fluorine
- Formula: F2
- Molecular weight: 37.9968064
- IUPAC Standard InChIKey: PXGOKWXKJXAPGV-UHFFFAOYSA-N
- CAS Registry Number: 7782-41-4
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Reaction thermochemistry data, Constants of diatomic molecules, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
S°gas,1 bar | 202.791 ± 0.005 | J/mol*K | Review | Cox, Wagman, et al., 1984 | CODATA Review value |
S°gas,1 bar | 202.80 | J/mol*K | Review | Chase, 1998 | Data last reviewed in June, 1982 |
Gas Phase Heat Capacity (Shomate Equation)
Cp° = A + B*t + C*t2 + D*t3 +
E/t2
H° − H°298.15= A*t + B*t2/2 +
C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 −
E/(2*t2) + G
Cp = heat capacity (J/mol*K)
H° = standard enthalpy (kJ/mol)
S° = standard entropy (J/mol*K)
t = temperature (K) / 1000.
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | 298. to 6000. |
---|---|
A | 31.44510 |
B | 8.413831 |
C | -2.778850 |
D | 0.218104 |
E | -0.211175 |
F | -10.43260 |
G | 237.2770 |
H | 0.000000 |
Reference | Chase, 1998 |
Comment | Data last reviewed in June, 1982 |
Reaction thermochemistry data
Go To: Top, Gas phase thermochemistry data, Constants of diatomic molecules, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
B - John E. Bartmess
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
By formula: 2C2F11N5 = 4CF4 + 5N2 + 3F2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -3009. ± 13. | kJ/mol | Cm | Sinke, Thompson, et al., 1967 | gas phase; Energy of explosion; ALS |
CF5N = + 0.5 + 0.5
By formula: CF5N = CF4 + 0.5N2 + 0.5F2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -226. ± 2. | kJ/mol | Ccb | Walker, 1972 | gas phase; Decompostion reaction; ALS |
+ 0.5 + 0.5 = CF5N
By formula: CF4 + 0.5N2 + 0.5F2 = CF5N
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 226. ± 2. | kJ/mol | Ccb | Walker, 1972 | gas phase; Decompostion reaction; ALS |
By formula: 2CF7N3 = 2CF4 + 3N2 + 3F2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -1467. | kJ/mol | Cm | Sinke, Thompson, et al., 1967 | gas phase; Energy of explosion; ALS |
By formula: 2CF5N3 = 2CF4 + 3N2 + F2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -2059. | kJ/mol | Cm | Sinke, Thompson, et al., 1967 | gas phase; Energy of explosion; ALS |
By formula: CF8N4 = CF4 + 2N2 + 2F2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -935.1 | kJ/mol | Cm | Sinke, Thompson, et al., 1967 | gas phase; Energy of explosion; ALS |
By formula: CF6N2 = CF4 + N2 + F2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -478.2 | kJ/mol | Cm | Sinke, Thompson, et al., 1967 | gas phase; Energy of explosion; ALS |
+ = F3-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 97. ± 10. | kJ/mol | CIDT | Artau, Nizzi, et al., 2000 | gas phase; B |
By formula: CF4 + 4HF = CH4 + 4F2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -1922. ± 13. | kJ/mol | Cm | Jessup, McCoskey, et al., 1955 | gas phase; ALS |
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -1037.3 | kJ/mol | Ccb | Domalski and Armstrong, 1967 | solid phase; ALS |
Constants of diatomic molecules
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Klaus P. Huber and Gerhard H. Herzberg
Data collected through July, 1976
Symbol | Meaning |
---|---|
State | electronic state and / or symmetry symbol |
Te | minimum electronic energy (cm-1) |
ωe | vibrational constant – first term (cm-1) |
ωexe | vibrational constant – second term (cm-1) |
ωeye | vibrational constant – third term (cm-1) |
Be | rotational constant in equilibrium position (cm-1) |
αe | rotational constant – first term (cm-1) |
γe | rotation-vibration interaction constant (cm-1) |
De | centrifugal distortion constant (cm-1) |
βe | rotational constant – first term, centrifugal force (cm-1) |
re | internuclear distance (Å) |
