Biphenyl

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas180. ± 3.kJ/molAVGN/AAverage of 6 values; Individual data points

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
50.3550.Dorofeeva O.V., 1997None of the statistically calculated values of S(T) known from literature [ Trevissoi C., 1955, Katon J.E., 1959, Aleman H., 1973, Thermodynamics Research Center, 1997] is in full accord with experimental data (see also discussion in [ Chirico R.D., 1989]). Recommended values agree with experimental values within their uncertainties except for temperature range 340-460 K where discrepancies amount to 0.4-0.6 J/mol*K.; GT
64.83100.
84.28150.
108.91200.
151.47273.15
166.7 ± 1.0298.15
167.80300.
225.53400.
273.62500.
311.78600.
342.14700.
366.75800.
387.07900.
404.061000.
418.421100.
430.641200.
441.101300.
450.091400.
457.861500.

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
DH - Eugene S. Domalski and Elizabeth D. Hearing
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Quantity Value Units Method Reference Comment
Δfsolid98.2 ± 2.5kJ/molReviewRoux, Temprado, et al., 2008There are sufficient high-quality literature values to make a good evaluation with a high degree of confidence. In general, the evaluated uncertainty limits are on the order of (0.5 to 2.5) kJ/mol.; DRB
Δfsolid96.7 ± 2.6kJ/molCcbMontgomery, Rossini, et al., 1978ALS
Δfsolid100.5 ± 1.5kJ/molCcbColeman and Pilcher, 1966ALS
Δfsolid96.8 ± 4.0kJ/molCcbMackle and O'Hare, 1963ALS
Δfsolid97.2 ± 1.6kJ/molCcbParks and Vaughan, 1951Reanalyzed by Cox and Pilcher, 1970, Original value = 96.65 kJ/mol; ALS
Quantity Value Units Method Reference Comment
Δcsolid-6250. ± 20.kJ/molAVGN/AAverage of 7 values; Individual data points
Quantity Value Units Method Reference Comment
solid,1 bar209.38J/mol*KN/AChirico, Knipmeyer, et al., 1989DH
solid,1 bar209.00J/mol*KN/ASaito, Atake, et al., 1988DH
solid,1 bar205.9J/mol*KN/AHuffman, Parks, et al., 1930Extrapolation below 90 K, 65.4 J/mol*K.; DH

Constant pressure heat capacity of liquid

Cp,liquid (J/mol*K) Temperature (K) Reference Comment
285.3370.Walker, Brooks, et al., 1958T = 200 to 600°F.; DH
301.2422.McEwen, March 31 1956T = 300 to 600°C.; DH
300.0370.Kurbatov, 1950T = 98 to 255°C. Mp 70.8°C.; DH
263.2350.8Forrest, Brugmann, et al., 1931T = 350 to 620 K. Value is unsmoothed experimental datum.; DH
259.54298.Newton, Kaura, et al., 1931T = 100 to 300°C, equation only, in t°C. Cp(liq) = 0.388 + 0.00057t cal/g*K.; DH

Constant pressure heat capacity of solid

Cp,solid (J/mol*K) Temperature (K) Reference Comment
198.39298.15Chirico, Knipmeyer, et al., 1989T = 5 to 700 K.; DH
198.17298.15Saito, Atake, et al., 1988T = 3 to 300 K.; DH
197.7298.15O'Rourke and Mraw, 1983T = 220 to 475 K. Cp = 0.7143 (T/K) - 15.3 (220 to 342.2 K) J/mol*K.; DH
190.300.Wasicki, Radomska, et al., 1982T = 180 to 350 K. Data given graphically. Value estimated from graph.; DH
190.8298.15Ueberreiter and Orthmann, 1950T = 293 to 368 K. Equation only.; DH
197.9298.1Schmidt, 1941T = 20 to 200°C, equations only, in t°C. Cp(c) = 0.2745 + 0.001235t cal/g*K (20 to 69°C); Cp(liq) = 0.3917 + 0.0005206t cal/g*K (69 to 200°C).; DH
197.9303.Spaght, Thomas, et al., 1932T = 30 to 100°C.; DH
194.1294.4Huffman, Parks, et al., 1930T = 93 to 295 K. Value is unsmoothed experimental datum.; DH

Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Henry's Law data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
MS - José A. Martinho Simões
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

C10H8+ + Biphenyl = (C10H8+ • Biphenyl)

