Methane

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Reaction thermochemistry data

Go To: Top, Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
MS - José A. Martinho Simões
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Reactions 1 to 50

CH3- + Hydrogen cation = Methane

By formula: CH3- + H+ = CH4

Quantity Value Units Method Reference Comment
Δr1743.6 ± 2.9kJ/molD-EAEllison, Engelking, et al., 1978gas phase; B
Δr1749. ± 15.kJ/molCIDTGraul and Squires, 1990gas phase; B
Δr>1691.1 ± 0.42kJ/molG+TSBohme, Lee-Ruff, et al., 1972gas phase; B
Δr1735.5kJ/molN/ACheck, Faust, et al., 2001gas phase; FeBr3; ; ΔS(EA)=9.3; B
Quantity Value Units Method Reference Comment
Δr1709.8 ± 3.3kJ/molH-TSEllison, Engelking, et al., 1978gas phase; B
Δr1715. ± 15.kJ/molH-TSGraul and Squires, 1990gas phase; B
Δr>1657.3kJ/molIMRBBohme, Lee-Ruff, et al., 1972gas phase; B
Δr1704.1kJ/molN/ACheck, Faust, et al., 2001gas phase; FeBr3; ; ΔS(EA)=9.3; B

(CH5+ • Methane) + Methane = (CH5+ • 2Methane)

By formula: (CH5+ • CH4) + CH4 = (CH5+ • 2CH4)

Quantity Value Units Method Reference Comment
Δr22. ± 1.kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Δr25.kJ/molPHPMSHiraoka and Kebarle, 1975gas phase; M
Δr6.3kJ/molHPMSField and Beggs, 1971gas phase; Entropy change is questionable; M
Quantity Value Units Method Reference Comment
Δr104.J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M
Δr102.J/mol*KPHPMSHiraoka and Kebarle, 1975gas phase; M
Δr30.J/mol*KHPMSField and Beggs, 1971gas phase; Entropy change is questionable; M

CH5+ + Methane = (CH5+ • Methane)

By formula: CH5+ + CH4 = (CH5+ • CH4)

Quantity Value Units Method Reference Comment
Δr29. ± 1.kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Δr31.kJ/molPHPMSHiraoka and Kebarle, 1975gas phase; M
Δr17.kJ/molHPMSField and Beggs, 1971gas phase; Entropy change is questionable; M
Quantity Value Units Method Reference Comment
Δr92.5J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M
Δr87.0J/mol*KPHPMSHiraoka and Kebarle, 1975gas phase; M
Δr51.9J/mol*KHPMSField and Beggs, 1971gas phase; Entropy change is questionable; M

C2H5+ + Methane = (C2H5+ • Methane)

By formula: C2H5+ + CH4 = (C2H5+ • CH4)

Quantity Value Units Method Reference Comment
Δr23.0kJ/molPHPMSHiraoka, Mori, et al., 1993gas phase; M
Δr28.kJ/molPHPMSHiroka and Kebarle, 1975gas phase; M
Δr10.kJ/molHPMSField and Beggs, 1971gas phase; Entropy change is questionable; M
Quantity Value Units Method Reference Comment
Δr92.9J/mol*KPHPMSHiraoka, Mori, et al., 1993gas phase; M
Δr97.9J/mol*KPHPMSHiroka and Kebarle, 1975gas phase; M
Δr36.J/mol*KHPMSField and Beggs, 1971gas phase; Entropy change is questionable; M

(Cobalt ion (1+) • 2Methane) + Methane = (Cobalt ion (1+) • 3Methane)

By formula: (Co+ • 2CH4) + CH4 = (Co+ • 3CH4)

Quantity Value Units Method Reference Comment
Δr46.kJ/molSIDTKemper, Bushnell, et al., 1993gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr84.J/mol*KN/AKemper, Bushnell, et al., 1993gas phase; Entropy change calculated or estimated; M

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
41. (+5.0,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
3.477.SIDTKemper, Bushnell, et al., 1993gas phase; Entropy change calculated or estimated; M

Cobalt ion (1+) + Methane = (Cobalt ion (1+) • Methane)

By formula: Co+ + CH4 = (Co+ • CH4)

