Toluene
- Formula: C7H8
- Molecular weight: 92.1384
- IUPAC Standard InChIKey: YXFVVABEGXRONW-UHFFFAOYSA-N
- CAS Registry Number: 108-88-3
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Isotopologues:
- Other names: Benzene, methyl; Methacide; Methylbenzene; Methylbenzol; Phenylmethane; Antisal 1a; Toluol; Methane, phenyl-; NCI-C07272; Tolueen; Toluen; Toluolo; Rcra waste number U220; Tolu-sol; UN 1294; Dracyl; Monomethyl benzene; CP 25; NSC 406333; methylbenzene (toluene)
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | 50.1 ± 1.1 | kJ/mol | Review | Roux, Temprado, et al., 2008 | There are sufficient high-quality literature values to make a good evaluation with a high degree of confidence. In general, the evaluated uncertainty limits are on the order of (0.5 to 2.5) kJ/mol.; DRB |
ΔfH°gas | 50.00 ± 0.63 | kJ/mol | Ccb | Prosen, Gilmont, et al., 1945 | Hf by Prosen, Johnson, et al., 1946; ALS |
ΔfH°gas | 48.0 | kJ/mol | N/A | Schmidlin, 1906 | Value computed using ΔfHliquid° value of 10.0 kj/mol from Schmidlin, 1906 and ΔvapH° value of 38.0 kj/mol from Prosen, Gilmont, et al., 1945.; DRB |
Constant pressure heat capacity of gas
Cp,gas (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
69.85 | 200. | Draeger, 1985 | Recommended values agree better with experimental heat capacities than results of calculation [ Chao J., 1984]. All other statistically calculated values [ Pitzer K.S., 1943, Taylor W.J., 1946, Scott D.W., 1962] are in close agreement with selected ones, except for high temperatures.; GT |
94.68 | 273.15 | ||
103.7 ± 0.4 | 298.15 | ||
104.4 | 300. | ||
139.9 | 400. | ||
170.8 | 500. | ||
196.2 | 600. | ||
217.0 | 700. | ||
234.3 | 800. | ||
248.9 | 900. | ||
261.2 | 1000. | ||
271.8 | 1100. | ||
280.8 | 1200. | ||
288.5 | 1300. | ||
295.2 | 1400. | ||
301.0 | 1500. |
Constant pressure heat capacity of gas
Cp,gas (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
130.08 ± 0.26 | 371.20 | Scott D.W., 1962 | Please also see Montgomery J.B., 1942, Pitzer K.S., 1943, Taylor W.J., 1946.; GT |
140.2 | 390. | ||
137.2 ± 1.3 | 393. | ||
138.87 ± 0.27 | 396.20 | ||
146.4 | 410. | ||
149.16 ± 0.30 | 427.20 | ||
149.4 ± 1.7 | 428. | ||
160.33 ± 0.32 | 462.20 | ||
159.0 ± 1.7 | 463. | ||
171.46 ± 0.34 | 500.20 |
Condensed phase thermochemistry data
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°liquid | 12. ± 1.1 | kJ/mol | Review | Roux, Temprado, et al., 2008 | There are sufficient high-quality literature values to make a good evaluation with a high degree of confidence. In general, the evaluated uncertainty limits are on the order of (0.5 to 2.5) kJ/mol.; DRB |
ΔfH°liquid | 12.0 ± 0.63 | kJ/mol | Ccb | Prosen, Gilmont, et al., 1945 | Hf by Prosen, Johnson, et al., 1946; ALS |
ΔfH°liquid | Ccb | Schmidlin, 1906 | uncertain value: 10. kJ/mol; Undetermine error; ALS | ||
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°liquid | -3920. ± 20. | kJ/mol | AVG | N/A | Average of 5 out of 6 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
S°liquid | 220.96 | J/mol*K | N/A | Scott, Guthrie, et al., 1962 | DH |
S°liquid | 219.2 | J/mol*K | N/A | Kelley, 1929 | DH |
Constant pressure heat capacity of liquid
Cp,liquid (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
157.09 | 298.15 | Grolier, Roux-Desgranges, et al., 1993 | DH |
155.96 | 298.15 | Shiohama, Ogawa, et al., 1988 | DH |
159.9 | 303.15 | Reddy, 1986 | T = 303.15, 313.15 K.; DH |
157.08 | 298.15 | Roux-Dexgranges, Grolier, et al., 1986 | DH |
158.70 | 298.15 | Tardajos, Aicart, et al., 1986 | DH |
158.7 | 298.15 | Stephens and Olson, 1984 | T = 266 to 318 K. Cp given as 0.4117 cal g-1 C-1.; DH |
157.0 | 298.15 | Grolier, Inglese, et al., 1982 | DH |
157.15 | 298.15 | Wilhelm, Faradjzadeh, et al., 1982 | DH |
156.0 | 293.15 | Atalla, El-Sharkawy, et al., 1981 | DH |
157.0 | 294.71 | Andolenko and Grigor'ev, 1979 | T = 293 to 373 K. Unsoothed experimental datum given as 1.704 KJ/kg*K.; DH |