By formula: C10H8+ + C12H10 = (C10H8+ • C12H10)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr56.5kJ/molPHPMSMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr120.J/mol*KN/AMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
22.297.PHPMSMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated; M

C12H8+ + Biphenyl = (C12H8+ • Biphenyl)

By formula: C12H8+ + C12H10 = (C12H8+ • C12H10)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr56.1kJ/molPHPMSMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr120.J/mol*KN/AMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
23.279.PHPMSMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated; M

C17H24F3N3O3RuS (solution) + Biphenyl (solution) = C23H25F3O3RuS (solution) + 3Acetonitrile (solution)

By formula: C17H24F3N3O3RuS (solution) + C12H10 (solution) = C23H25F3O3RuS (solution) + 3C2H3N (solution)

Quantity Value Units Method Reference Comment
Δr-15.1 ± 0.4kJ/molRSCNolan, Martin, et al., 1992solvent: Tetrahydrofuran; MS

3Hydrogen + Biphenyl = Benzene, cyclohexyl-

By formula: 3H2 + C12H10 = C12H16

Quantity Value Units Method Reference Comment
Δr-230.kJ/molEqkFrye, 1962liquid phase; ALS

Henry's Law data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Rolf Sander

Henry's Law constant (water solution)

kH(T) = H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)

H (mol/(kg*bar)) d(ln(kH))/d(1/T) (K) Method Reference Comment
1.2 QN/A missing citation give several references for the Henry's law constants but don't assign them to specific species.
3.6 LN/A 
3.3 MN/A 
2.5 MMackay, Shiu, et al., 1979 
1.2 VBohon and Claussen, 1951 

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Dorofeeva O.V., 1997
Dorofeeva O.V., Unpublished results. Thermocenter of Russian Academy of Science, Moscow, 1997. [all data]

Trevissoi C., 1955
Trevissoi C., Specific heat and entropy of biphenyl, Ann. Chim. (Rome), 1955, 45, 943-959. [all data]

Katon J.E., 1959
Katon J.E., The vibrational spectra and geometrical configuration of biphenyl, Spectrochim. Acta, 1959, 15, 627-650. [all data]

Aleman H., 1973
Aleman H., Thermodynamic functions for biphenyl and the 4,4'-dihalogenobiphenyls, Thermochim. Acta, 1973, 7, 69-73. [all data]

Thermodynamics Research Center, 1997
Thermodynamics Research Center, Selected Values of Properties of Chemical Compounds., Thermodynamics Research Center, Texas A&M University, College Station, Texas, 1997. [all data]

Chirico R.D., 1989
Chirico R.D., The thermodynamic properties of biphenyl, J. Chem. Thermodyn., 1989, 21, 1307-1331. [all data]

Roux, Temprado, et al., 2008
Roux, M.V.; Temprado, M.; Chickos, J.S.; Nagano, Y., Critically Evaluated Thermochemical Properties of Polycyclic Aromatic Hydrocarbons, J. Phys. Chem. Ref. Data, 2008, 37, 4, 1855-1996. [all data]

Montgomery, Rossini, et al., 1978
Montgomery, R.L.; Rossini, F.D.; Mansson, M., Enthalpies of combustion, vaporization, and formation of phenylbenzene, cyclohexylbenzene, and cyclohexylcyclohexane; enthalpy of hydrogenation of certain aromatic systems, J. Chem. Eng. Data, 1978, 23, 125-129. [all data]

Coleman and Pilcher, 1966
Coleman, D.J.; Pilcher, G., Heats of combustion of biphenyl, bibenzyl, naphthalene, anthracene, and phenanthrene, Trans. Faraday Soc., 1966, 62, 821-827. [all data]

Mackle and O'Hare, 1963
Mackle, H.; O'Hare, P.A.G., A high-precision aneroid semi-micro combustion calorimeter, Trans. Faraday Soc., 1963, 59, 2693-2701. [all data]

Parks and Vaughan, 1951
Parks, G.S.; Vaughan, L.M., The heat of combustion of biphenyl, J. Am. Chem. Soc., 1951, 73, 2380-2381. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Chirico, Knipmeyer, et al., 1989
Chirico, R.D.; Knipmeyer, S.E.; Nguyen, A.; Steele, W.V., The thermodynamic properties of biphenyl, J. Chem. Thermodyn., 1989, 21, 1307-1331. [all data]

