Hydrogen
- Formula: H2
- Molecular weight: 2.01588
- IUPAC Standard InChIKey: UFHFLCQGNIYNRP-UHFFFAOYSA-N
- CAS Registry Number: 1333-74-0
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Isotopologues:
- Other names: Dihydrogen; o-Hydrogen; p-Hydrogen; Molecular hydrogen; H2; UN 1049; UN 1966
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Gas phase thermochemistry data
- Phase change data
- Reaction thermochemistry data: reactions 51 to 100, reactions 101 to 150, reactions 151 to 200, reactions 201 to 250, reactions 251 to 300, reactions 301 to 350, reactions 351 to 400, reactions 401 to 450, reactions 451 to 500, reactions 501 to 550, reactions 551 to 600, reactions 601 to 621
- Henry's Law data
- Gas phase ion energetics data
- Ion clustering data
- Mass spectrum (electron ionization)
- Fluid Properties
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Reaction thermochemistry data
Go To: Top, Constants of diatomic molecules, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
MS - José A. Martinho Simões
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
B - John E. Bartmess
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Reactions 1 to 50
(solution) + (solution) = 2 (solution)
By formula: C8Co2O8 (solution) + H2 (solution) = 2C4HCoO4 (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 19.7 ± 0.8 | kJ/mol | EqS | Rathke, Klingler, et al., 1992 | solvent: Supercritical carbon dioxide; Temperature range: 333-453 K. The results corrected for 1 atm pressure of H2 are 16.7 kJ/mol and -17.6 J/(mol K) Rathke, Klingler, et al., 1992; MS |
ΔrH° | 13.0 ± 0.9 | kJ/mol | EqS | Bor, 1986 | solvent: n-Hexane; Temperature range: ca. 300-420 K; MS |
ΔrH° | 26.4 | kJ/mol | KinS | Alemdaroglu, Penninger, et al., 1976 | solvent: n-Heptane; The reaction enthalpy relies on the experimental values for the forward and reverse activation enthalpies, 72.4 and 46.0 kJ/mol, respectively Alemdaroglu, Penninger, et al., 1976. A rather different value has, however, been reported for the activation enthalpy of the forward reaction, 104.6 kJ/mol Ungváry, 1972; MS |
ΔrH° | 27.6 | kJ/mol | EqS | Alemdaroglu, Penninger, et al., 1976 | solvent: n-Heptane; Temperature range: 353-428 K; MS |
ΔrH° | 13.4 | kJ/mol | EqS | Ungváry, 1972 | solvent: n-Heptane; Temperature range: 307-428 K. The results corrected for 1 atm pressure of H2 are 18.0 kJ/mol and -10.9 J/(mol K) Rathke, Klingler, et al., 1992; MS |
By formula: H3+ + H2 = (H3+ • H2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 29. ± 2. | kJ/mol | AVG | N/A | Average of 4 out of 11 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 72.8 to 72.8 | J/mol*K | RNG | N/A | Range of 6 values; Individual data points |
C11H2O11Os (solution) + (solution) = (g) + (solution)
By formula: C11H2O11Os (solution) + CO (solution) = H2 (g) + C12O12Os3 (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -37.7 ± 9.6 | kJ/mol | ES/KS | Poë, Sampson, et al., 1993 | solvent: Decalin; Calculated from equilibrium and kinetic data Poë, Sampson, et al., 1993.; MS |
ΔrH° | -77.4 ± 9.7 | kJ/mol | N/A | Poë, Sampson, et al., 1993 | solvent: Decalin; Calculated from data for the reactions Os3(CO)10(H)2(solution) + CO(solution) = Os3(CO)11(H)2(solution) (hrxn [kJ/mol]=-39.7±1.3, srxn [J/(mol K)]=-80.3±3.8) and Os3(CO)11(H)2(solution) + CO(solution) = Os3(CO)12(solution) + H2(g) (hrxn [kJ/mol]=-37.7±9.6, srxn [J/(mol K)]=-32.6±27.6) Poë, Sampson, et al., 1993.; MS |
By formula: C6H10 + H2 = C6H12
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -118. ± 6. | kJ/mol | AVG | N/A | Average of 8 values; Individual data points |
(cr) + (g) = 2C8H6CrO3 (cr)
By formula: C16H10Cr2O6 (cr) + H2 (g) = 2C8H6CrO3 (cr)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -13.9 ± 4.0 | kJ/mol | RSC | Landrum and Hoff, 1985 | The reaction enthalpy was obtained from the value for the reaction 2Cr(Cp)(CO)3(H)(cr) + 1,3-cy-C6H8(solution) = [Cr(Cp)(CO)3]2(cr) + cy-C6H10(solution), -98.3 ± 3.8 kJ/mol Landrum and Hoff, 1985, together with the calculated enthalpy for 1,3-cy-C6H8(l) + H2(g) = cy-C6H10(l), -112.2±1.3 Pedley, 1994. It was assumed that 1,3-cy-C6H8 and cy-C6H10 have similar solution enthalpies in heptane; MS |
ΔrH° | -15.1 ± 4.2 | kJ/mol | DSC | Landrum and Hoff, 1985 | The reaction enthalpy was obtained from the value for the reaction 2Cr(Cp)(CO)3(H)(cr) + 1,3-cy-C6H8(solution) = [Cr(Cp)(CO)3]2(cr) + cy-C6H10(solution), -98.3 ± 3.8 kJ/mol Landrum and Hoff, 1985, together with the calculated enthalpy for 1,3-cy-C6H8(l) + H2(g) = cy-C6H10(l), -112.2±1.3 Pedley, 1994. It was assumed that 1,3-cy-C6H8 and cy-C6H10 have similar solution enthalpies in heptane; MS |
By formula: H2 + C6H12 = C6H14
