2,5-Norbornadiene
- Formula: C7H8
- Molecular weight: 92.1384
- IUPAC Standard InChIKey: SJYNFBVQFBRSIB-UHFFFAOYSA-N
- CAS Registry Number: 121-46-0
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: Bicyclo[2.2.1]hepta-2,5-diene; Bicyclo[2.2.1]heptadiene; Norbornadiene; 3,6-Methano-1,4-cyclohexadiene; Dicycloheptadiene; Bicyclo[2.2.1]-2,5-heptadiene; NSC 13672; 8,9,10-trinorborna-2,5-diene
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | 57. ± 6. | kcal/mol | AVG | N/A | Average of 6 values; Individual data points |
Constant pressure heat capacity of gas
Cp,gas (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
25.239 | 298.15 | Walsh R., 1975 | Selected value of S(298.15 K) is in excellent agreement with that calculated by force field method [ Lenz T.G., 1989].; GT |
25.421 | 300. | ||
34.529 | 400. | ||
42.151 | 500. | ||
48.279 | 600. | ||
53.250 | 700. | ||
57.349 | 800. | ||
60.791 | 900. | ||
63.690 | 1000. |
Condensed phase thermochemistry data
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°liquid | 51.10 ± 0.72 | kcal/mol | Ccb | Steele, 1978 | ALS |
ΔfH°liquid | 42.72 ± 0.24 | kcal/mol | Ccb | Hall, Smith, et al., 1973 | ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°liquid | -982.72 ± 0.72 | kcal/mol | Ccb | Steele, 1978 | Corresponding ΔfHºliquid = 51.10 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°liquid | -974.35 ± 0.24 | kcal/mol | Ccb | Hall, Smith, et al., 1973 | Corresponding ΔfHºliquid = 42.73 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°liquid | -979.6 | kcal/mol | Ccb | Skuratov, Kozina, et al., 1958 | Corresponding ΔfHºliquid = 48.0 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS |
Constant pressure heat capacity of liquid
Cp,liquid (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
38.53 | 298.15 | Steele, 1978 | DH |
27.75 | 297. | Hall, Smith, et al., 1973 | DH |
Reaction thermochemistry data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
B - John E. Bartmess
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
By formula: C7H8 = C7H8
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -22. ± 6. | kcal/mol | AVG | N/A | Average of 6 values; Individual data points |
C7H7- + =
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 399.5 ± 1.8 | kcal/mol | G+TS | Lee and Squires, 1986 | gas phase; Between EtNH2, nPrNH2; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 391.3 ± 1.5 | kcal/mol | IMRB | Lee and Squires, 1986 | gas phase; Between EtNH2, nPrNH2; B |
ΔrG° | 389.0 ± 5.0 | kcal/mol | IMRB | Wright and Beauchamp, 1981 | gas phase; B |
By formula: C7H8 + 2H2 = C7H12
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -70.8 ± 0.3 | kcal/mol | Chyd | Doering, Roth, et al., 1988 | gas phase; ALS |
ΔrH° | -69.77 ± 0.36 | kcal/mol | Chyd | Rogers, Choi, et al., 1980 | liquid phase; solvent: Hexane; ALS |
ΔrH° | -68.11 ± 0.41 | kcal/mol | Chyd | Turner, Meador, et al., 1957 | liquid phase; solvent: Acetic acid; ALS |
By formula: C7H8 = C5H6 + C2H2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 28.00 ± 0.50 | kcal/mol | Kin | Walsh and Wells, 1975 | gas phase; Reanalyzed by Pedley, Naylor, et al., 1986, Original value = 28.36 ± 0.32 kcal/mol; ALS |
By formula: C7H8 = C7H8
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 14. ± 1. | kcal/mol | Ciso | Harel, Adamson, et al., 1987 | liquid phase; solvent: Cyclohexane; Photocalorimetry; ALS |
By formula: C5H6 + C2H2 = C7H8
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -28.0 ± 0.5 | kcal/mol | Eqk | Walsh and Wells, 1975 | gas phase; ALS |