Trans. | observed transition(s) corresponding to electronic state |
ν00 | position of 0-0 band (units noted in table) |
State | Te | ωe | ωexe | ωeye | Be | αe | γe | De | βe | re | Trans. | ν00 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Many strong absorption bands observed and partially analyzed up to 126000 cm-1, heavily perturbed and not assigned. 1 | ||||||||||||
↳missing citation | ||||||||||||
K 1Πu | [1.040] 2 | 3 | [1.306] | K ← X V | 11655.72 Z | |||||||
↳Gole and Margrave, 1972; missing citation | ||||||||||||
J 1Πu (4p σ) | 116409 | [1032.6] Z | [1.041] | 3 | [1.306] | J ← X V | 116469.4 Z | |||||
↳missing citation | ||||||||||||
I 1Σu+ (4p π) | 113841 | [1108.92] Z | 4 | [0.8009] | 5 | [1.8E-6] 6 | 1.4886 | I → f R | 17081.6 $I H | |||
↳missing citation; Stricker and Krauss, 1968; Colbourn, Dagenais, et al., 1976 | ||||||||||||
I → F R | 20732 7 H | |||||||||||
↳missing citation; Stricker and Krauss, 1968; Colbourn, Dagenais, et al., 1976 | ||||||||||||
I ↔ X 8 R | 113940.24 Z | |||||||||||
↳di Lonardo and Douglas, 1972; Gole and Margrave, 1972; missing citation | ||||||||||||
State | Te | ωe | ωexe | ωeye | Be | αe | γe | De | βe | re | Trans. | ν00 |
H 1Πu (3pσ) | 105520.14 | 1088.19 Z | 9.875 | 1.021 9 | 0.014 | 1.318 | H ← X V | 105606.27 Z | ||||
↳Gole and Margrave, 1972; Colbourn, Dagenais, et al., 1976 | ||||||||||||
h 3Π1u (3pσ) | (104904) | (1100) 10 | 1.022 11 | 0.016 | 1.318 | h ← X V | 104998.7 Z | |||||
↳Colbourn, Dagenais, et al., 1976 | ||||||||||||
G 1Σu+ (3pπ) | (104300) 12 | |||||||||||
↳Colbourn, Dagenais, et al., 1976 | ||||||||||||
E (1Σu+) | ≤100912 | [196.3] 13 Z | (0.96) | [0.194] 13 | [3.02] 13 | E ← X R | 100555.5 13 Z | |||||
↳missing citation | ||||||||||||
State | Te | ωe | ωexe | ωeye | Be | αe | γe | De | βe | re | Trans. | ν00 |
D (1Σu+) | ≤98756 | [221.6] 13 Z | (1.22) | [0.207] 13 | [2.93] 13 | D ← X R | 98411.9 13 Z | |||||
↳missing citation | ||||||||||||
f (3Π1g) (3sσ) | [97314] 14 | 14 | [1.005] 14 | [1.329] 14 | ||||||||
C 1Σu+ | ≤93499 | [493.2] 15 Z | [0.484] 15 | [1.915] 15 | C ↔ X R | 93290.4 15 Z | ||||||
↳missing citation | ||||||||||||
F 1Πg (3sσ) | 93099 | 1133.34 16 H | 9.173 | 1.047 16 | 0.012 | 1.302 | ||||||
A 1Πu 17 | A ← X | |||||||||||
↳Steunenberg and Vogel, 1956; Rees, 1957 | ||||||||||||
State | Te | ωe | ωexe | ωeye | Be | αe | γe | De | βe | re | Trans. | ν00 |
a 3Π0+u 19 | a ← X 18 | |||||||||||
↳Steunenberg and Vogel, 1956; Rees, 1957 | ||||||||||||
X 1Σg+ | 0 | 916.64 Z | 11.236 20 | -0.113 | 0.89019 | 0.013847 21 | 3.3E-6 | 1.41193 22 | ||||
↳Andrychuk, 1951; Claassen, Selig, et al., 1969; Stricker and Hochenbleicher, 1973; Edwards, Good, et al., 1976 | ||||||||||||
Mol. beam magn. reson. 23 | ||||||||||||
↳Ozier, Crapo, et al., 1964 | ||||||||||||
Ab initio calc. | ||||||||||||
↳Das and Wahl, 1972 |
Notes
1 | The assignments to two Rydberg series by Gole and Margrave, 1972 are questioned by Colbourn, Dagenais, et al., 1976. |
2 | BQ; BPR = 1.034. |
3 | B2 = 0.9916. |
4 | ΔG(3/2)=754.06, ΔG(5/2)=553.78, ΔG(7/2)=733.01; strongly perturbed, not certain whether one or two electronic states are involved. |
5 | B1= 0.8129, B2= 0.8980, B3= 0.8946, B4= 0.891; see 4. |
6 | Dv(v=1...4, E-6 cm-1) = 4.0, 14.0, -2.6, -50.0 |
7 | v" uncertain, see 16. |
8 | Four of the strongest absorption bands; in emission only bands with v=0 and 1 and very weakly v=2. |
9 | From Q branches, BQ - BPR ~ +0.004. v' = 0,1,2,3 analyzed, a weak and highly perturbed band at 911 (109770 cm-1) may be 4-0. |
10 | Estimated from the 0-0 and 2-0 (v0= 107069.4) bands. |
11 | From Q branches; BQ - BPR = +0.005. v=0 strongly perturbed. |
12 | Infrared from strong perturbation of the higher vibrational levels of C 1Σu+. |