157.057 | 298.15 | Fortier and Benson, 1979 | DH |
157.081 | 298.15 | Fortier and Benson, 1977 | DH |
156.94 | 298.15 | Wilhelm, Grolier, et al., 1977 | DH |
157.026 | 298.15 | Fortier and Benson, 1976 | DH |
156.99 | 298.15 | Holzhauer and Ziegler, 1975 | T = 165 to 312 K. Cp = 187.43814 - 0.73026493T + 0.0029613602T2 - 2.8661704x10-6T3 J/mol*K.; DH |
158.4 | 298.15 | Pedersen, Kay, et al., 1975 | T = 298 to 348 K. Cp(liq) = 154.73 + 0.0981(T/K-273.15) + 0.001949(T/K-273.15)2 J/mol*K (298 to 348 K).; DH |
156.8 | 298.15 | Rajagopal and Subrahmanyam, 1974 | T = 298.15 to 323.15 K.; DH |
156.5 | 298. | Deshpande and Bhatagadde, 1971 | T = 298 to 318 K.; DH |
158.6 | 293. | Rastorguev and Ganiev, 1967 | T = 293 to 373 K.; DH |
157.33 | 298.711 | Hwa and Ziegler, 1966 | T = 181 to 304 K. Unsmoothed experimental datum.; DH |
157.23 | 298.15 | Scott, Guthrie, et al., 1962 | T = 10 to 360 K.; DH |
166.9 | 324. | Swietoslawski and Zielenkiewicz, 1958 | Mean value 21 to 81 C.; DH |
140. | 295. | Tschamler, 1948 | DH |
158.6 | 298. | Kurbatov, 1947 | T = -76 to 60 C, mean Cp, four temperatures.; DH |
156.9 | 298.1 | Zhdanov, 1941 | T = 5 to 47 C.; DH |
157.07 | 298.2 | Burlew, 1940 | T = 281 to 383 K.; DH |
156.5 | 298. | Vold, 1937 | DH |
142.7 | 227.8 | Aoyama and Kanda, 1935 | T = 78 to 228 K. Value is unsmoothed experimental datum.; DH |
156.5 | 298.1 | Richards and Wallace, 1932 | T = 293 to 333 K.; DH |
161.9 | 298.15 | Smith and Andrews, 1931 | T = 102 to 299 K. Value is unsmoothed experimental datum.; DH |
153.09 | 28.444 | Kelley, 1929 | T = 14 to 284 K. Value is unsmoothed experimental datum.; DH |
151.0 | 293.2 | Williams and Daniels, 1925 | T = 20 to 60 C.; DH |
153.6 | 303. | Willams and Daniels, 1924 | T = 303 to 343 K. Equation only.; DH |
158.2 | 298. | von Reis, 1881 | T = 292 to 390 K.; DH |
Reaction thermochemistry data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Henry's Law data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
RCD - Robert C. Dunbar
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
C7H7- + =
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1599.7 ± 1.9 | kJ/mol | D-EA | Gunion, Gilles, et al., 1992 | gas phase; Kim, Wenthold, et al., 1999, with LN2 cooling of the ion, gives the same EA; B |
ΔrH° | 1593. ± 8.8 | kJ/mol | G+TS | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale; B |
ΔrH° | 1587. ± 8.8 | kJ/mol | G+TS | Gal, Decouzon, et al., 2001 | gas phase; B |
ΔrH° | 1577. ± 15. | kJ/mol | CIDT | Graul and Squires, 1990 | gas phase; B |
ΔrH° | 1609. ± 30. | kJ/mol | G+TS | Bohme and Young, 1971 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1564. ± 8.4 | kJ/mol | IMRE | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale; B |
ΔrG° | 1557. ± 8.4 | kJ/mol | IMRE | Gal, Decouzon, et al., 2001 | gas phase; B |
ΔrG° | 1579. ± 29. | kJ/mol | IMRB | Bohme and Young, 1971 | gas phase; B |
By formula: C3H9Si+ + C7H8 = (C3H9Si+ • C7H8)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 119. | kJ/mol | PHPMS | Stone and Stone, 1991 | gas phase; forms pi complex; M |
ΔrH° | 131. | kJ/mol | PHPMS | Stone and Stone, 1991 | gas phase; toluene D8, forms pi complex; M |
ΔrH° | 111. | kJ/mol | PHPMS | Wojtyniak and Stone, 1986 | gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)C6H6, Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 146. | J/mol*K | N/A | Wojtyniak and Stone, 1986 | gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)C6H6, Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
43.1 | 468. | PHPMS | Wojtyniak and Stone, 1986 | gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)C6H6, Entropy change calculated or estimated; M |