Quantity Value Units Method Reference Comment
Δr82.8J/mol*KSIDTKemper, Bushnell, et al., 1993gas phase; ΔrS(530 K); M

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
90.0 (+6.7,-0.) CIDHaynes and Armentrout, 1996gas phase; guided ion beam CID; M
90.0 (+5.9,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M
94. (+2.,-0.) SIDTKemper, Bushnell, et al., 1993gas phase; ΔrS(530 K); M

(Cobalt ion (1+) • Methane) + Hydrogen = (Cobalt ion (1+) • Hydrogen • Methane)

By formula: (Co+ • CH4) + H2 = (Co+ • H2 • CH4)

Quantity Value Units Method Reference Comment
Δr95.8J/mol*KSIDTKemper, Bushnell, et al., 1993gas phase; switching reaction(Co+).2H2, ΔrS(440 K); Kemper, Bushnell, et al., 1993, 2; M

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
73. (+3.,-0.) SIDTKemper, Bushnell, et al., 1993gas phase; switching reaction(Co+).2H2, ΔrS(440 K); Kemper, Bushnell, et al., 1993, 2; M

(Cobalt ion (1+) • Hydrogen) + Methane = (Cobalt ion (1+) • Methane • Hydrogen)

By formula: (Co+ • H2) + CH4 = (Co+ • CH4 • H2)

Quantity Value Units Method Reference Comment
Δr91.2J/mol*KSIDTKemper, Bushnell, et al., 1993gas phase; switching reaction(Co+)2H2, ΔrS(440 K); Kemper, Bushnell, et al., 1993, 2; M

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
94.6 (+5.0,-0.) SIDTKemper, Bushnell, et al., 1993gas phase; switching reaction(Co+)2H2, ΔrS(440 K); Kemper, Bushnell, et al., 1993, 2; M

Manganese, pentacarbonylmethyl- (g) = C5MnO5 (g) + Methane (g)

By formula: C6H3MnO5 (g) = C5MnO5 (g) + CH4 (g)

Quantity Value Units Method Reference Comment
Δr192. ± 15.kJ/molPIMSMartinho Simões and Beauchamp, 1990The reaction enthalpy was derived from the appearance energy of Mn(CO)5(+), 940.7 ± 4.8 kJ/mol, using Mn(CO)5(Me) as the neutral precursor, together with the adiabatic ionization energy of Mn(CO)5 radical, 749. ± 14. kJ/mol Martinho Simões and Beauchamp, 1990; MS

(Cobalt ion (1+) • Methane) + Methane = (Cobalt ion (1+) • 2Methane)

By formula: (Co+ • CH4) + CH4 = (Co+ • 2CH4)

Quantity Value Units Method Reference Comment
Δr109.J/mol*KSIDTKemper, Bushnell, et al., 1993gas phase; ΔrS(500 K); M

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
95.8 (+5.0,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M
104. (+4.2,-0.) SIDTKemper, Bushnell, et al., 1993gas phase; ΔrS(500 K); M

(CH5+ • 2Methane) + Methane = (CH5+ • 3Methane)

By formula: (CH5+ • 2CH4) + CH4 = (CH5+ • 3CH4)

Quantity Value Units Method Reference Comment
Δr13.1 ± 0.8kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Δr17.kJ/molPHPMSHiraoka and Kebarle, 1975gas phase; M
Quantity Value Units Method Reference Comment
Δr93.7J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M
Δr109.J/mol*KPHPMSHiraoka and Kebarle, 1975gas phase; M

(CH5+ • 3Methane) + Methane = (CH5+ • 4Methane)

By formula: (CH5+ • 3CH4) + CH4 = (CH5+ • 4CH4)

Quantity Value Units Method Reference Comment
Δr12.6 ± 0.8kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Δr16.kJ/molPHPMSHiraoka and Kebarle, 1975gas phase; M
Quantity Value Units Method Reference Comment
Δr99.2J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M
Δr111.J/mol*KPHPMSHiraoka and Kebarle, 1975gas phase; M

Hydrogen bromide (g) + CH3BrMg (solution) = Methane (solution) + Br2Mg (solution)

By formula: HBr (g) + CH3BrMg (solution) = CH4 (solution) + Br2Mg (solution)