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -125. ± 3. | kJ/mol | AVG | N/A | Average of 8 values; Individual data points |
By formula: (H3+ • H2) + H2 = (H3+ • 2H2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 14. ± 0.8 | kJ/mol | PHPMS | Hiraoka, 1987 | gas phase; M |
ΔrH° | 13. | kJ/mol | HPMS | Beuhler, Ehrenson, et al., 1983 | gas phase; M |
ΔrH° | 14. | kJ/mol | HPMS | Beuhler, Ehrenson, et al., 1983 | gas phase; deuterated; M |
ΔrH° | 17. | kJ/mol | PHPMS | Hiraoka and Kebarle, 1975 | gas phase; M |
ΔrH° | 7.5 | kJ/mol | HPMS | Bennett and Field, 1972 | gas phase; Entropy change is questionable; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 72.8 | J/mol*K | PHPMS | Hiraoka, 1987 | gas phase; M |
ΔrS° | 70.7 | J/mol*K | HPMS | Beuhler, Ehrenson, et al., 1983 | gas phase; M |
ΔrS° | 67.4 | J/mol*K | HPMS | Beuhler, Ehrenson, et al., 1983 | gas phase; deuterated; M |
ΔrS° | 82.8 | J/mol*K | PHPMS | Hiraoka and Kebarle, 1975 | gas phase; M |
ΔrS° | 45.2 | J/mol*K | HPMS | Bennett and Field, 1972 | gas phase; Entropy change is questionable; M |
By formula: H2 + C7H14 = C7H16
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -125. ± 2. | kJ/mol | AVG | N/A | Average of 6 values; Individual data points |
By formula: C8H16 + H2 = C8H18
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -125. ± 6. | kJ/mol | AVG | N/A | Average of 7 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1675.3 | kJ/mol | N/A | Shiell, Hu, et al., 2000 | gas phase; Given: 139714.8±1 cm-1 at 0K, or 399.465±0.003 kcal/mol; B |
ΔrH° | 1675.3 | kJ/mol | N/A | Pratt, McCormack, et al., 1992 | gas phase; 399.46±0.01 kcal/mol at 0K; 0.94 correction, Gurvich, Veyts, et al.; B |
ΔrH° | 1675.3 | kJ/mol | D-EA | Lykke, Murray, et al., 1991 | gas phase; Reported: 6082.99±0.15 cm-1, or 0.754195(18) eV; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1649.3 ± 0.42 | kJ/mol | H-TS | Shiell, Hu, et al., 2000 | gas phase; Given: 139714.8±1 cm-1 at 0K, or 399.465±0.003 kcal/mol; B |
ΔrG° | 1649.3 | kJ/mol | H-TS | Lykke, Murray, et al., 1991 | gas phase; Reported: 6082.99±0.15 cm-1, or 0.754195(18) eV; B |
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -112.7 ± 0.54 | kJ/mol | Chyd | Allinger, Dodziuk, et al., 1982 | liquid phase; solvent: Hexane; ALS |
ΔrH° | -112. ± 0.8 | kJ/mol | Chyd | Roth and Lennartz, 1980 | liquid phase; solvent: Cyclohexane; ALS |
ΔrH° | -109.0 ± 1.8 | kJ/mol | Chyd | Turner, Jarrett, et al., 1973 | liquid phase; solvent: Acetic acid; ALS |
ΔrH° | -110. ± 0.8 | kJ/mol | Chyd | Rogers and McLafferty, 1971 | liquid phase; solvent: Hydrocarbon; ALS |
ΔrH° | -111.6 ± 0.3 | kJ/mol | Chyd | Dolliver, Gresham, et al., 1937 | gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -112.6 ± 0.3 kJ/mol; At 355 °K; ALS |
By formula: H2 + C8H14 = C8H16
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -102. | kJ/mol | Chyd | Doering, Roth, et al., 1989 | liquid phase; ALS |
ΔrH° | -103. ± 0.8 | kJ/mol | Chyd | Roth and Lennartz, 1980 | liquid phase; solvent: Cyclohexane; ALS |
ΔrH° | -96.40 ± 0.71 | kJ/mol | Chyd | Rogers, Von Voithenberg, et al., 1978 | liquid phase; solvent: Hexane; ALS |
ΔrH° | -96.1 ± 0.4 | kJ/mol | Chyd | Turner and Meador, 1957 | liquid phase; solvent: Acetic acid; ALS |
ΔrH° | -97.40 ± 0.63 | kJ/mol | Chyd | Conn, Kistiakowsky, et al., 1939 | gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -98.4 ± 0.2 kJ/mol; At 355 K; ALS |
0.5C36H84Cl2P4Rh2 (solution) + (g) = C18H44ClP2Rh (solution)
By formula: 0.5C36H84Cl2P4Rh2 (solution) + H2 (g) = C18H44ClP2Rh (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -98.8 ± 2.7 | kJ/mol | RSC | Wang, Rosini, et al., 1995 | solvent: Benzene; The reaction enthalpy was calculated from the enthalpies of the reactions Rh[P(i-Pr)3]2(Cl)(H)2(solution) + t-BuNC(solution) = Rh[P(i-Pr)3]2(Cl)(CN-t-Bu)(solution) + H2(g), -41.4 ± 1.7 kJ/mol, and 0.5{Rh[P(i-Pr)3]2(Cl)}2(solution) + t-BuNC(solution) = Rh[P(i-Pr)3]2(Cl)(CN-t-Bu)(solution), -140.2 ± 2.1 kJ/mol Wang, Rosini, et al., 1995. The enthalpy of solution of {Rh[P(i-Pr)3]2(Cl)}2(cr) was measured as 20.1 ± 1.3 kJ/mol Wang, Rosini, et al., 1995.; MS |
By formula: H2 + C6H10 = C6H12
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -100.8 ± 0.63 | kJ/mol | Chyd | Rogers, Crooks, et al., 1987 | liquid phase; ALS |
ΔrH° | -101.3 ± 0.50 | kJ/mol | Chyd | Allinger, Dodziuk, et al., 1982 | liquid phase; solvent: Hexane; ALS |
ΔrH° | -96.3 ± 0.2 | kJ/mol | Chyd | Turner and Garner, 1958 | liquid phase; solvent: Acetic acid; ALS |
ΔrH° | -96.3 ± 0.2 | kJ/mol | Chyd | Turner and Garner, 1957 | liquid phase; solvent: Acetic acid; ALS |
ΔrH° | -96.3 ± 0.2 | kJ/mol | Chyd | Turner and Garner, 1957, 2 | liquid phase; solvent: Acetic acid; ALS |
By formula: 2H2 + C6H10 = C6H14