By formula: Br- + C7H8 = (Br- • C7H8)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 36. ± 7.5 | kJ/mol | IMRE | Paul and Kebarle, 1991 | gas phase; ΔGaff measured at 303 K, corrected to 423 K, ΔSaff taken as that of PhNO2..Br-; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 84. | J/mol*K | N/A | Paul and Kebarle, 1991 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 0.4 ± 4.2 | kJ/mol | IMRE | Paul and Kebarle, 1991 | gas phase; ΔGaff measured at 303 K, corrected to 423 K, ΔSaff taken as that of PhNO2..Br-; B |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
0.4 | 423. | PHPMS | Paul and Kebarle, 1991 | gas phase; Entropy change calculated or estimated; M |
By formula: C4H9+ + C7H8 = (C4H9+ • C7H8)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 120. | kJ/mol | PHPMS | Stone and Stone, 1991 | gas phase; toluene D8, forms protonated t-butyltoluene; M |
ΔrH° | 122. | kJ/mol | PHPMS | Stone and Stone, 1991 | gas phase; forms protomated t-butyltoluene; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 228. | J/mol*K | PHPMS | Stone and Stone, 1991 | gas phase; toluene D8, forms protonated t-butyltoluene; M |
ΔrS° | 228. | J/mol*K | PHPMS | Stone and Stone, 1991 | gas phase; forms protomated t-butyltoluene; M |
By formula: C7H8+ + C7H8 = (C7H8+ • C7H8)
Bond type: Charge transfer bond (positive ion)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 60.7 | kJ/mol | MPI | Ernstberger, Krause, et al., 1990 | gas phase; M |
ΔrH° | 23. | kJ/mol | PI | Ruhl, Bisling, et al., 1986 | gas phase; from vIP of perpendicular dimer; M |
ΔrH° | 66.9 | kJ/mol | PHPMS | Meot-Ner (Mautner), Hamlet, et al., 1978 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 120. | J/mol*K | PHPMS | Meot-Ner (Mautner), Hamlet, et al., 1978 | gas phase; M |
By formula: C6H7N+ + C7H8 = (C6H7N+ • C7H8)
Bond type: Charge transfer bond (positive ion)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 57.3 | kJ/mol | PHPMS | Meot-Ner (Mautner) and El-Shall, 1986 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 109. | J/mol*K | PHPMS | Meot-Ner (Mautner) and El-Shall, 1986 | gas phase; M |
By formula: C9H12+ + C7H8 = (C9H12+ • C7H8)
Bond type: Charge transfer bond (positive ion)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 50.2 | kJ/mol | PHPMS | Meot-Ner (Mautner), Hamlet, et al., 1978 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 110. | J/mol*K | PHPMS | Meot-Ner (Mautner), Hamlet, et al., 1978 | gas phase; M |
By formula: NO- + C7H8 = (NO- • C7H8)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 185. | kJ/mol | ICR | Reents and Freiser, 1981 | gas phase; switching reaction,Thermochemical ladder(NO+)C2H5OH, Entropy change calculated or estimated; Farid and McMahon, 1978; M |
By formula: HBr + C7H7Br = C7H8 + Br2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 33.9 ± 4.2 | kJ/mol | Eqk | Benson and Buss, 1957 | gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = 33. ± 4. kJ/mol; ALS |
By formula: Cl- + C7H8 = (Cl- • C7H8)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 16.7 | kJ/mol | TDEq | French, Ikuta, et al., 1982 | gas phase; B |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
17. | 300. | PHPMS | French, Ikuta, et al., 1982 | gas phase; M |
By formula: HI + C7H7I = C7H8 + I2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -33. ± 4.6 | kJ/mol | Cm | Graham, Nichol, et al., 1955 | liquid phase; solvent: p-Xylene; ALS |
By formula: C7H7Br + 0.5H2 = C7H8 + 0.5Br2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -4. ± 2. | kJ/mol | Chyd | Ashcroft, Carson, et al., 1963 | liquid phase; ALS |
By formula: I- + C7H8 = (I- • C7H8)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 46.0 ± 4.2 | kJ/mol | TDAs | Caldwell, Masucci, et al., 1989 | gas phase; B,M |
By formula: C7H8 = C7H8
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -100. ± 10. | kJ/mol | Cm | Bartmess and Griffith, 1990 | gas phase; Gas phase acidity; ALS |
By formula: C7H7I = C7H8 + 0.5I2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -41. ± 2. | kJ/mol | Chyd | Ashcroft, Carson, et al., 1963 | liquid phase; ALS |
By formula: (Li+ • C7H8) + C7H8 = (Li+ • 2C7H8)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 116. ± 3. | kJ/mol | CIDT | Amunugama and Rodgers, 2002 | RCD |
By formula: (Na+ • C7H8) + C7H8 = (Na+ • 2C7H8)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 87. ± 2. | kJ/mol | CIDT | Amunugama and Rodgers, 2002 | RCD |
By formula: (Cs+ • C7H8) + C7H8 = (Cs+ • 2C7H8)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 61.5 ± 4.2 | kJ/mol | CIDT | Amunugama and Rodgers, 2002 | RCD |
By formula: (Rb+ • C7H8) + C7H8 = (Rb+ • 2C7H8)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 67.8 ± 4.2 | kJ/mol | CIDT | Amunugama and Rodgers, 2002 | RCD |
By formula: (K+ • C7H8) + C7H8 = (K+ • 2C7H8)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 74.9 ± 4.6 | kJ/mol | CIDT | Amunugama and Rodgers, 2002 | RCD |
By formula: (Cr+ • C7H8) + C7H8 = (Cr+ • 2C7H8)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 222. ± 38. | kJ/mol | RAK | Lin and Dunbar, 1997 | RCD |
By formula: C10H14 + C6H6 = C7H8 + C9H12
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 0.0 ± 0.6 | kJ/mol | Eqk | Tsvetkov, Rozhnov, et al., 1985 | liquid phase; ALS |
By formula: Li+ + C7H8 = (Li+ • C7H8)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 183. ± 17. | kJ/mol | CIDT | Amunugama and Rodgers, 2002 | RCD |
By formula: Na+ + C7H8 = (Na+ • C7H8)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 112. ± 3. | kJ/mol | CIDT | Amunugama and Rodgers, 2002 | RCD |
By formula: Cs+ + C7H8 = (Cs+ • C7H8)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 64.0 ± 4.6 | kJ/mol | CIDT | Amunugama and Rodgers, 2002 | RCD |
By formula: Rb+ + C7H8 = (Rb+ • C7H8)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 71.1 ± 4.2 | kJ/mol | CIDT | Amunugama and Rodgers, 2002 | RCD |
By formula: K+ + C7H8 = (K+ • C7H8)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 79.9 ± 5.0 | kJ/mol | CIDT | Amunugama and Rodgers, 2002 | RCD |
By formula: Cr+ + C7H8 = (Cr+ • C7H8)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 176. ± 14. | kJ/mol | RAK | Lin and Dunbar, 1997 | RCD |
Henry's Law data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Rolf Sander
Henry's Law constant (water solution)
kH(T) = k°H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
k°H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)
k°H (mol/(kg*bar)) | d(ln(kH))/d(1/T) (K) | Method | Reference | Comment |
---|---|---|---|---|
0.15 | 4000. | L | N/A | |
0.18 | 4100. | M | N/A | |
0.16 | M | N/A | ||
0.16 | X | N/A | Value given here as cited in missing citation. | |
0.13 | M | N/A | ||
0.15 | 3400. | M | N/A | |
0.16 | X | N/A | Value given here as cited in missing citation. | |
0.16 | Q | N/A | missing citation give several references for the Henry's law constants but don't assign them to specific species. | |
0.14 | 5000. | X | N/A | |
0.17 | 8400. | X | N/A | |
0.15 | 3000. | X | N/A | |
0.15 | 1900. | X | N/A | |
0.15 | 3700. | X | Leighton and Calo, 1981 | |
0.15 | L | N/A | ||
0.15 | 4900. | X | N/A | |
0.15 | M | Mackay, Shiu, et al., 1979 | ||
0.15 | T | Mackay, Shiu, et al., 1979 | ||
0.15 | V | N/A | ||
0.19 | M | N/A | ||
0.21 | 4600. | M | N/A | |
0.15 | X | N/A | Value given here as cited in missing citation. | |
0.17 | 5900. | M | N/A | |
0.18 | V | Bohon and Claussen, 1951 |
References
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Roux, Temprado, et al., 2008
Roux, M.V.; Temprado, M.; Chickos, J.S.; Nagano, Y.,
Critically Evaluated Thermochemical Properties of Polycyclic Aromatic Hydrocarbons,
J. Phys. Chem. Ref. Data, 2008, 37, 4, 1855-1996. [all data]
Prosen, Gilmont, et al., 1945
Prosen, E.J.; Gilmont, R.; Rossini, F.D.,
Heats of combustion of benzene, toluene, ethyl-benzene, o-xylene, m-xylene, p-xylene, n-propylbenzene, and styrene,
J. Res. NBS, 1945, 34, 65-70. [all data]
Prosen, Johnson, et al., 1946
Prosen, E.J.; Johnson, W.H.; Rossini, F.D.,
Heats of combustion and formation at 25°C of the alkylbenzenes through C10H14, and of the higher normal monoalkylbenzenes,