Quantity Value Units Method Reference Comment
Δr-274.5 ± 2.2kJ/molRSCHolm, 1981solvent: Diethyl ether; The enthalpy of formation was calculated using the assumptions and the auxiliary data in Holm, 1981, except for the organic compound, whose enthalpy of formation was quoted from Pedley, 1994; MS

(Cobalt ion (1+) • Methane) + Ethane = (Cobalt ion (1+) • Ethane • Methane)

By formula: (Co+ • CH4) + C2H6 = (Co+ • C2H6 • CH4)

Quantity Value Units Method Reference Comment
Δr108.J/mol*KSIDTKemper, Bushnell, et al., 1993gas phase; switching reaction(Co+).2CH4, ΔrS(480 K); M

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
119. (+5.4,-0.) SIDTKemper, Bushnell, et al., 1993gas phase; switching reaction(Co+).2CH4, ΔrS(480 K); M

C63H91CoN13O14P (solution) = Cyanocobalamin (solution) + Methane (solution)

By formula: C63H91CoN13O14P (solution) = C63H88CoN14O14P (solution) + CH4 (solution)

Quantity Value Units Method Reference Comment
Δr155. ± 13.kJ/molKinSMartin and Finke, 1990solvent: Ethylene glycol; Please also see Martin and Finke, 1992. The reaction enthalpy relies on 172. ± 13. kJ/mol for the reaction activation enthalpy. The reaction refers to "base-on" cobalamine.; MS

C3H7+ + Methane = (C3H7+ • Methane)

By formula: C3H7+ + CH4 = (C3H7+ • CH4)

Quantity Value Units Method Reference Comment
Δr10.8kJ/molPHPMSHiraoka, Mori, et al., 1993gas phase; M
Δr14.kJ/molPHPMSHiraoka and Kebarle, 1976gas phase; M
Quantity Value Units Method Reference Comment
Δr72.8J/mol*KPHPMSHiraoka, Mori, et al., 1993gas phase; M
Δr84.J/mol*KPHPMSHiraoka and Kebarle, 1976gas phase; M

Hydrogen iodide + Methane, iodo- = Methane + Iodine

By formula: HI + CH3I = CH4 + I2

Quantity Value Units Method Reference Comment
Δr-52.55 ± 0.54kJ/molEqkGolden, Walsh, et al., 1965gas phase; ALS
Δr-53.0 ± 0.2kJ/molEqkGoy and Pritchard, 1965gas phase; ALS
Δr-46.2 ± 5.6kJ/molCmNichol and Ubbelohde, 1952gas phase; ALS

(C2H5+ • 9Methane) + Methane = (C2H5+ • 10Methane)

By formula: (C2H5+ • 9CH4) + CH4 = (C2H5+ • 10CH4)

Quantity Value Units Method Reference Comment
Δr7.99kJ/molPHPMSHiraoka, Mori, et al., 1993gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr92.J/mol*KN/AHiraoka, Mori, et al., 1993gas phase; Entropy change calculated or estimated; M

(C3H7+ • 7Methane) + Methane = (C3H7+ • 8Methane)

By formula: (C3H7+ • 7CH4) + CH4 = (C3H7+ • 8CH4)

Quantity Value Units Method Reference Comment
Δr8.28kJ/molPHPMSHiraoka, Mori, et al., 1993gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr92.J/mol*KN/AHiraoka, Mori, et al., 1993gas phase; Entropy change calculated or estimated; M

(C4H9+ • 8Methane) + Methane = (C4H9+ • 9Methane)

By formula: (C4H9+ • 8CH4) + CH4 = (C4H9+ • 9CH4)

Quantity Value Units Method Reference Comment
Δr7.78kJ/molPHPMSHiraoka, Mori, et al., 1993gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr84.J/mol*KN/AHiraoka, Mori, et al., 1993gas phase; Entropy change calculated or estimated; M

(CH5+ • 8Methane) + Methane = (CH5+ • 9Methane)

By formula: (CH5+ • 8CH4) + CH4 = (CH5+ • 9CH4)

Quantity Value Units Method Reference Comment
Δr6.44kJ/molPHPMSHiraoka and Mori, 1989gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr84.J/mol*KN/AHiraoka and Mori, 1989gas phase; Entropy change calculated or estimated; M