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -252. ± 2. | kJ/mol | Chyd | Fang and Rogers, 1992 | liquid phase; solvent: Cyclohexane; ALS |
ΔrH° | -253.9 ± 2.7 | kJ/mol | Chyd | Molnar, Rachford, et al., 1984 | liquid phase; solvent: Dioxane; ALS |
ΔrH° | -251.8 ± 1.5 | kJ/mol | Chyd | Turner, Mallon, et al., 1973 | liquid phase; solvent: Glacial acetic acid; ALS |
ΔrH° | -251.2 ± 0.42 | kJ/mol | Chyd | Kistiakowsky, Ruhoff, et al., 1936 | gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -253.3 ± 0.63 kJ/mol; At 355 °K; ALS |
By formula: H2 + C7H12 = C7H14
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -101.9 ± 0.63 | kJ/mol | Chyd | Allinger, Dodziuk, et al., 1982 | liquid phase; solvent: Hexane; ALS |
ΔrH° | -98.3 ± 0.8 | kJ/mol | Chyd | Rogers and McLafferty, 1971 | liquid phase; solvent: Hydrocarbon; ALS |
ΔrH° | -98.58 ± 0.46 | kJ/mol | Chyd | Turner and Garner, 1958 | liquid phase; solvent: Acetic acid; ALS |
ΔrH° | -98.58 ± 0.46 | kJ/mol | Chyd | Turner and Garner, 1957 | liquid phase; solvent: Acetic acid; ALS |
By formula: H2 + C7H12 = C7H14
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -106.9 ± 0.4 | kJ/mol | Chyd | Allinger, Dodziuk, et al., 1982 | liquid phase; solvent: Hexane; ALS |
ΔrH° | -101. ± 0.8 | kJ/mol | Chyd | Rogers and McLafferty, 1971 | liquid phase; solvent: Hydrocarbon; ALS |
ΔrH° | -104.1 ± 0.50 | kJ/mol | Chyd | Turner and Garner, 1958 | liquid phase; solvent: Acetic acid; ALS |
ΔrH° | -104.1 ± 0.50 | kJ/mol | Chyd | Turner and Garner, 1957 | liquid phase; solvent: Acetic acid; ALS |
By formula: H2 + C6H10 = C6H12
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -115.9 ± 0.96 | kJ/mol | Chyd | Allinger, Dodziuk, et al., 1982 | liquid phase; solvent: Hexane; ALS |
ΔrH° | -112.5 ± 0.08 | kJ/mol | Chyd | Turner and Garner, 1958 | liquid phase; solvent: Acetic acid; ALS |
ΔrH° | -112.3 ± 0.2 | kJ/mol | Chyd | Turner and Garner, 1957 | liquid phase; solvent: Acetic acid; ALS |
ΔrH° | -112.2 ± 0.3 | kJ/mol | Chyd | Turner and Garner, 1957, 2 | liquid phase; solvent: Acetic acid; ALS |
By formula: C3H7+ + H2 = (C3H7+ • H2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 10. | kJ/mol | PHPMS | Hiraoka and Kebarle, 1976 | gas phase; Entropy change calculated or estimated, DG<, ΔrH<; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 84. | J/mol*K | N/A | Hiraoka and Kebarle, 1976 | gas phase; Entropy change calculated or estimated, DG<, ΔrH<; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
4. | 170. | PHPMS | Hiraoka and Kebarle, 1976 | gas phase; Entropy change calculated or estimated, DG<, ΔrH<; M |
By formula: Co+ + H2 = (Co+ • H2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 82. ± 4. | kJ/mol | SIDT | Kemper, Bushnell, et al., 1993 | gas phase; ΔrH(O K)=76.1 kJ/mol, ΔrS(300 K)=86.2 J/mol*K; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 92.0 | J/mol*K | SIDT | Kemper, Bushnell, et al., 1993 | gas phase; ΔrH(O K)=76.1 kJ/mol, ΔrS(300 K)=86.2 J/mol*K; M |
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
73.2 (+9.6,-0.) | CID | Haynes and Armentrout, 1996 | gas phase; guided ion beam CID; M |
By formula: C5H10 + H2 = C5H12
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -126.6 ± 2.4 | kJ/mol | Chyd | Molnar, Rachford, et al., 1984 | liquid phase; solvent: Dioxane; ALS |
ΔrH° | -125.0 ± 1.8 | kJ/mol | Chyd | Molnar, Rachford, et al., 1984 | liquid phase; solvent: Hexane; ALS |
ΔrH° | -122.6 ± 2.4 | kJ/mol | Chyd | Rogers and Skanupong, 1974 | liquid phase; solvent: Hexane; ALS |
ΔrH° | -119. ± 1. | kJ/mol | Chyd | Rogers and McLafferty, 1971 | liquid phase; solvent: Hydrocarbon; ALS |
By formula: C7H12 + H2 = C7H14
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -119.5 ± 0.65 | kJ/mol | Chyd | Rogers, Crooks, et al., 1987 | liquid phase; ALS |
ΔrH° | -116.1 ± 0.54 | kJ/mol | Chyd | Turner and Garner, 1958 | liquid phase; solvent: Acetic acid; ALS |
ΔrH° | -116.1 ± 0.54 | kJ/mol | Eqk | Turner and Garner, 1957 | liquid phase; solvent: Acetic acid; ALS |
ΔrH° | -120.1 ± 0.3 | kJ/mol | Chyd | Turner and Garner, 1957, 2 | liquid phase; solvent: Acetic acid; ALS |
By formula: H2 + C7H12 = C7H14
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -110. ± 0.4 | kJ/mol | Chyd | Roth and Lennartz, 1980 | liquid phase; solvent: Cyclohexane; ALS |
ΔrH° | -108.2 ± 0.4 | kJ/mol | Chyd | Turner, Meador, et al., 1957 | liquid phase; solvent: Acetic acid; ALS |
ΔrH° | -108.9 ± 0.63 | kJ/mol | Chyd | Conn, Kistiakowsky, et al., 1939 | gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -111.0 ± 0.08 kJ/mol; At 355 K; ALS |
By formula: 3H2 + C7H8 = C7H14
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -305. ± 0.4 | kJ/mol | Chyd | Roth, Klaerner, et al., 1983 | liquid phase; solvent: Isooctane; ALS |
ΔrH° | -294.9 ± 1.6 | kJ/mol | Chyd | Turner, Meador, et al., 1957 | liquid phase; solvent: Acetic acid; ALS |
ΔrH° | -301.7 ± 1.3 | kJ/mol | Chyd | Conn, Kistiakowsky, et al., 1939 | gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -304.8 ± 0.04 kJ/mol; at 355 K; ALS |
By formula: 2H2 + C6H10 = C6H14
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -231.4 ± 3.0 | kJ/mol | Chyd | Molnar, Rachford, et al., 1984 | liquid phase; solvent: Dioxane; ALS |
ΔrH° | -227.0 ± 2.8 | kJ/mol | Chyd | Molnar, Rachford, et al., 1984 | liquid phase; solvent: Hexane; ALS |
ΔrH° | -223.4 ± 0.63 | kJ/mol | Chyd | Dolliver, Gresham, et al., 1937 | gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -225.4 ± 0.63 kJ/mol; At 355 °K; ALS |
By formula: C5H5N + 3H2 = C5H11N
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -193.8 ± 0.75 | kJ/mol | Eqk | Hales and Herington, 1957 | gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -202.2 ± 0.75 kJ/mol; At 400-550 K; ALS |
ΔrH° | -193.0 ± 2.1 | kJ/mol | Eqk | Burrows and King, 1935 | liquid phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -188.3 kJ/mol; At 423-443 K; ALS |
By formula: C8H16 + H2 = C8H18
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -107. | kJ/mol | Chyd | Turner, Nettleton, et al., 1958 | liquid phase; solvent: Acetic acid; ALS |
ΔrH° | -112.9 ± 0.3 | kJ/mol | Chyd | Dolliver, Gresham, et al., 1937 | gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -114.0 ± 0.3 kJ/mol; At 355 °K; ALS |
ΔrH° | -119.6 ± 3.3 | kJ/mol | Chyd | Crawford and Parks, 1936 | liquid phase; ALS |
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -123.4 ± 5.0 | kJ/mol | Chyd | Kistiakowsky and Nickle, 1951 | gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -124.9 ± 2.1 kJ/mol; ALS |
ΔrH° | -125.0 ± 0.42 | kJ/mol | Chyd | Kistiakowsky, Ruhoff, et al., 1935 | gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -126.00 ± 0.054 kJ/mol; At 355 °K; ALS |
By formula: (Co+ • CH4) + H2 = (Co+ • H2 • CH4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrS° | 95.8 | J/mol*K | SIDT | Kemper, Bushnell, et al., 1993, 2 | gas phase; switching reaction(Co+).2H2, ΔrS(440 K); Kemper, Bushnell, et al., 1993; M |
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
73. (+3.,-0.) | SIDT | Kemper, Bushnell, et al., 1993, 2 | gas phase; switching reaction(Co+).2H2, ΔrS(440 K); Kemper, Bushnell, et al., 1993; M |
By formula: H2 + C3H6O = C3H8O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -68.74 ± 0.42 | kJ/mol | Cm | Wiberg, Crocker, et al., 1991 | liquid phase; ALS |
ΔrH° | -55.23 | kJ/mol | Eqk | Buckley and Herington, 1965 | gas phase; ALS |
ΔrH° | -55.40 ± 0.42 | kJ/mol | Chyd | Dolliver, Gresham, et al., 1938 | gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -56.1 ± 0.4 kJ/mol; At 355 °K; ALS |
By formula: (Co+ • H2) + CH4 = (Co+ • CH4 • H2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrS° | 91.2 | J/mol*K | SIDT | Kemper, Bushnell, et al., 1993, 2 | gas phase; switching reaction(Co+)2H2, ΔrS(440 K); Kemper, Bushnell, et al., 1993; M |
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
94.6 (+5.0,-0.) | SIDT | Kemper, Bushnell, et al., 1993, 2 | gas phase; switching reaction(Co+)2H2, ΔrS(440 K); Kemper, Bushnell, et al., 1993; M |
By formula: C8H14 + H2 = C8H16
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -110. ± 1. | kJ/mol | Chyd | Rogers and McLafferty, 1971 | liquid phase; solvent: Hydrocarbon; ALS |
ΔrH° | -110.1 ± 0.2 | kJ/mol | Chyd | Turner and Garner, 1958 | liquid phase; solvent: Acetic acid; ALS |
ΔrH° | -110.1 ± 0.2 | kJ/mol | Chyd | Turner and Garner, 1957 | liquid phase; solvent: Acetic acid; ALS |
By formula: H2 + C8H14 = C8H16
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -144. ± 0.4 | kJ/mol | Chyd | Roth, Adamczak, et al., 1991 | liquid phase; see Doering, Roth, et al., 1989; ALS |
ΔrH° | -144.0 ± 1.8 | kJ/mol | Chyd | Rogers, Von Voithenberg, et al., 1978 | liquid phase; solvent: Hexane; ALS |
ΔrH° | -134.9 ± 0.88 | kJ/mol | Chyd | Turner and Meador, 1957 | liquid phase; solvent: Acetic acid; ALS |
By formula: (Co+ • H2) + H2 = (Co+ • 2H2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 75. ± 3. | kJ/mol | SIDT | Kemper, Bushnell, et al., 1993 | gas phase; ΔrH(0 K)=71.1 kJ/mol, ΔrS(300 K)=103. J/mol*K; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 103. | J/mol*K | SIDT | Kemper, Bushnell, et al., 1993 | gas phase; ΔrH(0 K)=71.1 kJ/mol, ΔrS(300 K)=103. J/mol*K; M |
By formula: (Co+ • 2H2) + H2 = (Co+ • 3H2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 44. ± 2. | kJ/mol | SIDT | Kemper, Bushnell, et al., 1993 | gas phase; ΔrH(0 K)=40. kJ/mol, ΔrS(300 K)=85.8 J/mol*K; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 85.8 | J/mol*K | SIDT | Kemper, Bushnell, et al., 1993 | gas phase; ΔrH(0 K)=40. kJ/mol, ΔrS(300 K)=85.8 J/mol*K; M |
By formula: (Co+ • 3H2) + H2 = (Co+ • 4H2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 44. ± 3. | kJ/mol | SIDT | Kemper, Bushnell, et al., 1993 | gas phase; ΔrH(0 K)=40. kJ/mol, ΔrS(300 K)=105. J/mol*K; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 101. | J/mol*K | SIDT | Kemper, Bushnell, et al., 1993 | gas phase; ΔrH(0 K)=40. kJ/mol, ΔrS(300 K)=105. J/mol*K; M |
By formula: (Co+ • 4H2) + H2 = (Co+ • 5H2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 22. ± 3. | kJ/mol | SIDT | Kemper, Bushnell, et al., 1993 | gas phase; ΔrH(0 K)=18. kJ/mol, ΔrS(300 K)=91.6 J/mol*K; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 94.1 | J/mol*K | SIDT | Kemper, Bushnell, et al., 1993 | gas phase; ΔrH(0 K)=18. kJ/mol, ΔrS(300 K)=91.6 J/mol*K; M |
By formula: (Co+ • 5H2) + H2 = (Co+ • 6H2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 20. ± 3. | kJ/mol | SIDT | Kemper, Bushnell, et al., 1993 | gas phase; ΔrH(0 K)=17. kJ/mol, ΔrS(300 K)=99.6 J/mol*K; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 99.2 | J/mol*K | SIDT | Kemper, Bushnell, et al., 1993 | gas phase; ΔrH(0 K)=17. kJ/mol, ΔrS(300 K)=99.6 J/mol*K; M |
By formula: (Co+ • 6H2) + H2 = (Co+ • 7H2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 6. ± 3. | kJ/mol | SIDT | Kemper, Bushnell, et al., 1993 | gas phase; ΔrH(0 K)=3. kJ/mol; ΔrS(300 K)=75.3 J/mol*K; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 75.3 | J/mol*K | SIDT | Kemper, Bushnell, et al., 1993 | gas phase; ΔrH(0 K)=3. kJ/mol; ΔrS(300 K)=75.3 J/mol*K; M |
By formula: (H3+ • 3H2) + H2 = (H3+ • 4H2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 7.2 ± 0.4 | kJ/mol | PHPMS | Hiraoka, 1987 | gas phase; M |
ΔrH° | 10. | kJ/mol | PHPMS | Hiraoka and Kebarle, 1975 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 74.9 | J/mol*K | PHPMS | Hiraoka, 1987 | gas phase; M |
ΔrS° | 80.8 | J/mol*K | PHPMS | Hiraoka and Kebarle, 1975 | gas phase; M |
By formula: (H3+ • 2H2) + H2 = (H3+ • 3H2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 13. ± 0.4 | kJ/mol | PHPMS | Hiraoka, 1987 | gas phase; M |
ΔrH° | 16. | kJ/mol | PHPMS | Hiraoka and Kebarle, 1975 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 77.4 | J/mol*K | PHPMS | Hiraoka, 1987 | gas phase; M |
ΔrS° | 84.5 | J/mol*K | PHPMS | Hiraoka and Kebarle, 1975 | gas phase; M |
By formula: H2 + C8H16 = C8H18
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -118.2 ± 0.4 | kJ/mol | Chyd | Rogers, Dejroongruang, et al., 1992 | liquid phase; solvent: Cyclohexane; ALS |
ΔrH° | -119.7 ± 2.2 | kJ/mol | Chyd | Rogers and Siddiqui, 1975 | liquid phase; solvent: n-Hexane; ALS |
ΔrH° | -114.6 ± 0.59 | kJ/mol | Chyd | Turner, Jarrett, et al., 1973 | liquid phase; solvent: Acetic acid; ALS |
By formula: 2H2 + C8H14 = C8H18
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -268.7 ± 1.1 | kJ/mol | Chyd | Rogers, Dagdagan, et al., 1979 | liquid phase; solvent: Hexane; ALS |
ΔrH° | -262.8 ± 0.67 | kJ/mol | Chyd | Turner, Jarrett, et al., 1973 | liquid phase; solvent: Acetic acid; ALS |
ΔrH° | -263. | kJ/mol | Chyd | Sicher, Svoboda, et al., 1966 | liquid phase; solvent: Acetic acid; ALS |
By formula: H2 + C8H14O = C8H16O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -55.73 | kJ/mol | Chyd | Wiberg, Crocker, et al., 1991 | liquid phase; ALS |
ΔrH° | -53.14 | kJ/mol | Chyd | Wiberg, Crocker, et al., 1991 | solid phase; ALS |
ΔrH° | -39.0 | kJ/mol | Chyd | Wiberg, Crocker, et al., 1991 | gas phase; ALS |
ΔrH° | -53.14 ± 0.59 | kJ/mol | Cm | Wiberg, Crocker, et al., 1991 | solid phase; ALS |
By formula: H2 + C7H12 = C7H14
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -111.4 ± 0.37 | kJ/mol | Chyd | Rogers, Crooks, et al., 1987 | liquid phase; ALS |
ΔrH° | -106.3 ± 0.46 | kJ/mol | Chyd | Turner and Garner, 1958 | liquid phase; solvent: Acetic acid; ALS |
ΔrH° | -106.3 ± 0.46 | kJ/mol | Chyd | Turner and Garner, 1957 | liquid phase; solvent: Acetic acid; ALS |
By formula: 2H2 + C7H10 = C7H14
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -208.9 ± 0.3 | kJ/mol | Chyd | Turner, Mallon, et al., 1973 | liquid phase; solvent: Glacial acetic acid; ALS |
ΔrH° | -212.4 ± 0.63 | kJ/mol | Chyd | Conn, Kistiakowsky, et al., 1939 | gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -214.5 ± 0.2 kJ/mol; At 355 K; ALS |
By formula: H2 + C7H10 = C7H12
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -137. ± 0.4 | kJ/mol | Chyd | Doering, Roth, et al., 1988 | gas phase; ALS |
ΔrH° | -141.5 ± 1.2 | kJ/mol | Chyd | Rogers, Choi, et al., 1980 | liquid phase; solvent: Hexane; Author was aware that data differs from previously reported values; ALS |
ΔrH° | -138.6 ± 0.88 | kJ/mol | Chyd | Turner, Meador, et al., 1957 | liquid phase; solvent: Acetic acid; ALS |
By formula: C3H6O + H2 = C3H8O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -84.3 ± 0.4 | kJ/mol | Cm | Wiberg, Crocker, et al., 1991 | liquid phase; solvent: Triglyme; Heat of hydrogenation; ALS |
ΔrH° | -69.55 ± 0.76 | kJ/mol | Eqk | Connett, 1972 | gas phase; At 473-524 K; ALS |
ΔrH° | -65.77 ± 0.67 | kJ/mol | Chyd | Buckley and Cox, 1967 | gas phase; ALS |
By formula: 2H2 + C6H8 = C6H12
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -224.4 ± 1.2 | kJ/mol | Chyd | Turner, Mallon, et al., 1973 | liquid phase; solvent: Glacial acetic acid; ALS |
ΔrH° | -229.6 ± 0.42 | kJ/mol | Chyd | Kistiakowsky, Ruhoff, et al., 1936 | gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -231.7 ± 0.4 kJ/mol; At 355 °K; ALS |
(solution) + (solution) = 2 (solution)
By formula: C10Mn2O10 (solution) + H2 (solution) = 2C5HMnO5 (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 36.4 ± 1.3 | kJ/mol | EqS | Klingler R.J. and Rathke, 1992 | solvent: Supercritical carbon dioxide; Temperature range: 373-463 K; MS |
Constants of diatomic molecules
Go To: Top, Reaction thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Klaus P. Huber and Gerhard H. Herzberg
Data collected through November, 1976
Symbol | Meaning |
---|---|
State | electronic state and / or symmetry symbol |
Te | minimum electronic energy (cm-1) |
ωe | vibrational constant – first term (cm-1) |
ωexe | vibrational constant – second term (cm-1) |
ωeye | vibrational constant – third term (cm-1) |
Be | rotational constant in equilibrium position (cm-1) |
αe | rotational constant – first term (cm-1) |
γe | rotation-vibration interaction constant (cm-1) |
De | centrifugal distortion constant (cm-1) |
βe | rotational constant – first term, centrifugal force (cm-1) |
re | internuclear distance (Å) |
Trans. | observed transition(s) corresponding to electronic state |
ν00 | position of 0-0 band (units noted in table) |
State | Te | ωe | ωexe | ωeye | Be | αe | γe | De | βe | re | Trans. | ν00 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
WAVELENGTH TABLES of the H2 spectrum from 2800 to 29000 Å with assignments of many of the lines Crosswhite, 1972. The TABLES OF ENERGY LEVELS Dieke, 1958 are also very useful as long as it is realized that the absolute values of the energy levels (n≥2) relative to the ground state need correction. Graphs and tables of POTENTIAL ENERGY CURVES for all known states of H2, H2+, and H2- Sharp, 1971.See note 1 | ||||||||||||
Fragments of three other triplet systems. 2 | ||||||||||||
u 3Πu 6pπ | [123488.0] 3 | [29.3] | [0.023] | [1.069] | u → a | 26232.3 4 | ||||||
↳Richardson, 1934; Dieke, 1958 | ||||||||||||
t 3Σu+ 5fσ | (121292) 5 | (2661.4) | (121.9) | 6 | t → a | (25342) | ||||||
↳Richardson, Yarrow, et al., 1934 | ||||||||||||
q (3Σg+) 5dσ | (121295) 5 | [2172.6] | 6 | q → c | (25325) 4 | |||||||
↳Richardson, Yarrow, et al., 1934, 2 | ||||||||||||
State | Te | ωe | ωexe | ωeye | Be | αe | γe | De | βe | re | Trans. | ν00 |
n 3Πu 5pπ | 120952.9 | 2321.4 | 62.86 | 29.95 | 1.24 7 | [0.023] | 1.057 | n → a | 24847.3 4 | |||
↳Richardson, 1934; Dieke, 1958 | ||||||||||||
m 3Σu+ 4fσ | (119317) 8 | [2457.1] | 6 | m → a | 23295.1 9 | |||||||
↳Richardson, Yarrow, et al., 1934 | ||||||||||||
s 3Δg 4dδ | 118875.2 | 2291.7 10 | 62.44 10 | 11 | s → c | 22949.3 12 | ||||||
↳Richardson, 1934; Foster and Richardson, 1953; Dieke, 1958 | ||||||||||||
r 3Πg 4dπ | 118613.7 | 2280.3 13 | 57.96 13 | 11 | r → c | 22683.2 13 | ||||||
↳Richardson, 1934; Foster and Richardson, 1953; Dieke, 1958 | ||||||||||||
State | Te | ωe | ωexe | ωeye | Be | αe | γe | De | βe | re | Trans. | ν00 |
p 3Σg+ 4dσ | 118509.8 | 2303.1 | 76.90 | 6 | p-k 14 | |||||||
↳Miller and Freund, 1975 | ||||||||||||
p → c | 22586.0 4 | |||||||||||
↳Richardson, 1934; Foster and Richardson, 1953; Dieke, 1958 | ||||||||||||
v (3Πg) | (118330) 15 | 2340 | (57) | [(29.1)] | [(1.072)] | v → c | (22430) | |||||
↳Richardson, Yarrow, et al., 1934, 2 | ||||||||||||
k 3Πu 4pπ | 118366.2 16 | 2344.37 | 67.29 17 | 0.99 | 30.074 | 1.462 18 | [0.0185] | 1.0547 | k → a | 22271.0 4 | ||
↳Richardson, 1934; Cunningham and Dieke, 1950; Dieke, 1958 | ||||||||||||
State | Te | ωe | ωexe | ωeye | Be | αe | γe | De | βe | re | Trans. | ν00 |
f 3Σu+ 4pσ | (116705) | [2143.6] 19 | [27.0] 19 | [1.11] | f → a | 20526.0 19 | ||||||
↳Richardson, 1934; Dieke, 1958 | ||||||||||||
o 3Σu+ | (114234) 20 | 2399.1 | 91.0 | [35] | [0.98] | o → a | (18160) | |||||
↳Richardson, Yarrow, et al., 1934 | ||||||||||||
l 3Πu | 113825 21 | 2596.8 | 106.0 | [36] | [0.96] | l → a | 17846 4 | |||||
↳Richardson, Yarrow, et al., 1934 | ||||||||||||
j 3Δg 3dδ | (113533) | 2345.26 22 | 66.56 | 0.745 | 30.085 22 | 1.692 | 0.0190 | 1.0545 | j ↔ c 23 R | 17633.0 24 | ||
↳Richardson, 1934; Dieke, 1958 | ||||||||||||
State | Te | ωe | ωexe | ωeye | Be | αe | γe | De | βe | re | Trans. | ν00 |
i 3Πg 3dπ | (113132) | 2253.55 22 | 67.05 25 | 29.221 22 | 1.506 | 0.0176 | 1.0700 | i-d 26 | ||||
↳Freund and Miller, 1974 | ||||||||||||
i → e R | 5384.81 27 | |||||||||||
↳Gloersen and Dieke, 1965 | ||||||||||||
i ↔ c 23 R | 17185.8 24 | |||||||||||
↳Richardson, 1934; Dieke, 1958 | ||||||||||||
h 3Σg+ 3sσ | (112913) | [2268.73] 28 | [30.62] 28 | 1.045 1 | h → c | 16990.8 29 | ||||||
↳Richardson, Yarrow, et al., 1934, 3; Dieke, 1958 | ||||||||||||
State | Te | ωe | ωexe | ωeye | Be | αe | γe | De | βe | re | Trans. | ν00 |
g 3Σg+ 3dσ | 112854.4 | 2290.86 | 105.43 30 | 2.403 | 31 | g → e R | 5116.6 | |||||
↳Gloersen and Dieke, 1965 | ||||||||||||
g ↔ c 23 | 16917.6 29 | |||||||||||
↳Richardson, 1934; Richardson, Yarrow, et al., 1934, 3; Dieke, 1958 | ||||||||||||
d 3Πu 3pπ | 112700.3 32 | 2371.58 33 | 66.27 | 0.88 | 30.364 33 34 | 1.545 | [1.91] | 1.0496 | d → a 35 R | 16619.0 29 | ||
↳Dieke and Blue, 1935; Dieke, 1958 | ||||||||||||
e 3Σu+ 3pσ | 107774.7 | 2196.13 | 65.80 | -0.433 | 27.30 | 1.515 | 1.107 | e → a R | 11605.6 | |||
↳Richardson, 1934; Dieke, 1935 | ||||||||||||
State | Te | ωe | ωexe | ωeye | Be | αe | γe | De | βe | re | Trans. | ν00 |
a 3Σg+ 2sσ | 95936.1 36 | 2664.83 | 71.65 37 | 0.92 | 34.216 | 1.671 | [0.0216] | 0.98879 | a → b 38 39 | |||
(a-X) | 95076.4 36 | |||||||||||
c 3Πu 3pπ | 95838.5 40 | 2466.89 | 63.51 | 0.552 | 31.07 41 42 | 1.425 | [0.0195] | 1.0376 | (c-X) | 94881.0 43 | ||
b 3Σu+2pσ | Unstable; lower state of the continuous spectrum of H2 (a → b). Pot. function Kolos and Wolniewicz, 1965. | |||||||||||
Several excited states above the ionization limit, established by electron impact studies and leading to two exited atoms or H + H+. | ||||||||||||
Continuous absorption above ~130000 cm-1. 44 | ||||||||||||
v'=0 Rydberg series of rotational levels observed in low temperature absorption from X 1Σg+, v"=0, J"=0 and 1 and converging to: | ||||||||||||
Rydberg | N=2 of H2+: J=1 levels of npπ 1Πu+ (n=6,...,32, joining on to C, D, D', D")45; ν = 124591.5 46 - R/(n + 0.082)2. Similar series with v'=1,...,6 47. R(0) lines (para H2) | |||||||||||
↳Herzberg, 1969; Takezawa, 1970; missing citation | ||||||||||||
N=1 of H2+: J=1 levels of npπ 1Πu- (n=6,...,43, joining on to C, D, D', D")48; ν = 124476.0 46 - R/(n + 0.082)2. Similar series with v'=1,...,5. Q(1) lines (ortho H2) | ||||||||||||
↳Herzberg, 1969; Takezawa, 1970; missing citation | ||||||||||||
N=1 of H2+: J=0 levels of npσ 1Σu+ (n=5,...,19, joining on to B, B', B")48; ν = 124476.0 46 - R/(n + 0.203)2. Similar series with v'=1,2,3. P(1) lines (ortho H2) | ||||||||||||
↳Takezawa, 1970; missing citation | ||||||||||||
N=0 of H2+: J=1 levels of npσ 1Σu+ (n=5,...,40, joining on to B, B', B")45; ν = 124417.0 46 - R/(n + 0.203)2. Similar series with v'=1,...,6. 5 R(0) lines (para H2) | ||||||||||||
↳Herzberg, 1969; Takezawa, 1970; missing citation | ||||||||||||
B bar 1Σu+ | State causing ion-pair formation after excitation of higher Rydberg states; also responsible for perturbations in B' 1Σu+. Correlates at small r with B" 1Σu+, forming a double-minimum state. | |||||||||||
↳Dabrowski and Herzberg, 1974; Chupka, Dehmer, et al., 1975; Kolos, 1976 | ||||||||||||
State | Te | ωe | ωexe | ωeye | Be | αe | γe | De | βe | re | Trans. | ν00 |
D" 1Πu 5pπ | 121211.0 49 | 2319.92 49 | 63.041 | 30.76 50 51 | 1.45 50 | (0.03) | 1.043 | D" ← X R | 120176.0 49 | |||
↳Monfils, 1965; Monfils, 1968 | ||||||||||||
D' 1Πu 4pπ | 118865.3 49 | 2329.97 49 | 63.140 | 29.89 52 51 | 1.11 52 | -0.53 | [0.025] 52 | [(1.058)] | D' ← X R | 117835.2 49 | ||
↳Namioka, 1964; Monfils, 1965; Monfils, 1968 | ||||||||||||
S 1Δg 4dδ | [119893] 53 3 | [(28.8)] 54 | [(1.078)] | S → B V | 27510 | |||||||
↳Richardson, 1934; Dieke, 1958 | ||||||||||||
O 1Σ+ 4sσ | [(119870)] 55 3 | [(32)] | [(1.02)] | O → B V | (27487) 56 | |||||||
↳Richardson, 1934 | ||||||||||||
State | Te | ωe | ωexe | ωeye | Be | αe | γe | De | βe | re | Trans. | ν00 |
R 1Πg 4dπ | (118688) 57 | [2142] 58 | [(30)] 54 | [(1.06)] | (R → C) | (18488) | ||||||
↳Richardson, 1934; Dieke, 1958 | ||||||||||||
R → B V | 27376 45 | |||||||||||
↳Richardson, 1934; Dieke, 1958 | ||||||||||||
P 1Σg+ 4dσ | [119531] 59 3 | [(30)] 54 | [(1.06)] | (P → C) | 18260 49 | |||||||
↳Richardson, 1934; Dieke, 1958 | ||||||||||||
P → B V | 27148 60 | |||||||||||
↳Richardson, 1934; Dieke, 1958 | ||||||||||||
State | Te | ωe | ωexe | ωeye | Be | αe | γe | De | βe | re | Trans. | ν00 |
T 1Σ+ | [119512.6] 61 3 | [(25.4)] | [(1.148)] | T → B V | 27130.1 | |||||||
↳Richardson, 1934; Dieke, 1958 | ||||||||||||
B" 1Σu+ 4pσ | 117984.5 | 2197.5 | 68.136 | 26.68 62 63 | 1.19 62 | [0.034] | [(1.1198)] | B" ← X R | 116886.9 64 | |||
↳missing citation; Monfils, 1965; Monfils, 1968; missing citation | ||||||||||||
N 1Σg+ | (116287) 65 | [1983.3] | [(18.4)] | [(1.35)] | N → B R | 24896.4 | ||||||
↳Richardson, 1934; Dieke, 1958 | ||||||||||||
U (1Σg+) | [116707.7] 65 66 | [(18.8)] | [(1.33)] | U → B 67 R | 24325.1 | |||||||
↳Richardson, 1934; Dieke, 1958 | ||||||||||||
State | Te | ωe | ωexe | ωeye | Be | αe | γe | De | βe | re | Trans. | ν00 |
M 1Σg+ | (114485) 65 | [2176.0] | [(13)] | [(1.60)] | M → B R | 23190.0 68 | ||||||
↳Richardson, 1934; Dieke, 1958 | ||||||||||||
L 1Σg+ | (114520) 65 | [(1835)] | [(9.7)] | [(1.86)] | L → B R | 23054.8 | ||||||
↳Richardson, 1934; Dieke, 1958 | ||||||||||||
H 1Σg+ 3sσ | 113899 69 | 2538 | 124 | [(29.5)] | [(1.065)] | H → C R | 13866.6 | |||||
↳Richardson, 1934; Dieke, 1958 | ||||||||||||
H → B V | 22754.1 70 | |||||||||||
↳Richardson, 1934; Dieke, 1958 | ||||||||||||
State | Te | ωe | ωexe | ωeye | Be | αe | γe | De | βe | re | Trans. | ν00 |
D 1Πu 3pπ | 113888.7 | 2359.91 | 68.816 71 | 30.296 72 73 63 | 1.42 72 | 0.0201 74 | 1.0508 | D → E R | 13709.7 | |||
↳Richardson, 1937; Dieke, 1958 | ||||||||||||
D ↔ X 75 R | 112872.3 76 | |||||||||||
↳missing citation; Monfils, 1965; Monfils, 1968; missing citation | ||||||||||||
J 1Δg 3dδ | (113550) | 2341.15 77 | 63.23 77 | 30.081 77 | 1.718 77 | 0.0189 77 | 1.0546 | J → C 78 R | 13435.6 79 | |||
↳Richardson, 1934; Dieke, 1958 | ||||||||||||
J → B 78 V | 22322.5 79 | |||||||||||
↳Richardson, 1934; Dieke, 1958 | ||||||||||||
State | Te | ωe | ωexe | ωeye | Be | αe | γe | De | βe | re | Trans. | ν00 |
I 1Πg 3dπ | (113142) 80 | 2259.15 77 | 78.41 77 80 | 29.259 77 81 | 1.584 77 | 0.0180 77 | 1.0693 | I → C 81 R | 12982.5 82 | |||
↳Richardson, 1934; Dieke and Lewis, 1937; Dieke, 1958 | ||||||||||||
I → B V | 21869.5 82 | |||||||||||
↳Richardson, 1934; Dieke and Lewis, 1937; Dieke, 1958 | ||||||||||||
G 1Σg+ 3dσ | 112834 83 | 2343.9 | 55.9 84 | [(28.4)] 85 | [(1.085)] | G → C 86 85 R | 12722.2 87 | |||||
↳Richardson, 1934; Dieke, 1958 | ||||||||||||
G → B 86 V | 21609.2 87 | |||||||||||
↳Richardson, 1934; Dieke, 1958 | ||||||||||||
State | Te | ωe | ωexe | ωeye | Be | αe | γe | De | βe | re | Trans. | ν00 |
K (1Σg+) | (112669) 88 | [2232.59] | 30 | [10.8] | [1.76] | K → C R | 12538.6 | |||||
↳Richardson, 1934; Dieke, 1958 | ||||||||||||
K → B R | 21425.4 | |||||||||||
↳Richardson, 1934; Dieke, 1958 | ||||||||||||
Q (1Πg) | (113163) 89 | [742] | [(16.3)] | 1.43 | Q → B R | 21151.1 | ||||||
↳Richardson, Yarrow, et al., 1934; Dieke, 1958 | ||||||||||||
B' 1Σu+ 3pσ | 111642.8 90 | 2039.52 | 83.406 91 | 26.705 92 | 2.781 93 | [0.012] 94 | 1.1192 | B' → E,F 95 | 11311.5 96 | |||
↳Porto and Jannuzzi, 1963 | ||||||||||||
B' ← X 97 R | 110478.2 | |||||||||||
↳Namioka, 1964; Namioka, 1965; Monfils, 1965 | ||||||||||||
State | Te | ωe | ωexe | ωeye | Be | αe | γe | De | βe | re | Trans. | ν00 |
F 1Σg+ 2pσ2 | 100911 98 99 | [1199] 98 | 100 | 101 | F → B 102 R 103 | |||||||
↳Dieke, 1949; Porto and Jannuzzi, 1963 | ||||||||||||
E 1Σg+ 2sσ | 100082.3 98 104 | 2588.9 104 | 130.5 104 | 32.68 104 | 1.818 104 | [0.0228] 104 | 1.0118 | E → B 102 V | 8961.23 | |||
↳Dieke, 1936; Porto and Dieke, 1955; Dieke, 1958; Porto and Jannuzzi, 1963 | ||||||||||||
C 1Πu 2pπ | 100089.8 95 | 2443.77 | 69.524 105 106 | 31.3629 106 | 1.6647 107 | 0.0223 | -0.00074 | 1.03279 | C ↔ X 108 109 R | 99120.17 95 | ||
↳Dieke, 1938; Namioka, 1964, 2; Namioka, 1965; Dabrowski and Herzberg, 1974 | ||||||||||||
B 1Σu+ 2pσ | 91700.0 110 | 1358.09 | 20.888 111 | 20.0154 112 | 1.1845 113 | 0.01625 114 | 1.29282 | B ↔ X 115 116 117 R | 90203.35 | |||
↳Herzberg and Howe, 1959; Wilkinson, 1968; Dabrowski and Herzberg, 1974 | ||||||||||||
State | Te | ωe | ωexe | ωeye | Be | αe | γe | De | βe | re | Trans. | ν00 |
X 1Σg 1sσ2 | 0 | 4401.213 | 121.336 118 | 60.8530 119 | 3.0622 120 | 0.0471 121 | 0.74144 122 | |||||
↳Herzberg, 1950; Fink, Wiggins, et al., 1965; Terhune and Peters, 1959; Foltz, Rank, et al., 1966; Brannon, Church, et al., 1968 | ||||||||||||
Raman sp. 123 | ||||||||||||
↳Stoicheff, 1957; Foltz, Rank, et al., 1966 | ||||||||||||
Rotational 124 and nuclear rf magn. Reson. | ||||||||||||
↳Harrick and Ramsey, 1952; Barnes, Bray, et al., 1954; Kolsky, Phipps, et al., 1952; Harrick, Barnes, et al., 1953 |
Notes
1 | The Te values for the upper states of the triplet transitions are based on Te" for the lower state (a or c) and have been calculated assuming Y'00 ~ Y"00. |
2 | 3B→c, 3C→c, 7pπ→a Richardson, 1934, Richardson, Yarrow, et al., 1934, 2. |
3 | Only v=0 observed. |
4 | