capacity of liquid
Cp,liquid (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
161.1 | 298.15 | Mirzaliev, Shakhuradov, et al., 1987 | T = 273 to 453 K. Unsmoothed experimental datum given as 1.496 kJ/kg*K at 293 K. Cp(liq) = 1.2396 + 8.7x10-5T/K + 3.3333x10-6T2/K2 kJ/kg*K (273 to 453 K).; DH |
166.24 | 298.15 | Lainez, Rodrigo, et al., 1985 | DH |
165.2 | 298.15 | Lebedev, Bykova, et al., 1985, 2 | T = 5 to 330 K.; DH |
166.52 | 298.15 | Tanaka, Nakamichi, et al., 1985 | DH |
165.2 | 298.15 | Lebedev, Bykova, et al., 1984, 2 | T = 25 to 330 K.; DH |
165.2 | 298.15 | Bykova, Lebedev, et al., 1983 | T = 5 to 330 K.; DH |
Reaction thermochemistry data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Henry's Law data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
By formula: Br- + C7H5N = (Br- • C7H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 61.5 ± 7.5 | kJ/mol | IMRE | Paul and Kebarle, 1991 | gas phase; ΔGaff measured at 423 K, ΔSaff taken as that of PhNO2..Br-; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 84. | J/mol*K | N/A | Paul and Kebarle, 1991 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 26. ± 4.2 | kJ/mol | IMRE | Paul and Kebarle, 1991 | gas phase; ΔGaff measured at 423 K, ΔSaff taken as that of PhNO2..Br-; B |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
26. | 423. | PHPMS | Paul and Kebarle, 1991 | gas phase; Entropy change calculated or estimated; M |
By formula: Cl- + C7H5N = (Cl- • C7H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 66.9 | kJ/mol | PHPMS | Paul and Kebarle, 1991 | gas phase; from Ph. D. thesis of S. Chowdhury, Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 84. | J/mol*K | N/A | Paul and Kebarle, 1991 | gas phase; from Ph. D. thesis of S. Chowdhury, Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
41.8 | 300. | PHPMS | Paul and Kebarle, 1991 | gas phase; from Ph. D. thesis of S. Chowdhury, Entropy change calculated or estimated; M |
C7H4N- + =
By formula: C7H4N- + H+ = C7H5N
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1603. ± 10. | kJ/mol | TDEq | Meot-ner and Kafafi, 1988 | gas phase; anchored to 88MEO scale, not the "87 acidity scale". The Kiefer, Zhang, et al., 1997 BDE is for ortho.; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1567. ± 8.4 | kJ/mol | TDEq | Meot-ner and Kafafi, 1988 | gas phase; anchored to 88MEO scale, not the "87 acidity scale". The Kiefer, Zhang, et al., 1997 BDE is for ortho.; B |
By formula: C6H7N+ + C7H5N = (C6H7N+ • C7H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 81.2 | kJ/mol | PHPMS | Meot-Ner (Mautner) and El-Shall, 1986 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 88. | J/mol*K | N/A | Meot-Ner (Mautner) and El-Shall, 1986 | gas phase; Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
51.5 | 338. | PHPMS | Meot-Ner (Mautner) and El-Shall, 1986 | gas phase; Entropy change calculated or estimated; M |
By formula: C11H10+ + C7H5N = (C11H10+ • C7H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 61.5 | kJ/mol | PHPMS | El-Shall and Meot-Ner (Mautner), 1987 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 110. | J/mol*K | N/A | El-Shall and Meot-Ner (Mautner), 1987 | gas phase; Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
29. | 301. | PHPMS | El-Shall and Meot-Ner (Mautner), 1987 | gas phase; Entropy change calculated or estimated; M |
By formula: NO- + C7H5N = (NO- • C7H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 172. | kJ/mol | ICR | Reents and Freiser, 1981 | gas phase; switching reaction,Thermochemical ladder(NO+)C2H5OH, Entropy change calculated or estimated; Farid and McMahon, 1978; M |
By formula: CH6N+ + C7H5N = (CH6N+ • C7H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 123. | kJ/mol | PHPMS | Speller and Meot-Ner (Mautner), 1985 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 131. | J/mol*K | PHPMS | Speller and Meot-Ner (Mautner), 1985 | gas phase; M |
Henry's Law data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Rolf Sander
Henry's Law constant (water solution)
kH(T) = k°H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
k°H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)
k°H (mol/(kg*bar)) | d(ln(kH))/d(1/T) (K) | Method | Reference | Comment |
---|---|---|---|---|
1.8 | Q | N/A | missing citation give several references for the Henry's law constants but don't assign them to specific species. Value at T = 373. K. |
References
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Lebedev, Bykova, et al., 1985
Lebedev, B.V.; Bykova, T.A.; Kiparisova, E.G.; Chernomordik, Yu.A.; Kurapov, A.S.; Sergeev, V.A.,
Thermodynamic study of benzonitrile, the process of its cocyclotrimerization with phenylacetylene, and the 2,4,6-triphenylpyridine that is formed, in the interval 0-330°K,