J. Res. NBS, 1946, 36, 455-461. [all data]
Schmidlin, 1906
Schmidlin, M.J.,
Recherches chimiques et thermochimiques sur la constitution des rosanilines,
Ann. Chim. Phys., 1906, 1, 195-256. [all data]
Draeger, 1985
Draeger, J.A.,
The methylbenzenes II. Fundamental vibrational shifts, statistical thermodynamic functions, and properties of formation,
J. Chem. Thermodyn., 1985, 17, 263-275. [all data]
Chao J., 1984
Chao J.,
Chemical thermodynamic properties of toluene, o-, m- and p-xylenes,
Thermochim. Acta, 1984, 72, 323-334. [all data]
Pitzer K.S., 1943
Pitzer K.S.,
The thermodynamics and molecular structure of benzene and its methyl derivatives,
J. Am. Chem. Soc., 1943, 65, 803-829. [all data]
Taylor W.J., 1946
Taylor W.J.,
Heats, equilibrium constants, and free energies of formation of the alkylbenzenes,
J. Res. Nat. Bur. Stand., 1946, 37, 95-122. [all data]
Scott D.W., 1962
Scott D.W.,
Toluene: thermodynamic properties, molecular vibrations, and internal rotation,
J. Phys. Chem., 1962, 66, 911-914. [all data]
Montgomery J.B., 1942
Montgomery J.B.,
The heat capacity of organic vapors. IV. Benzene, fluorobenzene, toluene, cyclohexane, methylcyclohexane and cyclohexene,
J. Am. Chem. Soc., 1942, 64, 2375-2377. [all data]
Scott, Guthrie, et al., 1962
Scott, D.W.; Guthrie, G.B.; Messerly, J.F.; Todd, S.S.; Berg, W.T.; Hossenlopp, I.A.; McCullough, J.P.,
Toluene: thermodynamic properties, molecular vibrations, and internal rotation,
J. Phys. Chem., 1962, 66, 911-914. [all data]
Kelley, 1929
Kelley, K.K.,
The heat capacity of toluene from 14K to 298K. The entropy and the free energy of formation,
J. Am. Chem. Soc., 1929, 51, 2738-2741. [all data]
Grolier, Roux-Desgranges, et al., 1993
Grolier, J.-P.E.; Roux-Desgranges, G.; Berkane, M.; Jimenez, E.; Wilhelm, E.,
Heat capacities and densities of mixtures of very polar substances 2. Mixtures containing N,N-dimethylformamide,
J. Chem. Thermodynam., 1993, 25(1), 41-50. [all data]
Shiohama, Ogawa, et al., 1988
Shiohama, Y.; Ogawa, H.; Murakami, S.; Fujihara, I.,
Excess molar isobaric heat capacities and isentropic compressibilities of (cis- or trans-decalin + benzene or toluene or iso-octane or n-heptane) at 298.15 K,
J. Chem. Thermodynam., 1988, 20, 1183-1189. [all data]
Reddy, 1986
Reddy, K.S.,
Isentropic compressibilities of binary liquid mixtures at 303.15 and 313.15 K,
J. Chem. Eng. Data, 1986, 31, 238-240. [all data]
Roux-Dexgranges, Grolier, et al., 1986
Roux-Dexgranges, G.; Grolier, J.-P.E.; Villamanan, M.A.; Casanova, C.,
Role of alcohol in microemulsions. III. Volumes and heat capacities in the continuious phase water-n-butanol-toluene of reverse micelles,
Fluid Phase Equilibria, 1986, 25, 209-230. [all data]
Tardajos, Aicart, et al., 1986
Tardajos, G.; Aicart, E.; Costas, M.; Patterson, D.,
Liquid structure and second-order mixing functions for benzene, toluene, and p-xylene with n-alkanes, J. Chem. Soc.,
Faraday Trans., 1986, 1 82, 2977-2987. [all data]
Stephens and Olson, 1984
Stephens, M.; Olson, J.D.,
Measurement of excess heat capacities by differential scanning calorimetry,
Thermochim. Acta, 1984, 76, 79-85. [all data]
Grolier, Inglese, et al., 1982
Grolier, J.-P.E.; Inglese, A.; Wilhelm, E.,
Excess volumes and excess heat capacities of tetrachloroethene + cyclohexane, + methylcyclohexane, + benzene, and + toluene at 298.15 K,
J. Chem. Thermodynam., 1982, 14, 523-529. [all data]
Wilhelm, Faradjzadeh, et al., 1982
Wilhelm, E.; Faradjzadeh, A.; Grolier, J.-P.E.,
Excess volumes and excess heat capacities of 2,3-dimethylbutane + butane and + toluene,
J. Chem. Thermodynam., 1982, 14, 1199-1200. [all data]
Atalla, El-Sharkawy, et al., 1981
Atalla, S.R.; El-Sharkawy, A.A.; Gasser, F.A.,
Measurement of thermal properties of liquids with an AC heated-wire technique,
Inter. J. Thermophys., 1981, 2(2), 155-162. [all data]
Andolenko and Grigor'ev, 1979
Andolenko, R.A.; Grigor'ev, B.A.,
Investigation of isobaric heat capacity of aromatic hydrocarbons at atmospheric pressure, Iaz. Vyssh. Ucheb. Zaved.,