(Cobalt ion (1+) • Water) + Methane = (Cobalt ion (1+) • Methane • Water)

By formula: (Co+ • H2O) + CH4 = (Co+ • CH4 • H2O)

Quantity Value Units Method Reference Comment
Δr113.J/mol*KSIDTKemper, Bushnell, et al., 1993gas phase; ΔrS(525 K); M

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
108. (+3.,-0.) SIDTKemper, Bushnell, et al., 1993gas phase; ΔrS(525 K); M

(Hydronium cation • Methane) + Methane = (Hydronium cation • 2Methane)

By formula: (H3O+ • CH4) + CH4 = (H3O+ • 2CH4)

Quantity Value Units Method Reference Comment
Δr14.kJ/molHPMSBennet and Field, 1972gas phase; Entropy change is questionable; M
Quantity Value Units Method Reference Comment
Δr34.J/mol*KHPMSBennet and Field, 1972gas phase; Entropy change is questionable; M

(Cobalt ion (1+) • Ethane) + Methane = (Cobalt ion (1+) • Methane • Ethane)

By formula: (Co+ • C2H6) + CH4 = (Co+ • CH4 • C2H6)

Quantity Value Units Method Reference Comment
Δr110.J/mol*KSIDTKemper, Bushnell, et al., 1993gas phase; ΔrS(490 K); M

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
102. (+4.6,-0.) SIDTKemper, Bushnell, et al., 1993gas phase; ΔrS(490 K); M

NH4+ + Methane = (NH4+ • Methane)

By formula: H4N+ + CH4 = (H4N+ • CH4)

Quantity Value Units Method Reference Comment
Δr15.kJ/molHPMSBennet and Field, 1972, 2gas phase; Entropy change is questionable; M
Quantity Value Units Method Reference Comment
Δr64.9J/mol*KHPMSBennet and Field, 1972, 2gas phase; Entropy change is questionable; M

Hydrogen bromide (g) + methyllithium (cr) = Methane (g) + Lithium bromide (cr)

By formula: HBr (g) + CH3Li (cr) = CH4 (g) + BrLi (cr)

Quantity Value Units Method Reference Comment
Δr-317.3 ± 2.0kJ/molRSCHolm, 1974Please also see Pedley and Rylance, 1977. The reaction enthalpy was quoted from Pedley and Rylance, 1977. See Liebman, Martinho Simões, et al., 1995 for comments; MS

2Hydrogen + Methylene chloride = Methane + 2Hydrogen chloride

By formula: 2H2 + CH2Cl2 = CH4 + 2HCl

Quantity Value Units Method Reference Comment
Δr-163.4 ± 1.3kJ/molChydLacher, Amador, et al., 1967gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -167.7 ± 1.3 kJ/mol; At 250 C; ALS

Dimethylzinc (l) + (Sulfuric Acid • 100Water) (solution) = 2Methane (g) + (zinc sulphate • 100Water) (solution)

By formula: C2H6Zn (l) + (H2O4S • 100H2O) (solution) = 2CH4 (g) + (O4SZn • 100H2O) (solution)

Quantity Value Units Method Reference Comment
Δr-341.8 ± 0.8kJ/molRSCCarson, Hartley, et al., 1949Please also see Pedley and Rylance, 1977 and Cox and Pilcher, 1970, 2.; MS

(CH5+ • 4Methane) + Methane = (CH5+ • 5Methane)

By formula: (CH5+ • 4CH4) + CH4 = (CH5+ • 5CH4)

Quantity Value Units Method Reference Comment
Δr11.7 ± 0.8kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr104.J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(CH5+ • 5Methane) + Methane = (CH5+ • 6Methane)

By formula: (CH5+ • 5CH4) + CH4 = (CH5+ • 6CH4)

Quantity Value Units Method Reference Comment
Δr11.3 ± 0.8kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr106.J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(CH5+ • 6Methane) + Methane = (CH5+ • 7Methane)

By formula: (CH5+ • 6CH4) + CH4 = (CH5+ • 7CH4)

Quantity Value Units Method Reference Comment
Δr11.2 ± 0.8kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr111.J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(CH5+ • 7Methane) + Methane = (CH5+ • 8Methane)

