Cesium bromide


Constants of diatomic molecules

Go To: Top, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Klaus P. Huber and Gerhard H. Herzberg

Data collected through November, 1976

Symbols used in the table of constants
SymbolMeaning
State electronic state and / or symmetry symbol
Te minimum electronic energy (cm-1)
ωe vibrational constant – first term (cm-1)
ωexe vibrational constant – second term (cm-1)
ωeye vibrational constant – third term (cm-1)
Be rotational constant in equilibrium position (cm-1)
αe rotational constant – first term (cm-1)
γe rotation-vibration interaction constant (cm-1)
De centrifugal distortion constant (cm-1)
βe rotational constant – first term, centrifugal force (cm-1)
re internuclear distance (Å)
Trans. observed transition(s) corresponding to electronic state
ν00 position of 0-0 band (units noted in table)
Diatomic constants for 133Cs79Br
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
Strong autoionization peaks in the photoelectron spectrum at and above 12.5 eV Berkowitz, 1969; also observed by Geiger and Pfeiffer, 1968 in the energy loss spectrum of 25keV electrons.
Geiger and Pfeiffer, 1968; Berkowitz, 1969
Absorption continua with maxima at 46900, 39300, 36300 cm-1 Muller, 1927, Barrow and Caunt, 1953, Davidovits and Brodhead, 1967, followed by diffuse absorption (fluctuation) bands 1 in the region 34200 - 27900 cm-1 Muller, 1927, Sommermeyer, 1929, Barrow and Caunt, 1953. The chemiluminescence spectrum 1 Oldenborg, Gole, et al., 1974 consists of a long ground-state vibrational progression which extends from 28000 to 17000 cm-1.
Muller, 1927; Sommermeyer, 1929; Barrow and Caunt, 1953; Davidovits and Brodhead, 1967; Oldenborg, Gole, et al., 1974
X 1Σ+ 0 149.66 2 0.374 2  0.03606925 0.000124012 3  8.3801E-09 4 6.4E-12 3.072251 5  
Honig, Stitch, et al., 1953; Rusk and Gordy, 1962; Miller, Finney, et al., 1973; Honerjager and Tischer, 1974

Notes

1The absorption and the emission bands arise from transitions between a shallow homopolar upper state (from normal atomic products) and the low- and high-lying vibrational levels, respectively, of the ionic ground state.
2Derived from the rotational constants Honerjager and Tischer, 1974. See also Rice and Klemperer, 1957.
3αv= +1.02E-7(v+1/2)2 + 3.2E-10(v+1/2)3 Honerjager and Tischer, 1974.
4also higher order constants Honerjager and Tischer, 1974.
5Microwave sp. 9
6From the threshold for dissociative photoionization, Berkowitz, 1969, in good agreement with the thermochemical value of Brewer and Brackett, 1961; see also Bulewicz, Phillips, et al., 1961, Scheer and Fine, 1962. The value quoted here corresponds to dissociation into normal atoms; see, however, Berry, Cernoch, et al., 1968 who demonstrated that under some conditions (shock waves) the primary dissociation products are ions (Cs+ + Br-) rather than normal atoms in violation of the non-crossing rule.
7Photoionization mass-spectrometry Berkowitz, 1969. Average values (photoelectron spectroscopy) for the vertical first and second ionization potentials: 8.12 and 8.51 eV Berkowitz, Dehmer, et al., 1973, Potts, Williams, et al., 1974.
8Associated with excitation of an electron from the metal 5p shell.
9μel = 10.82 D (molecular beam electric deflection) Story and Hebert, 1976; eqQ(79Br)= -[6.79-0.73(v+1/2)] MHz Hoeft, Tiemann, et al., 1972; gJ(v=0)= (-)0.0099 μN Honerjager and Tischer, 1973.
10From I.P.(CsBr) and the threshold energy for dissociative ionization (Cs+ from CsBr), see Berkowitz, 1969. Potts, Williams, et al., 1974 give 0.24 eV.
11From the photoelectron spectrum Berkowitz, Dehmer, et al., 1973, Potts, Williams, et al., 1974. The two observed broad peaks (see 7 ) correspond to removal of an electron from the halogen 4p shell.

