1,3-Dioxolane

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Henry's Law data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas-301.7 ± 2.2kJ/molCcbPihlaja and Heikklia, 1969ALS
Quantity Value Units Method Reference Comment
gas310.5 ± 4.1J/mol*KN/AClegg G.A., 1969This calorimetric value of S(298.15 K) is 10.8 J/mol*K larger than that obtained by statistical calculation [ Dorofeeva O.V., 1992]. However, statistical value agrees well with estimation by difference method [ Dorofeeva O.V., 1992].; GT

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
38.1450.Dorofeeva O.V., 1992p=1 bar.; GT
40.67100.
44.54150.
50.90200.
65.20273.15
71.0 ± 4.0298.15
71.45300.
95.78400.
118.09500.
136.88600.
152.49700.
165.51800.
176.46900.
185.731000.
193.621100.
200.351200.
206.111300.
211.071400.
215.351500.

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Henry's Law data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfliquid-337.2 ± 1.4kJ/molCcbPihlaja and Heikklia, 1969ALS
Quantity Value Units Method Reference Comment
Δcliquid-1700.8 ± 1.4kJ/molCcbPihlaja and Heikklia, 1969Corresponding Δfliquid = -337.2 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcliquid-1700.kJ/molCcbFletcher, Mortimer, et al., 1959Corresponding Δfliquid = -338. kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcliquid-1705.kJ/molCcbSkuratov, Strepikheev, et al., 1957Combustion for liq at 293 K; Corresponding Δfliquid = -333. kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Quantity Value Units Method Reference Comment
liquid280.2J/mol*KN/AClegg and Melia, 1969DH

Constant pressure heat capacity of liquid

Cp,liquid (J/mol*K) Temperature (K) Reference Comment
120.84298.15Inglese, Castagnolo, et al., 1981DH
118.0298.Conti, Gianni, et al., 1976DH

Henry's Law data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Rolf Sander

Henry's Law constant (water solution)

kH(T) = H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)

H (mol/(kg*bar)) d(ln(kH))/d(1/T) (K) Method Reference
40.4800.MN/A

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Henry's Law data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Pihlaja and Heikklia, 1969
Pihlaja, K.; Heikklia, J., Enthalpies of formation of cyclic acetals. 1,3-dioxolane, 2-methyl-1,3-dioxolane, and 2,4-dimethyl-1,3-dioxolanes, Acta Chem. Scand., 1969, 23, 1053-1055. [all data]

Clegg G.A., 1969
Clegg G.A., Thermodynamics of polymerization of heterocyclic compounds. Part V. The heat capacity, entropy, enthalpy and free energy of 1,3-dioxolan and poly-1,3-dioxolan, Polymer, 1969, 10, 912-922. [all data]

Dorofeeva O.V., 1992
Dorofeeva O.V., Ideal gas thermodynamic properties of oxygen heterocyclic compounds. Part 1. Three-membered, four-membered and five-membered rings, Thermochim. Acta, 1992, 194, 9-46. [all data]

Fletcher, Mortimer, et al., 1959
Fletcher, S.E.; Mortimer, C.T.; Springall, H.D., Heats of combustion and molecular structure. Part VII. 1:3-dioxa- and 1:3:5-trioxa-cycloalkanes, J. Chem. Soc., 1959, 580-584. [all data]

Skuratov, Strepikheev, et al., 1957
Skuratov, S.M.; Strepikheev, A.A.; Shtekhter, S.M.; Volokhina, A.V., About the enthalpies of polymerization of cyclic formales, Dokl. Akad. Nauk SSSR, 1957, 117, 263-265. [all data]

Clegg and Melia, 1969
Clegg, G.A.; Melia, T.P., Thermodynamics of polymerization of heterocyclic compounds. Part V. The heat capacity, entropy, enthalpy and free energy of 1,3-dioxolan and poly-1,3-dioxolan, Polymer, 1969, 10(12), 912-922. [all data]

Inglese, Castagnolo, et al., 1981
Inglese, A.; Castagnolo, M.; Dell'Atti, A.; DeGiglio, A., Thermochim. Acta, 1981, 77-87. [all data]

Conti, Gianni, et al., 1976
Conti, G.; Gianni, P.; Matteoli, E.; Mengheri, M., Capacita termiche molari di alcuni composti organici mono- e bifunzionali nel liquido puro e in soluzione acquosa a 25C, Chim. Ind. (Milan), 1976, 58, 225. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Henry's Law data, References