References
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Walsh R., 1975
Walsh R.,
The enthalpy of formation of bicyclo[2.2.1]hepta-2,5-diene. Thermodynamic functions of bicyclo[2.2.1]heptane and bicyclo[2.2.1]hepta-2,5-diene,
J. Chem. Thermodyn., 1975, 7, 149-154. [all data]
Lenz T.G., 1989
Lenz T.G.,
Force-field calculations giving accurate conformation, Hf(T), S(T), and Cp(T) for unsaturated acyclic and cyclic hydrocarbons,
J. Phys. Chem., 1989, 93, 1588-1592. [all data]
Steele, 1978
Steele, W.V.,
The standard enthalpies of formation of a series of C7, bridged-ring hydrocarbons: norbornane, norbornene, nortricyclene, norbornadiene, and quadricyclane,
J. Chem. Thermodyn., 1978, 10, 919-927. [all data]
Hall, Smith, et al., 1973
Hall, H.K., Jr.; Smith, C.D.; Baldt, J.H.,
Enthalpies of formation of norticyclene, norbornene, norbornadiene, and quadricyclane,
J. Am. Chem. Soc., 1973, 95, 3197-3201. [all data]
Skuratov, Kozina, et al., 1958
Skuratov, S.M.; Kozina, M.P.; Shtocher, S.M.; Prevalova, N.M.; Kamkina, L.S.; Zuko, V.D.,
Heats of combustion of cyclic compounds,
Bull. Chem. Thermodyn., 1958, 1, 21. [all data]
Lee and Squires, 1986
Lee, R.E.; Squires, R.R.,
Anionic homoaromaticity: A gas phase experimental study,
J. Am. Chem. Soc., 1986, 105, 5078. [all data]
Wright and Beauchamp, 1981
Wright, C.A.; Beauchamp, J.L.,
Infrared spectra of gas phase ions and their use in elucidating reaction mechanisms. Identification of C7H7- structural isomers by multiphoton electron detachment using a low-powered laser,
J. Am. Chem. Soc., 1981, 103, 6499. [all data]
Doering, Roth, et al., 1988
Doering, W.E.; Roth, W.R.; Breuckmann, R.; Figge, L.; Lennartz, H.-W.; Fessner, W.-D.; Prinzbach, F.H.,
Verbotene Reaktionen. - [2 + 2]-Cycloreversion starrer Cyclobutane,
Chem. Ber., 1988, 121, 1-9. [all data]
Rogers, Choi, et al., 1980
Rogers, D.W.; Choi, L.S.; Girellini, R.S.,
Heats of hydrogenation and formation of quadricyclene, norbornadiene, norbornene, and nortricyclene,
J. Phys. Chem., 1980, 84, 1810-1814. [all data]
Turner, Meador, et al., 1957
Turner, R.B.; Meador, W.R.; Winkler, R.E.,
Heats of hydrogenation. I. Apparatus and the heats of hydrogenation of bicyclo[2,2,1]heptene, bicyclo[2,2,1]heptadiene, bicyclo[2,2,2]octene and bicyclo[2,2,2]octadiene,
J. Am. Chem. Soc., 1957, 79, 4116-4121. [all data]
Walsh and Wells, 1975
Walsh, R.; Wells, J.M.,
The enthalpy of formation of bicyclo[2,2,1]hepta-2,5-diene. Thermodynamic functions of bicyclo[2,2,1]heptane and bicyclo[2,2,1]hepta-2,5-diene,
J. Chem. Thermodyn., 1975, 7, 149-154. [all data]
Pedley, Naylor, et al., 1986
Pedley, J.B.; Naylor, R.D.; Kirby, S.P.,
Thermochemical Data of Organic Compounds, Chapman and Hall, New York, 1986, 1-792. [all data]
Harel, Adamson, et al., 1987
Harel, Y.; Adamson, A.W.; Kutal, C.; Grutsch, P.A.; Yasufuku, K.,
Photocalorimetry. 6. Enthalpies of isomerization of norbornadiene and of substituted norbornadienes to corresponding quadricyclenes,
J. Phys. Chem., 1987, 91, 901-904. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, References
- Symbols used in this document:
Cp,gas Constant pressure heat capacity of gas Cp,liquid Constant pressure heat capacity of liquid ΔcH°liquid Enthalpy of combustion of liquid at standard conditions ΔfH°gas Enthalpy of formation of gas at standard conditions ΔfH°liquid Enthalpy of formation of liquid at standard conditions ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.