Neft i Gaz (11), 1979, 78, 90. [all data]
Fortier and Benson, 1979
Fortier, J.-L.; Benson, G.C.,
Heat capacities of some binary aromatic hydrocarbon mixtures containing benzene or toluene,
J. Chem. Eng. Data, 1979, 24(1), 34-37. [all data]
Fortier and Benson, 1977
Fortier, J.-L.; Benson, G.C.,
Excess heat capacities of binary mixtures of tetrachloromethane witlh some aromatic liquids at 298.15 K,
J. Chem. Thermodynam., 1977, 9, 1181-1188. [all data]
Wilhelm, Grolier, et al., 1977
Wilhelm, E.; Grolier, J.-P.E.; Karbalai Ghassemi, M.H.,
Molar heat capacities of binary liquid mixtures: 1,2-dichloroethane + benzene, + toluene, and + p-xylene,
Ber. Bunsenges. Phys. Chem., 1977, 81, 925-930. [all data]
Fortier and Benson, 1976
Fortier, J.-L.; Benson, G.C.,
Excess heat capacities of binary liquid mixtures determined with a Picker flow calorimeter,
J. Chem. Thermodynam., 1976, 8, 411-423. [all data]
Holzhauer and Ziegler, 1975
Holzhauer, J.K.; Ziegler, W.T.,
Temperature dependence of excess thermodynamic properties of n-heptane-toluene, methylcyclohexane-toluene, and n-heptane-methylcyclohexane systems,
J. Phys. Chem., 1975, 79(6), 590-604. [all data]
Pedersen, Kay, et al., 1975
Pedersen, M.J.; Kay, W.B.; Hershey, H.C.,
Excess enthalpies, heat capacities, and excess heat capacities as a function of temperature in liquid mixtures of ethanol + toluene, ethanol + hexamethyldisiloxane, and hexamethyldisiloxane + toluene,
J. Chem. Thermodynam., 1975, 7, 1107-1118. [all data]
Rajagopal and Subrahmanyam, 1974
Rajagopal, E.; Subrahmanyam, S.V.,
Excess function of VE,(dVE/dp)T, and CpE of isooctane + benzene and + toluene,
J. Chem. Thermodynam., 1974, 6, 873-876. [all data]
Deshpande and Bhatagadde, 1971
Deshpande, D.D.; Bhatagadde, L.G.,
Heat capacities at constant volume, free volumes, and rotational freedom in some liquids,
Aust. J. Chem., 1971, 24, 1817-1822. [all data]
Rastorguev and Ganiev, 1967
Rastorguev, Yu.L.; Ganiev, Yu.A.,
Study of the heat capacity of selected solvents,
Izv. Vyssh. Uchebn. Zaved. Neft Gaz. 10, 1967, No.1, 79-82. [all data]
Hwa and Ziegler, 1966
Hwa, S.C.P.; Ziegler, W.T.,
Temperature dependence of excess thermodynamic properties of ethanol-methylcyclohexane and ethanol-toluene systems,
J. Phys. Chem., 1966, 70(8), 2572-2593. [all data]
Swietoslawski and Zielenkiewicz, 1958
Swietoslawski, W.; Zielenkiewicz, A.,
Mean specific heats of binary positive azeotropes,
Bull. Acad. Pol. Sci. Ser. Sci. Chim., 1958, 6, 367-369. [all data]
Tschamler, 1948
Tschamler, H.,
Uber binare flussige Mischungen I. Mischungswarment, Volumseffekte und Zustandsdiagramme von chlorex mit benzol und n-alkylbenzolen,
Monatsh. Chem., 1948, 79, 162-177. [all data]
Kurbatov, 1947
Kurbatov, V.Ya.,
Specific heat of liquids. I. Specific heat of benzenoid hydrocarbons,
Zhur. Obshch. Khim., 1947, 17, 1999-2003. [all data]
Zhdanov, 1941
Zhdanov, A.K.,
Specific heats of some liquids and azeotropic mixtures,
Zhur. Obshch. Khim., 1941, 11, 471-482. [all data]
Burlew, 1940
Burlew, J.S.,
Measurement of the heat capacity of a small volume of liquid by the piezo-thermometric method. III. Heat capacity of benzene and of toluene from 8°C. to the boiling point,
J. Am. Chem. Soc., 1940, 62, 696-700. [all data]
Vold, 1937
Vold, R.D.,
A calorimetric test of the solubility equation for regular solutions,
J. Am. Chem. Soc., 1937, 59, 1515-1521. [all data]
Aoyama and Kanda, 1935
Aoyama, S.; Kanda, E.,
Studies on the heat capacities at low temperature. Report I. Heat capacities of some organic substances at low temperature,
Sci. Rept. Tohoku Imp. Univ. [1]24, 1935, 107-115. [all data]
Richards and Wallace, 1932
Richards, W.T.; Wallace, J.H., Jr.,
The specific heats of five organic liquids from their adiabatic temperature-pressure coefficients,
J. Am. Chem. Soc., 1932, 54, 2705-2713. [all data]
Smith and Andrews, 1931
Smith, R.H.; Andrews, D.H.,