13 | (Deperturbed) constants determined from the lowest observed levels; vibrational numbering unknown. Only those levels which interact strongly with C 1Σu+ have been found in absorption. It is possible that D and E are not two independent states. |
14 | From I →f Porter, 1968; vibrational numbering unknown. The assignments of Stricker and Krauss, 1968 suggest the existence of additional levels at 1058 below and 1044 cm-1 above the single level reported by Porter, 1968. |
15 | Constants for the lowest observed level, vibrational numbering unknown (v=n). In absorption levels up to v = n+30 have been observed. Numerous perturbations by levels of D and E (interaction matrix elements ~ 10 cm-1); a much stronger interaction with G affects levels having v «gte» n+25. For details see Table 5 of Colbourn, Dagenais, et al., 1976. |
16 | Vibrational numbering uncertain. Extensive perturbations. Strong predissociation leading to line broadening in I→F bands having v" = 1,2,4,5,6,8; bands with v"= 3,7 are sharp. |
17 | Continuous absorption with maximum at 35000 cm-1. |
18 | The existence of the a ←X absorption becomes clear only after subtraction of the much stronger effect of the A←X absorption from the observed absorption intensities Rees, 1957. It is generally assumed that the 3Π0+u state has a minimum but no discrete absorption or emission has been observed, see Nathans, 1950. Child and Bernstein, 1973 predict a dissociation energy De= 3300 cm-1 and re= 1.9 for this state. |
19 | Continuous absorption with maximum at 25500 cm-1. |
20 | These constants represent only the lowest nine levels (i.e. v≤8) Colbourn, Dagenais, et al., 1976. Levels have been observed up to v=22; this last level lies only 90 cm-1 below the extrapolated limit. |
21 | +0.0001179(v+1/2)2 - 0.0000203(v+1/2)3, representing B0....B12. |
22 | Raman sp. |
23 | Rotational gyromagnetic ratio gJ = -0.1208 μN (nuclear) spin-rotation and spin- spin interaction constants c = -157.3 kHz, d = 8.0 kHz. |
24 | From the observed vibrational levels of the ground state Colbourn, Dagenais, et al., 1976; the highest observed level (presumably the last stable level) is at 12830.38 cm-1. Shock tube experiments of Blauer and Solomon, 1972 give the same value within ±0.05 eV; see also the earlier work of Barrow and Caunt, 1953, Stamper and Barrow, 1958, DeCorpo, Steiger, et al., 1970. |
25 | From photoionization Berkowitz, Chupka, et al., 1971. Photoelectron spectra Cornford, Frost, et al., 1971 give 15.70 eV. |
26 | The lower state vibrational numbering of this band is unknown, see 14. |
References
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Constants of diatomic molecules, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Cox, Wagman, et al., 1984
Cox, J.D.; Wagman, D.D.; Medvedev, V.A.,
CODATA Key Values for Thermodynamics, Hemisphere Publishing Corp., New York, 1984, 1. [all data]
Chase, 1998
Chase, M.W., Jr.,
NIST-JANAF Themochemical Tables, Fourth Edition,
J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]
Sinke, Thompson, et al., 1967
Sinke, G.C.; Thompson, C.J.; Jostad, R.E.; Walker, L.C.; Swanson, A.C.; Stull, D.R.,
Enthalpies of formation and bond energies of some fluoramines,
J. Chem. Phys., 1967, 47, 1852-1854. [all data]
Walker, 1972
Walker, L.C.,
The enthalpy of decomposition of CF3NF2(g) to CF4(g), N2(g), and F2(g),
J. Chem. Thermodyn., 1972, 4, 219-223. [all data]
Artau, Nizzi, et al., 2000
Artau, A.; Nizzi, K.E.; Hill, B.T.; Sunderlin, L.S.; Wenthold, P.G.,
Bond dissociation energy in trifluoride ion,
J. Am. Chem. Soc., 2000, 122, 43, 10667-10670, https://doi.org/10.1021/ja001613e
. [all data]
Jessup, McCoskey, et al., 1955
Jessup, R.S.; McCoskey, R.E.; Nelson, R.A.,
The heat of formation of tetrafluoromethane,
J. Am. Chem. Soc., 1955, 77, 244-245. [all data]
Domalski and Armstrong, 1967
Domalski, E.S.; Armstrong, G.T.,
The heats of combustion of polytetrafluoroethylene (teflon) and graphite in elemental fluorine,
J. Res. NBS, 1967, 71, 105-118. [all data]
Gole and Margrave, 1972
Gole, J.L.; Margrave, J.L.,
The vacuum ultraviolet spectrum of molecular fluorine,
J. Mol. Spectrosc., 1972, 43, 65. [all data]
Stricker and Krauss, 1968
Stricker, W.; Krauss, L.,
Die Bestimmung der Dissoziationsenergie des F2-Molekuls und ein Beitrag zu seinem Bandenspektrum,
Z. Naturforsch. A, 1968, 23, 486. [all data]
Colbourn, Dagenais, et al., 1976
Colbourn, E.A.; Dagenais, M.; Douglas, A.E.; Raymonda, J.W.,
The electronic spectrum of F2,
Can. J. Phys., 1976, 54, 1343. [all data]
di Lonardo and Douglas, 1972
di Lonardo, G.; Douglas, A.E.,
Electronic spectra of HF and F2,
J. Chem. Phys., 1972, 56, 5185. [all data]
Steunenberg and Vogel, 1956
Steunenberg, R.K.; Vogel, R.C.,
The absorption spectrum of fluorine,
J. Am. Chem. Soc., 1956, 78, 901. [all data]
Rees, 1957
Rees, A.L.G.,
Erratum: Electronic spectrum and dissociation energy of fluorine,
J. Chem. Phys., 1957, 27, 1424. [all data]
Andrychuk, 1951
Andrychuk, D.,
The Raman spectrum of fluorine,
Can. J. Phys., 1951, 29, 151. [all data]
Claassen, Selig, et al., 1969
Claassen, H.H.; Selig, H.; Shamir, J.,
Raman apparatus using laser excitation and polarization measurements. Rotational spectrum of fluorine,
Appl. Spectrosc., 1969, 23, 8. [all data]
Stricker and Hochenbleicher, 1973
Stricker, W.; Hochenbleicher, J.G.,
Das lasererregte Raman-Spektrum von gasformigem Fluor,
Z. Naturforsch. A, 1973, 28, 27. [all data]
Edwards, Good, et al., 1976
Edwards, H.G.M.; Good, E.A.M.; Long, D.A.,
Pure rotational Raman spectrum of fluorine,
J. Chem. Soc. Faraday Trans. 2, 1976, 72, 984-987. [all data]
Ozier, Crapo, et al., 1964
Ozier, I.; Crapo, L.M.; Cederberg, J.W.; Ramsey, N.F.,
Nuclear interactions and rotational moment of F2,
Phys. Rev. Lett., 1964, 13, 482. [all data]
Das and Wahl, 1972
Das, G.; Wahl, A.C.,
Theoretical study of the F2 molecule using the method of optimized valence configurations,
J. Chem. Phys., 1972, 56, 3532. [all data]
Porter, 1968
Porter, T.L.,
Emission spectrum of molecular fluorine,
J. Chem. Phys., 1968, 48, 2071. [all data]
Nathans, 1950
Nathans, M.W.,
The absorption spectrum and the dissociation energy of fluorine,
J. Chem. Phys., 1950, 18, 1122. [all data]
Child and Bernstein, 1973
Child, M.S.; Bernstein, R.B.,
Diatomic interhalogens: systematics and implications of spectroscopic interatomic potentials and curve crossings,
J. Chem. Phys., 1973, 59, 5916. [all data]
Blauer and Solomon, 1972
Blauer, J.; Solomon, W.,
Shock tube calorimeter for the dissociation energy of fluorine,
J. Chem. Phys., 1972, 57, 3587. [all data]
Barrow and Caunt, 1953
Barrow, R.F.; Caunt, A.D.,
The ultra-violet absorption spectra of some gaseous alkali-metal halides and the dissociation energy of fluorine,
Proc. R. Soc. London A, 1953, 219, 120. [all data]
Stamper and Barrow, 1958
Stamper, J.G.; Barrow, R.F.,
The dissociation energy of fluorine,
Trans. Faraday Soc., 1958, 54, 1592. [all data]
DeCorpo, Steiger, et al., 1970
DeCorpo, J.J.; Steiger, R.P.; Franklin, J.L.; Margrave, J.L.,
Dissociation energy of F2,
J. Chem. Phys., 1970, 53, 936. [all data]
Berkowitz, Chupka, et al., 1971
Berkowitz, J.; Chupka, W.A.; Guyon, P.M.; Holloway, J.H.; Spohr, R.,
Photoionization mass spectrometric study of F2, HF, and DF,
J. Chem. Phys., 1971, 54, 5165. [all data]
Cornford, Frost, et al., 1971
Cornford, A.B.; Frost, D.C.; McDowell, C.A.; Ragle, J.L.; Stenhouse, I.A.,
Photoelectron spectra of the halogens,
J. Chem. Phys., 1971, 54, 2651. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Constants of diatomic molecules, References
- Symbols used in this document:
S°gas,1 bar Entropy of gas at standard conditions (1 bar) ΔrH° Enthalpy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.