Bull. Acad. Sci. USSR, Div. Chem. Sci., 1985, 274-279. [all data]
Evans and Skinner, 1959
Evans, F.W.; Skinner, H.A.,
The heats of combustion of organic compounds of nitrogen Part 2.-n-Propyl, isopropyl and phenyl cyandies,
Trans. Faraday Soc., 1959, 55, 255-259. [all data]
Lebedev, Bykova, et al., 1984
Lebedev, B.V.; Bykova, T.A.; Kiparisova, E.G.; Pankratov, V.A.; Mitina, L.M.; Korshak, V.V.,
Thermodynamics of benzonitrile, of its cyclotrimerization process, and of the triphenyl-s-triazine formed in the range 0-300°K,
J. Gen. Chem. USSR, 1984, 54, 1209-1214. [all data]
Lebedev, Bykova, et al., 1985, 2
Lebedev, B.V.; Bykova, T.A.; Kiparisova, Y.G.; Chernomordik, Yu.A.; Kurapov, A.S.; Sergeev, V.A.,
Thermodynamic study of benzonitrile, the process of its cocyclotrimerization with phenylacetylene, and the resulting 2,4,6-triphenylpyridine at 0-300 K, Izv. Akad. Nauk SSSR,
Ser. Khim., 1985, (2), 301-306. [all data]
Lebedev, Bykova, et al., 1984, 2
Lebedev, B.V.; Bykova, T.A.; Kiparisova, Y.G.; Pankratov, V.A.; Mitina, L.M.; Korshak, V.V.,
Thermodynamics of benzonitrile, of its cyclotrimerization process, and of the triphenyl-s-triazine formed in the range 0-330°K,
Zhur. Obsch. Khim., 1984, 54, 1352-1358. [all data]
Bykova, Lebedev, et al., 1983
Bykova, T.A.; Lebedev, B.V.; Tarasov, E.N.,
Thermodynamics of benzonitrile in the range, 1983, Termodin. [all data]
Mirzaliev, Shakhuradov, et al., 1987
Mirzaliev, A.A.; Shakhuradov, Sh.G.; Guseinov, S.O.,
Investigation of the isobaric heat capacity of nitriles at different temperatures, Izv. Vyssh. Ucheb. Zaved.,
Neft i Gaz, 1987, 30(4), 55-58. [all data]
Lainez, Rodrigo, et al., 1985
Lainez, A.; Rodrigo, M.; Roux, A.H.; Grolier, J.-P.E.; Wilhelm, E.,
Relations between structure and thermodynamic properties. Heat capacities of polar substances (nitrobenzene and benzonitrile) in alkane solutions,
Calorim. Anal. Therm., 1985, 16, 153-158. [all data]
Tanaka, Nakamichi, et al., 1985
Tanaka, R.; Nakamichi, T.; Murakami, S.,
Molar excess heat capacities and volumes for mixtures of benzomitrile with cyclohexane between 10 and 45°C,
J. Solution Chem., 1985, 14(11), 795-803. [all data]
Paul and Kebarle, 1991
Paul, G.J.C.; Kebarle, P.,
Stabilities of Complexes of Br- with Substituted Benzenes (SB) Based on Determinations of the Gas-Phase Equilibria Br- + SB = (BrSB)-,
J. Am. Chem. Soc., 1991, 113, 4, 1148, https://doi.org/10.1021/ja00004a014
. [all data]
Meot-ner and Kafafi, 1988
Meot-ner, M.; Kafafi, S.A.,
Carbon Acidities of Aromatic Compounds,
J. Am. Chem. Soc., 1988, 110, 19, 6297, https://doi.org/10.1021/ja00227a003
. [all data]
Kiefer, Zhang, et al., 1997
Kiefer, J.H.; Zhang, Q.; Kern, R.D.; Yao, J.; Jursic, B.,
Pyrolysis of Aromatic Azines: Pyrazine, Pyrimidine, and Pyridine,
J. Phys. Chem. A, 1997, 101, 38, 7061, https://doi.org/10.1021/jp970211z
. [all data]
Meot-Ner (Mautner) and El-Shall, 1986
Meot-Ner (Mautner), M.; El-Shall, M.S.,
Ionic Charge Transfer Complexes. 1. Cationic Complexes with Delocalized and Partially Localized pi Systems,
J. Am. Chem. Soc., 1986, 108, 15, 4386, https://doi.org/10.1021/ja00275a026
. [all data]
El-Shall and Meot-Ner (Mautner), 1987
El-Shall, M.S.; Meot-Ner (Mautner), M.,
Ionic Charge Transfer Complexes. 3. Delocalised pi Systems as Electron Acceptors and Donors,
J. Phys. Chem., 1987, 91, 5, 1088, https://doi.org/10.1021/j100289a017
. [all data]
Reents and Freiser, 1981
Reents, W.D.; Freiser, B.S.,
Gas-Phase Binding Energies and Spectroscopic Properties of NO+ Charge-Transfer Complexes,
J. Am. Chem. Soc., 1981, 103, 2791. [all data]
Farid and McMahon, 1978
Farid, R.; McMahon, T.B.,
Gas-Phase Ion-Molecule Reactions of Alkyl Nitrites by Ion Cyclotron Resonance Spectroscopy,
Int. J. Mass Spectrom. Ion Phys., 1978, 27, 2, 163, https://doi.org/10.1016/0020-7381(78)80037-0
. [all data]
Speller and Meot-Ner (Mautner), 1985
Speller, C.V.; Meot-Ner (Mautner), M.,
The Ionic Hydrogen Bond and Ion Solvation. 3. Bonds Involving Cyanides. Correlations with Proton Affinites,
J. Phys. Chem., 1985, 81, 24, 5217, https://doi.org/10.1021/j100270a020
. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, References
- Symbols used in this document:
Cp,liquid Constant pressure heat capacity of liquid S°liquid Entropy of liquid at standard conditions T Temperature d(ln(kH))/d(1/T) Temperature dependence parameter for Henry's Law constant k°H Henry's Law constant at 298.15K ΔcH°liquid Enthalpy of combustion of liquid at standard conditions ΔfH°gas Enthalpy of formation of gas at standard conditions ΔfH°liquid Enthalpy of formation of liquid at standard conditions ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.