Thermal energy studies. I. Phenyl derivatives of methane,
ethane and some related compounds. J. Am. Chem. Soc., 1931, 53, 3644-3660. [all data]
Williams and Daniels, 1925
Williams, J.W.; Daniels, F.,
The specific heats of binary mixtures,
J. Am. Chem. Soc., 1925, 47, 1490-1503. [all data]
Willams and Daniels, 1924
Willams, J.W.; Daniels, F.,
The specific heats of certain organic liquids at elevated temperatures,
J. Am. Chem. Soc., 1924, 46, 903-917. [all data]
von Reis, 1881
von Reis, M.A.,
Die specifische Wärme flüssiger organischer Verbindungen und ihre Beziehung zu deren Moleculargewicht,
Ann. Physik [3], 1881, 13, 447-464. [all data]
Gunion, Gilles, et al., 1992
Gunion, R.F.; Gilles, M.K.; Polak, M.L.; Lineberger, W.C.,
Ultraviolet Photoelectron Spectroscopy of the Phenide, Benzyl, and Phenoxide Anions.,
Int. J. Mass Spectrom. Ion Proc., 1992, 117, 601, https://doi.org/10.1016/0168-1176(92)80115-H
. [all data]
Kim, Wenthold, et al., 1999
Kim, J.B.; Wenthold, P.G.; Lineberger, W.C.,
Ultraviolet photoelectron spectroscopy of o-, m-, and p-halobenzyl anions,
J. Phys. Chem. A, 1999, 103, 50, 10833-10841, https://doi.org/10.1021/jp992817o
. [all data]
Bartmess, Scott, et al., 1979
Bartmess, J.E.; Scott, J.A.; McIver, R.T., Jr.,
The gas phase acidity scale from methanol to phenol,
J. Am. Chem. Soc., 1979, 101, 6047. [all data]
Gal, Decouzon, et al., 2001
Gal, J.F.; Decouzon, M.; Maria, P.C.; Gonzalez, A.I.; Mo, O.; Yanez, M.; El Chaouch, S.; Guillemin, J.C.,
Acidity trends in alpha,beta-unsaturated alkanes, silanes, germanes, and stannanes,
J. Am. Chem. Soc., 2001, 123, 26, 6353-6359, https://doi.org/10.1021/ja004079j
. [all data]
Graul and Squires, 1990
Graul, S.T.; Squires, R.R.,
Gas-Phase Acidities Derived from Threshold Energies for Activated Reactions,
J. Am. Chem. Soc., 1990, 112, 7, 2517, https://doi.org/10.1021/ja00163a007
. [all data]
Bohme and Young, 1971
Bohme, D.K.; Young, L.B.,
Electron affinities from thermal proton transfer reactions: C6H5 and C6H5CH2,
Can. J. Chem., 1971, 49, 2918. [all data]
Stone and Stone, 1991
Stone, J.M.; Stone, J.A.,
A High Pressure Mass Spectrometric Study of the Binding of (CH3)3Si+ and (CH3)3C+ to Toluene and Benzene,
Int. J. Mass Spectrom. Ion Proc., 1991, 109, 247, https://doi.org/10.1016/0168-1176(91)85107-W
. [all data]
Wojtyniak and Stone, 1986
Wojtyniak, A.C.M.; Stone, A.J.,
A High-Pressure Mass Spectrometric Study of the Bonding of Trimethylsilylium to Oxygen and Aromatic Bases,
Can. J. Chem., 1986, 74, 59. [all data]
Paul and Kebarle, 1991
Paul, G.J.C.; Kebarle, P.,
Stabilities of Complexes of Br- with Substituted Benzenes (SB) Based on Determinations of the Gas-Phase Equilibria Br- + SB = (BrSB)-,
J. Am. Chem. Soc., 1991, 113, 4, 1148, https://doi.org/10.1021/ja00004a014
. [all data]
Ernstberger, Krause, et al., 1990
Ernstberger, B.; Krause, H.; Kiermeier, A.; Neusser, H.J.,
Multiphoton ionization and dissociation of mixed van der Waals clusters in a linear reflectron time-of-flight mass spectrometer,
J. Chem. Phys., 1990, 92, 9, 5285, https://doi.org/10.1063/1.458603
. [all data]
Ruhl, Bisling, et al., 1986
Ruhl, E.; Bisling, P.G.F.; Brutschy, B.; Baumgartel, H.,
Photoionization of Aromatic van der Waals Complexes in a Supersonic Jet,
Chem. Phys. Lett., 1986, 126, 3-4, 232, https://doi.org/10.1016/S0009-2614(86)80075-6
. [all data]
Meot-Ner (Mautner), Hamlet, et al., 1978
Meot-Ner (Mautner), M.; Hamlet, P.; Hunter, E.P.; Field, F.H.,
Bonding Energies in Association Ions of Aromatic Molecules. Correlations with Ionization Energies,
J. Am. Chem. Soc., 1978, 100, 17, 5466, https://doi.org/10.1021/ja00485a034
. [all data]
Meot-Ner (Mautner) and El-Shall, 1986
Meot-Ner (Mautner), M.; El-Shall, M.S.,
Ionic Charge Transfer Complexes. 1. Cationic Complexes with Delocalized and Partially Localized pi Systems,
J. Am. Chem. Soc., 1986, 108, 15, 4386, https://doi.org/10.1021/ja00275a026
. [all data]
Reents and Freiser, 1981
Reents, W.D.; Freiser, B.S.,
Gas-Phase Binding Energies and Spectroscopic Properties of NO+ Charge-Transfer Complexes,
J. Am. Chem. Soc., 1981, 103, 2791. [all data]
Farid and McMahon, 1978
Farid, R.; McMahon, T.B.,
Gas-Phase Ion-Molecule Reactions of Alkyl Nitrites by Ion Cyclotron Resonance Spectroscopy,
Int. J. Mass Spectrom. Ion Phys., 1978, 27, 2, 163, https://doi.org/10.1016/0020-7381(78)80037-0
. [all data]
Benson and Buss, 1957
Benson, S.W.; Buss, J.H.,
The thermodynamics of bromination of toluene and the heat of formation of the benzyl radical,
J. Phys. Chem., 1957, 61, 104-109. [all data]
Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G.,
Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]
French, Ikuta, et al., 1982
French, M.A.; Ikuta, S.; Kebarle, P.,
Hydrogen bonding of O-H and C-H hydrogen donors to Cl-. Results from mass spectrometric measurement of the ion-molecule equilibria RH + Cl- = RHCl-,
Can. J. Chem., 1982, 60, 1907. [all data]
Graham, Nichol, et al., 1955
Graham, W.S.; Nichol, R.J.; Ubbelohde, A.R.,
A thermochemical evaluation of bond strengths in some carbon compounds. Part III. Bond strengths based on the reactions: (a) Ph·CH2I + HI=Ph·CH3 + I2 and (b) PhI + HI=PhH + I2,
J. Chem. Soc., 1955, 115-121. [all data]
Ashcroft, Carson, et al., 1963
Ashcroft, S.J.; Carson, A.S.; Pedley, J.B.,
Thermochemistry of reductions caused by lithium aluminium hydride. Part 2.-The heats of formation of benzyl bromide, benzyl iodide and the benzyl radical,
Trans. Faraday Soc., 1963, 59, 2713-2717. [all data]
Caldwell, Masucci, et al., 1989
Caldwell, G.W.; Masucci, J.A.; Ikonomou, M.G.,
Negative Ion Chemical Ionization Mass Spectrometry - Binding of Molecules to Bromide and Iodide Anions,
Org. Mass Spectrom., 1989, 24, 1, 8, https://doi.org/10.1002/oms.1210240103
. [all data]
Bartmess and Griffith, 1990
Bartmess, J.E.; Griffith, S.S.,
Tautomerization energetics of benzoannelated toluenes,
J. Am. Chem. Soc., 1990, 112, 2931-2936. [all data]
Amunugama and Rodgers, 2002
Amunugama, R.; Rodgers, M.T.,
Influence of substituents on cation-pi interactions. 1. Absolute binding energies of alkali metal cation-toluene complexes determined by threshold collision-induced dissociation and theoretical studies,
J. Phys. Chem. A, 2002, 106, 22, 5529, https://doi.org/10.1021/jp014307b
. [all data]
Lin and Dunbar, 1997
Lin, C.-Y.; Dunbar, R.C.,
Radiative Association Kinetics and Binding Energies of Chromium Ions with Benzene and Benzene Derivatives,
Organometallics, 1997, 16, 12, 2691, https://doi.org/10.1021/om960949n
. [all data]
Tsvetkov, Rozhnov, et al., 1985
Tsvetkov, V.F.; Rozhnov, A.M.; Nesterova, T.N.,
Study of the equilibrium of isomerization and transalkylation of isopropyltoluenes,
Neftekhimiya, 1985, 53-57. [all data]
Leighton and Calo, 1981
Leighton, D.T.; Calo, J.M.,
Distribution Coefficients of Chlorinated Hydrocarbons in Dilute Air-Water Systems for Groundwater Contamination Applications,
J. Chem. Eng. Data, 1981, 26, 382-385. [all data]
Mackay, Shiu, et al., 1979
Mackay, D.; Shiu, W.-Y.; Sutherland, R.P.,
Determination of Air-Water Henry's Law Constants for Hydrophobic Pollutants,
Environ. Sci. Technol., 1979, 13, 333-337. [all data]
Bohon and Claussen, 1951
Bohon, R.L.; Claussen, W.F.,
The solubility of aromatic hydrocarbons in water,
J. Am. Chem. Soc., 1951, 73, 1571-1578. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, References
- Symbols used in this document:
Cp,gas Constant pressure heat capacity of gas Cp,liquid Constant pressure heat capacity of liquid S°liquid Entropy of liquid at standard conditions T Temperature d(ln(kH))/d(1/T) Temperature dependence parameter for Henry's Law constant k°H Henry's Law constant at 298.15K ΔcH°liquid Enthalpy of combustion of liquid at standard conditions ΔfH°gas Enthalpy of formation of gas at standard conditions ΔfH°liquid Enthalpy of formation of liquid at standard conditions ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.