mercury iodide


Gas phase thermochemistry data

Go To: Top, Constants of diatomic molecules, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Quantity Value Units Method Reference Comment
Δfgas133.47kJ/molReviewChase, 1998Data last reviewed in December, 1961
Quantity Value Units Method Reference Comment
gas,1 bar280.75J/mol*KReviewChase, 1998Data last reviewed in December, 1961

Gas Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
    Cp = heat capacity (J/mol*K)
    H° = standard enthalpy (kJ/mol)
    S° = standard entropy (J/mol*K)
    t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 298. to 6000.
A 37.41341
B 2.518597
C -0.000234
D 0.000019
E -0.021861
F 122.1301
G 325.1541
H 133.4700
ReferenceChase, 1998
Comment Data last reviewed in December, 1961

Constants of diatomic molecules

Go To: Top, Gas phase thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Klaus P. Huber and Gerhard H. Herzberg

Data collected through February, 1975

Symbols used in the table of constants
SymbolMeaning
State electronic state and / or symmetry symbol
Te minimum electronic energy (cm-1)
ωe vibrational constant – first term (cm-1)
ωexe vibrational constant – second term (cm-1)
ωeye vibrational constant – third term (cm-1)
Be rotational constant in equilibrium position (cm-1)
αe rotational constant – first term (cm-1)
γe rotation-vibration interaction constant (cm-1)
De centrifugal distortion constant (cm-1)
βe rotational constant – first term, centrifugal force (cm-1)
re internuclear distance (Å)
Trans. observed transition(s) corresponding to electronic state
ν00 position of 0-0 band (units noted in table)
Diatomic constants for (202)Hg127I
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
H 47110 97.1 H 1.7 1        H → X R 47096 H
Prileshajewa, 1932; missing citation
G 45542 88.4 H 0.2        G → X R 45524 H
Prileshajewa, 1932; missing citation
F3 (44531) (85.5) H (0.8)        F3 → X R (44510) H
Rao and Rao, 1946; Ramasastry, 1948
F2 2           F2 → X R 
Rao and Rao, 1946; missing citation
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
F1 40152 90.8 H 0.93        F1 → X R 40135 H
Rao and Rao, 1946; Ramasastry, 1948
E 3           E → X R 
Wieland, 1932; Sastry, 1942; Krishnamurthi, 1960
D (2Π3/2) 36269 178.0 H 1.14        D → X V 36295 H
Wieland, 1932; Howell, 1944; Rao, Sastry, et al., 1944
C (2Π1/2) 32730.0 235.6 H 2.21        C ↔ X V 32785.0 H
Wieland, 1929; Wieland, 1932; Howell, 1944; Rao, Sastry, et al., 1944; Wieland, 1948; Wieland and Herczog, 1949; Greig, Gunning, et al., 1970
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
B 2Σ+ 24187.1 110.45 H 0.15        B ↔ X R 24180.0 H
Wieland, 1948, 2; missing citation
X 2Σ+ 0 125.0 H 1.0 4         

Notes

1Predissociation above v=2.
2Unclassified bands in the region 40800 - 42200 cm-1, converging near 40800 cm-1.
3Bands in the region 37500 - 39500 cm-1; tentative analyses Sastry, 1942, Krishnamurthi, 1960.
4Above v=7: ωexe ~ 1.5.
5Extrapolation for X 2Σ+ Wieland, 1960. Good agreement with an earlier thermochemical value Wieland and Herczog, 1949.

References

Go To: Top, Gas phase thermochemistry data, Constants of diatomic molecules, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Chase, 1998
Chase, M.W., Jr., NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]

Prileshajewa, 1932
Prileshajewa, N., Uber den nachweis des jodatoms bei der optischen dissoziation von salzdampfen, Phys. Z. Sowjetunion, 1932, 1, 189. [all data]

Rao and Rao, 1946
Rao, V.R.; Rao, K.R., Ultra violet band system of the mercury iodide molecule. Part II, Indian J. Phys., 1946, 20, 148. [all data]

Ramasastry, 1948
Ramasastry, C., Ultra-violet bands of mercury iodide. Part IV, Indian J. Phys., 1948, 22, 95. [all data]

Wieland, 1932
Wieland, K., Absorptions- und fluoreszenzspektren dampfformiger quecksilberhalogenide. I. HgJ2, Z. Phys., 1932, 76, 801. [all data]

Sastry, 1942
Sastry, M.G., The ultra-violet band spectrum of mercury iodide, Proc. Natl. Inst. Sci. India, 1942, 8, 289. [all data]

Krishnamurthi, 1960
Krishnamurthi, V.G., Ultra-violet bands of mercury iodide, Z. Phys., 1960, 160, 438. [all data]

Howell, 1944
Howell, H.G., The ultra-violet spectra and electron configuration of HgF and related halide molecules, Proc. R. Soc. London A, 1944, 182, 95. [all data]

Rao, Sastry, et al., 1944
Rao, K.R.; Sastry, M.G.; Krishnamurti, V.G., Ultra-violet band systems of the mercury iodide molecule. Part I, Indian J. Phys., 1944, 18, 323. [all data]

Wieland, 1929
Wieland, K., Bandenspektren der quecksilber-, cadmium- und zinkhalogenide, Helv. Phys. Acta, 1929, 2, 46. [all data]

Wieland, 1948
Wieland, K., Spectres d'absorption des halogenures de mercure (HgX2) en equilibre thermique au-dessus de 1000°C, J. Chim. Phys. Phys.-Chim. Biol., 1948, 45, 3. [all data]

Wieland and Herczog, 1949
Wieland, K.; Herczog, A., 114. Thermische dissoziation und thermodynamische eigenschaften von HgJ2 und HgJ in dampfphase, Helv. Chim. Acta, 1949, 32, 889. [all data]

Greig, Gunning, et al., 1970
Greig, G.; Gunning, H.E.; Strausz, O.P., Reactions of metal atoms. III. The combination of mercury and iodine atoms and the spectrum of HgI, J. Chem. Phys., 1970, 52, 4569. [all data]

Wieland, 1948, 2
Wieland, K., Molekulspektren mit Ionencharakter und ihre Beeinflussung durch Fremdgase in Contribution a l'Etude de la Structure Moleculaire, Desoer, Liege, ed(s)., 1948, 229-238. [all data]

Wieland, 1960
Wieland, K., Bandensysteme B(2Σ+) → X(2Σ+) und Dissoziationswerte der Radikale HgJ und HgBr, Z. Elektrochem., 1960, 64, 761. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Constants of diatomic molecules, References