Diphenylmethane
- Formula: C13H12
- Molecular weight: 168.2344
- IUPAC Standard InChIKey: CZZYITDELCSZES-UHFFFAOYSA-N
- CAS Registry Number: 101-81-5
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: Benzene, 1,1'-methylenebis-; Methane, diphenyl-; Benzene, (phenylmethyl)-; Benzylbenzene; Ditan; Ditane; Benzene, benzyl-; Toluene, α-phenyl-; 1,1'-Dimethylenebis(benzene); NSC 4708
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | 39.4 ± 0.53 | kcal/mol | Review | Roux, Temprado, et al., 2008 | There are sufficient literature values to make a qualified recommendation where the suggested value is in good agreement with values predicted using thermochemical cycles or from reliable estimates. In general, the evaluated uncertainty limits are on the order of (2 to 4) kJ/mol.; DRB |
ΔfH°gas | 38.79 ± 0.55 | kcal/mol | Review | Roux, Temprado, et al., 2008 | There are sufficient literature values to make a qualified recommendation where the suggested value is in good agreement with values predicted using thermochemical cycles or from reliable estimates. In general, the evaluated uncertainty limits are on the order of (2 to 4) kJ/mol.; DRB |
ΔfH°gas | 39.39 ± 0.38 | kcal/mol | Ccb | Steele, Chirico, et al., 1995 | ALS |
ΔfH°gas | 37.43 | kcal/mol | N/A | Parks and Mosley, 1950 | Value computed using ΔfHliquid° value of 88.9 kj/mol from Parks and Mosley, 1950 and ΔvapH° value of 67.7 kj/mol from Steele, Chirico, et al., 1995.; DRB |
Quantity | Value | Units | Method | Reference | Comment |
S°gas | 104. | cal/mol*K | N/A | Marcus Y., 1986 | This value calculated from published spectroscopic and structural data is in close agreement with estimations by a method of increments (440-451 J/mol*K [85MAR/LOE, Dorofeeva O.V., 1997]). Value obtained from calorimetric data (508.5 J/mol*K [85MAR/LOE]) authors do not regard as reliable. Results of statistical thermodynamics calculation [ Puranik P.G., 1962] are likely to be erroneous (S(300 K)=319 J/mol*K).; GT |
Condensed phase thermochemistry data
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°liquid | 23.2 ± 0.53 | kcal/mol | Review | Roux, Temprado, et al., 2008 | There are sufficient literature values to make a qualified recommendation where the suggested value is in good agreement with values predicted using thermochemical cycles or from reliable estimates. In general, the evaluated uncertainty limits are on the order of (2 to 4) kJ/mol.; DRB |
ΔfH°liquid | 23.2 ± 0.33 | kcal/mol | Ccb | Steele, Chirico, et al., 1995 | ALS |
ΔfH°liquid | 21.25 | kcal/mol | Ccb | Parks and Mosley, 1950 | see Parks, West, et al., 1946; ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°liquid | -1655.6 ± 0.33 | kcal/mol | Ccb | Steele, Chirico, et al., 1995 | Corresponding ΔfHºliquid = 23.1 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°liquid | -1653.83 ± 0.32 | kcal/mol | Ccb | Parks and Mosley, 1950 | see Parks, West, et al., 1946; Corresponding ΔfHºliquid = 21.28 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔfH°solid | 17.9 ± 0.53 | kcal/mol | Review | Roux, Temprado, et al., 2008 | There are sufficient literature values to make a qualified recommendation where the suggested value is in good agreement with values predicted using thermochemical cycles or from reliable estimates. In general, the evaluated uncertainty limits are on the order of (2 to 4) kJ/mol.; DRB |
ΔfH°solid | 27.3 | kcal/mol | Ccb | Schmidlin, 1906 | ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°solid | -1595. | kcal/mol | Ccb | Serijan and Wise, 1951 | Corresponding ΔfHºsolid = -38. kcal/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°solid | -1656.6 | kcal/mol | Ccb | Wise, Serijan, et al., 1951 | Corresponding ΔfHºsolid = 24.0 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°solid | -1656.20 ± 0.20 | kcal/mol | Ccb | Coops, Mulder, et al., 1946 | Reanalyzed by Cox and Pilcher, 1970, Original value = -1655.6 ± 0.2 kcal/mol; Corresponding ΔfHºsolid = 23.65 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°solid | -1659.9 | kcal/mol | Ccb | Schmidlin, 1906 | Corresponding ΔfHºsolid = 27.3 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS |
Quantity | Value | Units | Method | Reference | Comment |
S°solid,1 bar | 57.19 | cal/mol*K | N/A | Huffman, Parks, et al., 1930 | Extrapolation below 90 K, 77.86 J/mol*K.; DH |
Constant pressure heat capacity of solid
Cp,solid (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
63.60 | 303. | Duff and Everett, 1956 | T = 303 to 353 K.; DH |
66.90 | 300. | Kurbatov, 1950 | T = 29 to 254°C.; DH |
55.81 | 298.5 | Smith and Andrews, 1931 | T = 102 to 322 K. Value is unsmoothed experimental datum.; DH |
53.49 | 282.5 | Huffman, Parks, et al., 1930 | T = 89 to 312 K. Value is unsmoothed experimental datum.; DH |
Reaction thermochemistry data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
C13H11- + =
By formula: C13H11- + H+ = C13H12
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 363.6 ± 2.1 | kcal/mol | G+TS | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale; B |
ΔrH° | 361.3 ± 2.3 | kcal/mol | G+TS | Cumming and Kebarle, 1978 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 358.2 ± 2.0 | kcal/mol | IMRE | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale; B |
ΔrG° | 355.9 ± 2.0 | kcal/mol | IMRE | Cumming and Kebarle, 1978 | gas phase; B |
By formula: Cl- + C13H12 = (Cl- • C13H12)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 7.40 | kcal/mol | TDEq | French, Ikuta, et al., 1982 | gas phase; B |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
7.4 | 300. | PHPMS | French, Ikuta, et al., 1982 | gas phase; M |
References
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Roux, Temprado, et al., 2008
Roux, M.V.; Temprado, M.; Chickos, J.S.; Nagano, Y.,
Critically Evaluated Thermochemical Properties of Polycyclic Aromatic Hydrocarbons,
J. Phys. Chem. Ref. Data, 2008, 37, 4, 1855-1996. [all data]
Steele, Chirico, et al., 1995
Steele, W.V.; Chirico, R.D.; Smith, N.K.,
The standard enthalpies of formation of 2-methylbiphenyl and diphenylmethane,
J. Chem. Thermodyn., 1995, 27, 671-678. [all data]
Parks and Mosley, 1950
Parks, G.S.; Mosley, J.R.,
Redetermination of the heat of combustion of diphenylmethane,
J. Am. Chem. Soc., 1950, 72, 1850. [all data]
Marcus Y., 1986
Marcus Y.,
Entropies of tetrahedral M-phenyl species,
J. Chem. Soc., Faraday Trans. 1, 1986, 82, 993-1006. [all data]
Dorofeeva O.V., 1997
Dorofeeva O.V.,
Unpublished results. Thermocenter of Russian Academy of Science, Moscow, 1997. [all data]
Puranik P.G., 1962
Puranik P.G.,
Vibrational spectra, potential constants, and thermodynamic properties of diphenylmethane,
Proc. Indian Acad. Sci., 1962, A56, 233-238. [all data]
Parks, West, et al., 1946
Parks, G.S.; West, T.J.; Naylor, B.F.; Fujii, P.S.; McClaine, L.A.,
Thermal data on organic compounds. XXIII. Modern combustion data for fourteen hydrocarbons and five polyhydroxy alcohols,
J. Am. Chem. Soc., 1946, 68, 2524-2527. [all data]
Schmidlin, 1906
Schmidlin, M.J.,
Recherches chimiques et thermochimiques sur la constitution des rosanilines,
Ann. Chim. Phys., 1906, 1, 195-256. [all data]
Serijan and Wise, 1951
Serijan, K.T.; Wise, P.H.,
Dicyclic hydrocarbons. III. Diphenyl- and dicyclohexylalkanes through C15,
J. Am. Chem. Soc., 1951, 73, 4766-4769. [all data]
Wise, Serijan, et al., 1951
Wise, C.H.; Serijan, K.T.; Goodman, I.A.,
NACA Technical Report 1003,
NACA Technical Report 1003, 1951, 1-10. [all data]
Coops, Mulder, et al., 1946
Coops, J.; Mulder, D.; Dienske, J.W.; Smittenberg, J.,
The heats of combustion of a number of hydrocarbons,
Rec. Trav. Chim. Pays/Bas, 1946, 65, 128. [all data]
Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G.,
Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]
Huffman, Parks, et al., 1930
Huffman, H.M.; Parks, G.S.; Daniels, A.C.,
Thermal data on organic compounds. VII. The heat capacities, entropies and free energies of twelve aromatic hydrocarbons,
J. Am. Chem. Soc., 1930, 52, 1547-1558. [all data]
Duff and Everett, 1956
Duff, G.M.; Everett, D.H.,
The heat capacity of the system benzene + diphenylmethane,
Trans. Faraday Soc., 1956, 52, 753-763. [all data]
Kurbatov, 1950
Kurbatov, V.Ya.,
Specific heats of liquids. III. Specific heat of hydrocarbons with several noncondensed rings,
Zhur. Obshch. Khim., 1950, 20, 1139-1144. [all data]
Smith and Andrews, 1931
Smith, R.H.; Andrews, D.H.,
Thermal energy studies. I. Phenyl derivatives of methane,
ethane and some related compounds. J. Am. Chem. Soc., 1931, 53, 3644-3660. [all data]
Bartmess, Scott, et al., 1979
Bartmess, J.E.; Scott, J.A.; McIver, R.T., Jr.,
The gas phase acidity scale from methanol to phenol,
J. Am. Chem. Soc., 1979, 101, 6047. [all data]
Cumming and Kebarle, 1978
Cumming, J.B.; Kebarle, P.,
Summary of gas phase measurements involving acids AH. Entropy changes in proton transfer reactions involving negative ions. Bond dissociation energies D(A-H) and electron affinities EA(A),
Can. J. Chem., 1978, 56, 1. [all data]
French, Ikuta, et al., 1982
French, M.A.; Ikuta, S.; Kebarle, P.,
Hydrogen bonding of O-H and C-H hydrogen donors to Cl-. Results from mass spectrometric measurement of the ion-molecule equilibria RH + Cl- = RHCl-,
Can. J. Chem., 1982, 60, 1907. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, References
- Symbols used in this document:
Cp,solid Constant pressure heat capacity of solid S°gas Entropy of gas at standard conditions S°solid,1 bar Entropy of solid at standard conditions (1 bar) T Temperature ΔcH°liquid Enthalpy of combustion of liquid at standard conditions ΔcH°solid Enthalpy of combustion of solid at standard conditions ΔfH°gas Enthalpy of formation of gas at standard conditions ΔfH°liquid Enthalpy of formation of liquid at standard conditions ΔfH°solid Enthalpy of formation of solid at standard conditions ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.