Saito, Atake, et al., 1988
Saito, K.; Atake, T.; Chihara, H., Incommensurate phase transitions and anomalous lattice heat capacities of biphenyl, Bull. Chem. Soc. Japan, 1988, 61, 679-688. [all data]

Huffman, Parks, et al., 1930
Huffman, H.M.; Parks, G.S.; Daniels, A.C., Thermal data on organic compounds. VII. The heat capacities, entropies and free energies of twelve aromatic hydrocarbons, J. Am. Chem. Soc., 1930, 52, 1547-1558. [all data]

Walker, Brooks, et al., 1958
Walker, B.E., Jr.; Brooks, M.S.; Ewing, C.T.; Miller, R.R., Specific heat of biphenyl and other polyphenyls. Correlation of specific heat data for phenyl type compounds, J. Chem. Eng. Data, 1958, 3, 280-282. [all data]

McEwen, March 31 1956
McEwen, M., Preliminary engineering study of organic nuclear reactor coolant-moderators Monsanto Chemical Co, March 31 1956. [all data]

Kurbatov, 1950
Kurbatov, V.Ya., Specific heats of liquids. III. Specific heat of hydrocarbons with several noncondensed rings, Zhur. Obshch. Khim., 1950, 20, 1139-1144. [all data]

Forrest, Brugmann, et al., 1931
Forrest, H.O.; Brugmann, E.W.; Cummings, L.W.T., The specific heat of diphenyl, Ind. Eng. Chem., 1931, 23, 37-39. [all data]

Newton, Kaura, et al., 1931
Newton, R.F.; Kaura, B.D.; DeVries, T., The specific heat of liquid diphenyl, Ind. Eng. Chem., 1931, 23, 35-37. [all data]

O'Rourke and Mraw, 1983
O'Rourke, D.F.; Mraw, S.C., Heat capacities and enthalpies of fusion of dibenzothiophene (220 to 560 K) and of biphenyl, cyclohexylbenzene, and cyclohexylcyclohexane (220 to 475 K). Enthalpies and temperatures of three transitions in solid cyclohexylcyclohexane, J. Chem. Thermodynam., 1983, 15, 489-502. [all data]

Wasicki, Radomska, et al., 1982
Wasicki, J.; Radomska, M.; Radomski, R., Heat capacities of diphenyl, p-terphenyl and p-quaterphenyl from 180 K to their melting points, J. Therm. Anal., 1982, 25, 509-514. [all data]

Ueberreiter and Orthmann, 1950
Ueberreiter, K.; Orthmann, H.-J., Specifische Wärme, spezifisches Volumen, Temperatur- und Wärme-leittähigkeit einiger disubstituierter Benzole und polycyclischer Systeme, Z. Natursforsch. 5a, 1950, 101-108. [all data]

Schmidt, 1941
Schmidt, W.R., Thesis Washington University (St. Louis), 1941. [all data]

Spaght, Thomas, et al., 1932
Spaght, M.E.; Thomas, S.B.; Parks, G.S., Some heat capacity data on organic compounds obtained with a radiation calorimeter, J. Phys. Chem., 1932, 36, 882-888. [all data]

Meot-Ner (Mautner), 1980
Meot-Ner (Mautner), M., Dimer Cations of Polycyclic Aromatics: Experimental Bonding Energies and Resonance Stabilization, J. Phys. Chem., 1980, 84, 21, 2724, https://doi.org/10.1021/j100458a012 . [all data]

Nolan, Martin, et al., 1992
Nolan, S.P.; Martin, K.L.; Stevens, E.D.; Fagan, P., Organometallics, 1992, 11, 3947. [all data]

Frye, 1962
Frye, C.G., Equilibria in the hydrogenation of polycyclic aromatics, J. Chem. Eng. Data, 1962, 7, 592-595. [all data]

Mackay, Shiu, et al., 1979
Mackay, D.; Shiu, W.-Y.; Sutherland, R.P., Determination of Air-Water Henry's Law Constants for Hydrophobic Pollutants, Environ. Sci. Technol., 1979, 13, 333-337. [all data]

Bohon and Claussen, 1951
Bohon, R.L.; Claussen, W.F., The solubility of aromatic hydrocarbons in water, J. Am. Chem. Soc., 1951, 73, 1571-1578. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, References