Sulfur tetrafluoride

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Quantity Value Units Method Reference Comment
Δfgas-763.16kJ/molReviewChase, 1998Data last reviewed in June, 1976
Quantity Value Units Method Reference Comment
gas,1 bar299.64J/mol*KReviewChase, 1998Data last reviewed in June, 1976

Gas Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
    Cp = heat capacity (J/mol*K)
    H° = standard enthalpy (kJ/mol)
    S° = standard entropy (J/mol*K)
    t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 298. to 600.600. to 6000.
A 29.37896106.7707
B 261.16780.905459
C -345.0218-0.213326
D 168.13700.016546
E -0.305321-3.601403
F -781.8390-806.3070
G 269.4630410.6019
H -763.1616-763.1616
ReferenceChase, 1998Chase, 1998
Comment Data last reviewed in June, 1976 Data last reviewed in June, 1976

Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
B - John E. Bartmess

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

Fluorine anion + Sulfur tetrafluoride = (Fluorine anion • Sulfur tetrafluoride)

By formula: F- + F4S = (F- • F4S)

Quantity Value Units Method Reference Comment
Δr183.kJ/molICRLarson and McMahon, 1985gas phase; switching reaction,Thermochemical ladder(F-)H2O, Entropy change calculated or estimated; Arshadi, Yamdagni, et al., 1970; M
Δr183.kJ/molICRLarson and McMahon, 1983gas phase; switching reaction(F-)H2O, Entropy change calculated or estimated; Arshadi, Yamdagni, et al., 1970; M
Quantity Value Units Method Reference Comment
Δr100.J/mol*KN/ALarson and McMahon, 1985gas phase; switching reaction,Thermochemical ladder(F-)H2O, Entropy change calculated or estimated; Arshadi, Yamdagni, et al., 1970; M
Δr107.J/mol*KN/ALarson and McMahon, 1983gas phase; switching reaction(F-)H2O, Entropy change calculated or estimated; Arshadi, Yamdagni, et al., 1970; M
Quantity Value Units Method Reference Comment
Δr151.kJ/molICRLarson and McMahon, 1985gas phase; switching reaction,Thermochemical ladder(F-)H2O, Entropy change calculated or estimated; Arshadi, Yamdagni, et al., 1970; M
Δr151.kJ/molICRLarson and McMahon, 1983gas phase; switching reaction(F-)H2O, Entropy change calculated or estimated; Arshadi, Yamdagni, et al., 1970; M

(Fluorine anion • 4294967295Sulfur tetrafluoride) + Sulfur tetrafluoride = Fluorine anion

By formula: (F- • 4294967295F4S) + F4S = F-

Quantity Value Units Method Reference Comment
Δr230. ± 9.6kJ/molCIDTLobring, Check, et al., 2003gas phase; B
Δr226. ± 27.kJ/molTherLeffert, Tang, et al., 1974gas phase; From SF6; B
Δr>169. ± 14.kJ/molIMRBBabcock and Streit, 1981gas phase; Fluoride Affinity: SF4 > SF5; B
Δr183. ± 8.4kJ/molIMRELarson and McMahon, 1983gas phase; These relative affinities are ca. 10 kcal/mol weaker than threshold values (see Wenthold and Squires, 1995) for donors greater than ca. 27 kcal/mol in free energy. This discrepancy has not yet been resolved, though the stronger value appears preferable.; B
Quantity Value Units Method Reference Comment
Δr151. ± 8.4kJ/molIMRELarson and McMahon, 1983gas phase; These relative affinities are ca. 10 kcal/mol weaker than threshold values (see Wenthold and Squires, 1995) for donors greater than ca. 27 kcal/mol in free energy. This discrepancy has not yet been resolved, though the stronger value appears preferable.; B

CN- + Sulfur tetrafluoride = (CN- • Sulfur tetrafluoride)

By formula: CN- + F4S = (CN- • F4S)

Quantity Value Units Method Reference Comment
Δr108. ± 4.2kJ/molIMRELarson, Szulejko, et al., 1988gas phase; B,M
Quantity Value Units Method Reference Comment
Δr130.J/mol*KN/ALarson, Szulejko, et al., 1988gas phase; switching reaction,Thermochemical ladder(CN-)H2O, Entropy change calculated or estimated; Payzant, Yamdagni, et al., 1971; M
Quantity Value Units Method Reference Comment
Δr70.7 ± 2.1kJ/molIMRELarson, Szulejko, et al., 1988gas phase; B,M

References

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Chase, 1998
Chase, M.W., Jr., NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]

Larson and McMahon, 1985
Larson, J.W.; McMahon, T.B., Fluoride and chloride affinities of the main group oxides, fluorides, oxofluorides, and alkyls. Quantitative scales of lewis acidities from ICR halide exchange equilibria, J. Am. Chem. Soc., 1985, 107, 766. [all data]

Arshadi, Yamdagni, et al., 1970
Arshadi, M.; Yamdagni, R.; Kebarle, P., Hydration of Halide Negative Ions in the Gas Phase. II. Comparison of Hydration Energies for the Alkali Positive and Halide Negative Ions, J. Phys. Chem., 1970, 74, 7, 1475, https://doi.org/10.1021/j100702a014 . [all data]

Larson and McMahon, 1983
Larson, J.W.; McMahon, T.B., Strong hydrogen bonding in gas-phase anions. An ion cyclotron resonance determination of fluoride binding energetics to bronsted acids from gas-phase fluoride exchange equilibria measurements, J. Am. Chem. Soc., 1983, 105, 2944. [all data]

Lobring, Check, et al., 2003
Lobring, K.C.; Check, C.E.; Gilbert, T.M.; Sunderlin, L.S., New measurements of the thermochemistry of SF5- and SF6-, Int. J. Mass Spectrom., 2003, 227, 3, 361-372, https://doi.org/10.1016/S1387-3806(03)00105-2 . [all data]

Leffert, Tang, et al., 1974
Leffert, C.B.; Tang, S.Y.; Rothe, E.W.; Cheng, T.C., Collisional ionization of Cs with SF6, J. Chem. Phys., 1974, 61, 4929. [all data]

Babcock and Streit, 1981
Babcock, L.M.; Streit, G.E., Negative ion-molecule reactions of SF4, J. Chem. Phys., 1981, 75, 3864. [all data]

Wenthold and Squires, 1995
Wenthold, P.G.; Squires, R.R., Bond dissociation energies of F2(-) and HF2(-). A gas-phase experimental and G2 theoretical study, J. Phys. Chem., 1995, 99, 7, 2002, https://doi.org/10.1021/j100007a034 . [all data]

Larson, Szulejko, et al., 1988
Larson, J.W.; Szulejko, J.E.; McMahon, T.B., Gas Phase Lewis Acid-Base Interactions. An Experimental Determination of Cyanide Binding Energies From Ion Cyclotron Resonance and High-Pressure Mass Spectrometric Equilibrium Measurements., J. Am. Chem. Soc., 1988, 110, 23, 7604, https://doi.org/10.1021/ja00231a004 . [all data]

Payzant, Yamdagni, et al., 1971
Payzant, J.D.; Yamdagni, R.; Kebarle, P., Hydration of CN-, NO2-, NO3-, and HO- in the gas phase, Can. J. Chem., 1971, 49, 3308. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, References