By formula: (CH5+ • 7CH4) + CH4 = (CH5+ • 8CH4)

Quantity Value Units Method Reference Comment
Δr8.5 ± 0.8kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr90.4J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(C2H5+ • 2Methane) + Methane = (C2H5+ • 3Methane)

By formula: (C2H5+ • 2CH4) + CH4 = (C2H5+ • 3CH4)

Quantity Value Units Method Reference Comment
Δr9.54kJ/molPHPMSHiraoka, Mori, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Δr74.9J/mol*KPHPMSHiraoka, Mori, et al., 1993gas phase; M

(C2H5+ • 3Methane) + Methane = (C2H5+ • 4Methane)

By formula: (C2H5+ • 3CH4) + CH4 = (C2H5+ • 4CH4)

Quantity Value Units Method Reference Comment
Δr9.46kJ/molPHPMSHiraoka, Mori, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Δr77.0J/mol*KPHPMSHiraoka, Mori, et al., 1993gas phase; M

(C2H5+ • 4Methane) + Methane = (C2H5+ • 5Methane)

By formula: (C2H5+ • 4CH4) + CH4 = (C2H5+ • 5CH4)

Quantity Value Units Method Reference Comment
Δr9.29kJ/molPHPMSHiraoka, Mori, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Δr79.1J/mol*KPHPMSHiraoka, Mori, et al., 1993gas phase; M

(C2H5+ • 5Methane) + Methane = (C2H5+ • 6Methane)

By formula: (C2H5+ • 5CH4) + CH4 = (C2H5+ • 6CH4)

Quantity Value Units Method Reference Comment
Δr9.25kJ/molPHPMSHiraoka, Mori, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Δr81.2J/mol*KPHPMSHiraoka, Mori, et al., 1993gas phase; M

(C2H5+ • 6Methane) + Methane = (C2H5+ • 7Methane)

By formula: (C2H5+ • 6CH4) + CH4 = (C2H5+ • 7CH4)

Quantity Value Units Method Reference Comment
Δr8.91kJ/molPHPMSHiraoka, Mori, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Δr86.6J/mol*KPHPMSHiraoka, Mori, et al., 1993gas phase; M

(C2H5+ • 7Methane) + Methane = (C2H5+ • 8Methane)

By formula: (C2H5+ • 7CH4) + CH4 = (C2H5+ • 8CH4)

Quantity Value Units Method Reference Comment
Δr8.79kJ/molPHPMSHiraoka, Mori, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Δr87.9J/mol*KPHPMSHiraoka, Mori, et al., 1993gas phase; M

(C2H5+ • 8Methane) + Methane = (C2H5+ • 9Methane)

By formula: (C2H5+ • 8CH4) + CH4 = (C2H5+ • 9CH4)

Quantity Value Units Method Reference Comment
Δr8.70kJ/molPHPMSHiraoka, Mori, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Δr91.2J/mol*KPHPMSHiraoka, Mori, et al., 1993gas phase; M

(C3H7+ • 2Methane) + Methane = (C3H7+ • 3Methane)

By formula: (C3H7+ • 2CH4) + CH4 = (C3H7+ • 3CH4)

Quantity Value Units Method Reference Comment
Δr9.46kJ/molPHPMSHiraoka, Mori, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Δr77.0J/mol*KPHPMSHiraoka, Mori, et al., 1993gas phase; M

(C3H7+ • 3Methane) + Methane = (C3H7+ • 4Methane)

By formula: (C3H7+ • 3CH4) + CH4 = (C3H7+ • 4CH4)

Quantity Value Units Method Reference Comment
Δr9.20kJ/molPHPMSHiraoka, Mori, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Δr79.5J/mol*KPHPMSHiraoka, Mori, et al., 1993gas phase; M

(C3H7+ • 4Methane) + Methane = (C3H7+ • 5Methane)

By formula: (C3H7+ • 4CH4) + CH4 = (C3H7+ • 5CH4)

Quantity Value Units Method Reference Comment
Δr9.20kJ/molPHPMSHiraoka, Mori, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Δr87.4J/mol*KPHPMSHiraoka, Mori, et al., 1993gas phase; M

(C3H7+ • 5Methane) + Methane = (C3H7+ • 6Methane)

By formula: (C3H7+ • 5CH4) + CH4 = (C3H7+ • 6CH4)

Quantity Value Units Method Reference Comment
Δr9.16kJ/molPHPMSHiraoka, Mori, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Δr87.9J/mol*KPHPMSHiraoka, Mori, et al., 1993gas phase; M

(C3H7+ • 6Methane) + Methane = (C3H7+ • 7Methane)

By formula: (C3H7+ • 6CH4) + CH4 = (C3H7+ • 7CH4)

Quantity Value Units Method Reference Comment
Δr9.04kJ/molPHPMSHiraoka, Mori, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Δr91.2J/mol*KPHPMSHiraoka, Mori, et al., 1993gas phase; M

(C4H9+ • 2Methane) + Methane = (C4H9+ • 3Methane)

By formula: (C4H9+ • 2CH4) + CH4 = (C4H9+ • 3CH4)

Quantity Value Units Method Reference Comment
Δr9.92kJ/molPHPMSHiraoka, Mori, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Δr82.4J/mol*KPHPMSHiraoka, Mori, et al., 1993gas phase; M

(C4H9+ • 3Methane) + Methane = (C4H9+ • 4Methane)

By formula: (C4H9+ • 3CH4) + CH4 = (C4H9+ • 4CH4)

Quantity Value Units Method Reference Comment
Δr9.87kJ/molPHPMSHiraoka, Mori, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Δr83.7J/mol*KPHPMSHiraoka, Mori, et al., 1993gas phase; M

(C4H9+ • 4Methane) + Methane = (C4H9+ • 5Methane)

By formula: (C4H9+ • 4CH4) + CH4 = (C4H9+ • 5CH4)

Quantity Value Units Method Reference Comment
Δr9.25kJ/molPHPMSHiraoka, Mori, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Δr81.2J/mol*KPHPMSHiraoka, Mori, et al., 1993gas phase; M

(C4H9+ • 5Methane) + Methane = (C4H9+ • 6Methane)

By formula: (C4H9+ • 5CH4) + CH4 = (C4H9+ • 6CH4)

Quantity Value Units Method Reference Comment
Δr8.74kJ/molPHPMSHiraoka, Mori, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Δr80.8J/mol*KPHPMSHiraoka, Mori, et al., 1993gas phase; M

(C4H9+ • 6Methane) + Methane = (C4H9+ • 7Methane)

By formula: (C4H9+ • 6CH4) + CH4 = (C4H9+ • 7CH4)

Quantity Value Units Method Reference Comment
Δr8.58kJ/molPHPMSHiraoka, Mori, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Δr82.4J/mol*KPHPMSHiraoka, Mori, et al., 1993gas phase; M

(C4H9+ • 7Methane) + Methane = (C4H9+ • 8Methane)

By formula: (C4H9+ • 7CH4) + CH4 = (C4H9+ • 8CH4)

Quantity Value Units Method Reference Comment
Δr8.33kJ/molPHPMSHiraoka, Mori, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Δr84.1J/mol*KPHPMSHiraoka, Mori, et al., 1993gas phase; M

Vibrational and/or electronic energy levels

Go To: Top, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Takehiko Shimanouchi

Symmetry:   Td     Symmetry Number σ = 12


 Sym.   No   Approximate   Selected Freq.  Infrared   Raman   Comments 
 Species   type of mode   Value   Rating   Value  Phase  Value  Phase

a1 1 Sym str 2917  A  ia 2917.0 gas
e 2 Deg deform 1534  A 1533 ia gas 1533.6 Observed through Coriolis interaction with ν4
f2 3 Deg str 3019  A 3018.9 gas 3019.5
f2 4 Deg deform 1306  C 1306.2 gas

Source: Shimanouchi, 1972

Notes

iaInactive
A0~1 cm-1 uncertainty
C3~6 cm-1 uncertainty

References

Go To: Top, Reaction thermochemistry data, Vibrational and/or electronic energy levels, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Ellison, Engelking, et al., 1978
Ellison, G.B.; Engelking, P.C.; Lineberger, W.C., An experimental determination of the geometry and electron affinity of CH3, J. Am. Chem. Soc., 1978, 100, 2556. [all data]