References

Go To: Top, Constants of diatomic molecules, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Berkowitz, 1969
Berkowitz, J., Photoionization of high-temperature vapors. V. Cesium halides; chemical shift of autoionization, J. Chem. Phys., 1969, 50, 3503. [all data]

Geiger and Pfeiffer, 1968
Geiger, J.; Pfeiffer, H.-C., Untersuchung der Anregung innerer Elektronen von Alkalihalogenidmolekulen im Energieverlustspektrum von 25 keV-Elektronen, Z. Phys., 1968, 208, 105. [all data]

Muller, 1927
Muller, L.A., 4. absorptionsspektren der alkalihalogenide in wasseriger losung und im dampf, Ann. Phys. (Leipzig), 1927, 82, 39. [all data]

Barrow and Caunt, 1953
Barrow, R.F.; Caunt, A.D., The ultra-violet absorption spectra of some gaseous alkali-metal halides and the dissociation energy of fluorine, Proc. R. Soc. London A, 1953, 219, 120. [all data]

Davidovits and Brodhead, 1967
Davidovits, P.; Brodhead, D.C., Ultraviolet absorption cross sections for the alkali halide vapors, J. Chem. Phys., 1967, 46, 2968. [all data]

Sommermeyer, 1929
Sommermeyer, K., Ein neues spektrum der gasformigen alkalihalogenide und seine deutung, Z. Phys., 1929, 56, 548. [all data]

Oldenborg, Gole, et al., 1974
Oldenborg, R.C.; Gole, J.L.; Zare, R.N., Chemiluminescent spectra of alkali-halogen reactions, J. Chem. Phys., 1974, 60, 4032. [all data]

Honig, Stitch, et al., 1953
Honig, A.; Stitch, M.L.; Mandel, M., Microwave spectra of CsF, CsCl, and CsBr, Phys. Rev., 1953, 92, 901. [all data]

Rusk and Gordy, 1962
Rusk, J.R.; Gordy, W., Millimeter wave molecular beam spectroscopy: alkali bromides and iodides, Phys. Rev., 1962, 127, 817. [all data]

Miller, Finney, et al., 1973
Miller, C.E.; Finney, A.A.; Inman, F.W., Rotational and hyperfine structure constants for groups IA and IIIA monohalide and monohydride molecules, At. Data, 1973, 5, 1. [all data]

Honerjager and Tischer, 1974
Honerjager, R.; Tischer, R., Mikrowellenrotationsspektren der Molekeln CsF, CsCl, CsBr und CsI, Z. Naturforsch. A, 1974, 29, 819. [all data]

Rice and Klemperer, 1957
Rice, S.A.; Klemperer, W., Spectra of the alkali halides. II. The infrared spectra of the sodium and potassium halides, RbCl, and CsCl, J. Chem. Phys., 1957, 27, 573. [all data]

Brewer and Brackett, 1961
Brewer, L.; Brackett, E., The dissociation energies of gaseous alkali halides, Chem. Rev., 1961, 61, 425. [all data]

Bulewicz, Phillips, et al., 1961
Bulewicz, E.M.; Phillips, L.F.; Sugden, T.M., Determination of dissociation constants and heats of formation of simple molecules by flame photometry. Part 8. Stabilities of the gaseous diatomic halides of certain metals, Trans. Faraday Soc., 1961, 57, 921. [all data]

Scheer and Fine, 1962
Scheer, M.D.; Fine, J., Entropies, heats of sublimation, and dissociation energies of the cesium halides, J. Chem. Phys., 1962, 36, 1647. [all data]

Berry, Cernoch, et al., 1968
Berry, R.S.; Cernoch, T.; Coplan, M.; Ewing, J.J., Inverted population in dissociation of CsBr molecules, J. Chem. Phys., 1968, 49, 127. [all data]

Berkowitz, Dehmer, et al., 1973
Berkowitz, J.; Dehmer, J.L.; Walker, T.E.H., PES of high-temperature vapors. IV. The cesium halides. Effect of spin-orbit interaction on the photoelectron and mass spectra of the alkali halides, J. Chem. Phys., 1973, 59, 3645. [all data]

Potts, Williams, et al., 1974
Potts, A.W.; Williams, T.A.; Price, W.C., Photoelectron spectra and electronic structure of diatomic alkali halides, Proc. Roy. Soc. London A, 1974, 341, 147. [all data]

Story and Hebert, 1976
Story, T.L., Jr.; Hebert, A.J., Dipole moments of KI, RbBr, RbI, CsBr, and CsI by the electric deflection method, J. Chem. Phys., 1976, 64, 855. [all data]

Hoeft, Tiemann, et al., 1972
Hoeft, J.; Tiemann, E.; Torring, T., Hyperfeinstruktur des CsBr, Z. Naturforsch. A, 1972, 27, 702. [all data]

Honerjager and Tischer, 1973
Honerjager, R.; Tischer, R., Hochtemperatur-Mikrowellenspektrometer fur Zeeman-Effekt-Messungen an diamagnetischen Molekeln. gJ - Faktor von TlF, CsF, CsCl, CsBr, CsI und Anistropie der magnetischen suszeptibilitat von TlF, CsF und CsCl, Z. Naturforsch. A, 1973, 28, 458. [all data]


Notes

Go To: Top, Constants of diatomic molecules, References