Graul and Squires, 1990
Graul, S.T.; Squires, R.R., Gas-Phase Acidities Derived from Threshold Energies for Activated Reactions, J. Am. Chem. Soc., 1990, 112, 7, 2517, https://doi.org/10.1021/ja00163a007 . [all data]

Bohme, Lee-Ruff, et al., 1972
Bohme, D.K.; Lee-Ruff, E.; Young, L.B., Acidity order of selected bronsted acids in the gas phase at 300K, J. Am. Chem. Soc., 1972, 94, 5153. [all data]

Check, Faust, et al., 2001
Check, C.E.; Faust, T.O.; Bailey, J.M.; Wright, B.J.; Gilbert, T.M.; Sunderlin, L.S., Addition of Polarization and Diffuse Functions to the LANL2DZ Basis Set for P-Block Elements, J. Phys. Chem. A,, 2001, 105, 34, 8111, https://doi.org/10.1021/jp011945l . [all data]

Hiraoka and Mori, 1989
Hiraoka, K.; Mori, T., Gas - Phase Stability and Structure of Cluster Ions CH5+(CH4)n with n = 1 - 9, Chem. Phys. Lett., 1989, 161, 2, 111, https://doi.org/10.1016/0009-2614(89)85040-7 . [all data]

Hiraoka and Kebarle, 1975
Hiraoka, K.; Kebarle, P., Energetics, Stabilities and Possible Structures of CH5+(CH4)n Clusters from Gas Phase Study of Equilibria CH5+(CH4)n - 1 + CH4 = CH5+(CH4)n for n = 1 - 5, J. Am. Chem. Soc., 1975, 97, 15, 4179, https://doi.org/10.1021/ja00848a005 . [all data]

Field and Beggs, 1971
Field, F.H.; Beggs, D.P., Reversible Reactions of Gas Phase Ions. III. Studies with Methane at 0.1-1.0 Torr and 77-300 K, J. Am. Chem. Soc., 1971, 93, 7, 1585, https://doi.org/10.1021/ja00736a003 . [all data]

Hiraoka, Mori, et al., 1993
Hiraoka, K.; Mori, T.; Yamabe, S., The Gas-Phase Solvation of C2H5+, s-C3H7+ and s-C4H9+ with CH4. The Isomeric Structures of C2H5+ and C2H5+.CH4, Chem. Phys. Lett., 1993, 207, 2-3, 178, https://doi.org/10.1016/0009-2614(93)87011-Q . [all data]

Hiroka and Kebarle, 1975
Hiroka, K.; Kebarle, P., Information on the Proton Affinity and Protolysis of Propane from Measurement of the Ion Cluster Equilibrium: C2H5+ + CH4 = C3H9+, Can. J. Phys., 1975, 53, 970. [all data]

Kemper, Bushnell, et al., 1993
Kemper, P.R.; Bushnell, J.; Von Koppen, P.; Bowers, M.T., Binding Energies of Co+(H2/CH4/C2H6)1,2,3 Clusters, J. Phys. Chem., 1993, 97, 9, 1810, https://doi.org/10.1021/j100111a016 . [all data]

Armentrout and Kickel, 1994
Armentrout, P.B.; Kickel, B.L., Gas Phase Thermochemistry of Transition Metal Ligand Systems: Reassessment of Values and Periodic Trends, in Organometallic Ion Chemistry, B. S. Freiser, ed, 1994. [all data]

Haynes and Armentrout, 1996
Haynes, C.L.; Armentrout, P.B., Guided Ion Beam Determination of the Co+ - H2 Bond Dissociation energy, Chem Phys. Let., 1996, 249, 1-2, 64, https://doi.org/10.1016/0009-2614(95)01337-7 . [all data]

Kemper, Bushnell, et al., 1993, 2
Kemper, P.R.; Bushnell, J.; Von Helden, G.; Bowers, M.T., Co+(H2)n Clusters: Binding Energies and Molecular Parameters, J. Chem Phys., 1993, 97, 1, 52, https://doi.org/10.1021/j100103a012 . [all data]

Martinho Simões and Beauchamp, 1990
Martinho Simões, J.A.; Beauchamp, J.L., Chem. Rev., 1990, 90, 629. [all data]

Holm, 1981
Holm, T., J. Chem. Soc., Perkin Trans. II, 1981, 464.. [all data]

Pedley, 1994
Pedley, J.B., Thermodynamic Data and Structures of Organic Compounds; Thermodynamics Research Center Data Series, Vol I, Thermodynamics Research Center, College Station, 1994. [all data]

Martin and Finke, 1990
Martin, B.D.; Finke, R.G., J. Am. Chem. Soc., 1990, 112, 2419. [all data]

Martin and Finke, 1992
Martin, B.D.; Finke, R.G., J. Am. Chem. Soc., 1992, 114, 585. [all data]

Hiraoka and Kebarle, 1976
Hiraoka, K.; Kebarle, P., Stabilities and Energetics of Pentacoordinated Carbonium Ions. The Isomeric C2H7+ Ions and Some Higher Analogues: C3H9+ and C4H11+, J. Am. Chem. Soc., 1976, 98, 20, 6119, https://doi.org/10.1021/ja00436a009 . [all data]

Golden, Walsh, et al., 1965
Golden, D.M.; Walsh, R.; Benson, S.W., The thermochemistry of the gas phase equilibrium I2 + CH4 «=» CH3I + HI and the heat of formation of the methyl radical, J. Am. Chem. Soc., 1965, 87, 4053-4057. [all data]

Goy and Pritchard, 1965
Goy, C.A.; Pritchard, H.O., Kinetics and thermodynamics of the reaction between iodine and methane and the heat of formation of methyl iodide, J. Phys. Chem., 1965, 69, 3040-3041. [all data]

Nichol and Ubbelohde, 1952
Nichol, R.J.; Ubbelohde, A.R., A thermochemical evaluation of bond strengths in some carbon compounds. part II. Bond strengths based on the reaction CH3I + HI = CH4 + I2, J. Am. Chem. Soc., 1952, 415-421. [all data]

Bennet and Field, 1972
Bennet, S.L.; Field, F.H., Reversible Reactions of Gaseous Ions. V. The Methane - Water System at Low Temperatures, J. Am. Chem. Soc., 1972, 94, 15, 5188, https://doi.org/10.1021/ja00770a008 . [all data]

Bennet and Field, 1972, 2
Bennet, S.L.; Field, F.H., Reversible Reactions of Gaseous Ions. VI. The NH3 - CH4, H2S - CH4 and CF4 - CH4 Systems at Low Temperatures, J. Am. Chem. Soc., 1972, 94, 18, 6305, https://doi.org/10.1021/ja00773a009 . [all data]

Holm, 1974
Holm, T., J. Organometal. Chem., 1974, 77, 27. [all data]

Pedley and Rylance, 1977
Pedley, J.B.; Rylance, J., Computer Analysed Thermochemical Data: Organic and Organometallic Compounds, University of Sussex, Brigton, 1977. [all data]

Liebman, Martinho Simões, et al., 1995
Liebman, J.F.; Martinho Simões, J.A.; Slayden, S.W., In Lithium Chemistry: A Theoretical and Experimental Overview Wiley: New York, Sapse, A.-M.; Schleyer, P. von Ragué, ed(s)., 1995. [all data]

Lacher, Amador, et al., 1967
Lacher, J.R.; Amador, A.; Park, J.D., Reaction heats of organic compounds. Part 5.-Heats of hydrogenation of dichloromethane, 1,1- and 1,2-dichloroethane and 1,2-dichloropropane, Trans. Faraday Soc., 1967, 63, 1608-1611. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Carson, Hartley, et al., 1949
Carson, A.S.; Hartley, K.; Skinner, H.A., Thermochemistry of metal alkyls. Part II.?The bond dissociation energies of some Zn?C and Cd?C bonds, and of Et?I., Trans. Faraday Soc., 1949, 45, 1159, https://doi.org/10.1039/tf9494501159 . [all data]

Cox and Pilcher, 1970, 2
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds in Academic Press, New York, 1970. [all data]

Shimanouchi, 1972
Shimanouchi, T., Tables of Molecular Vibrational Frequencies Consolidated Volume I, National Bureau of Standards, 1972, 1-160. [all data]


Notes

Go To: Top, Reaction thermochemistry data, Vibrational and/or electronic energy levels, References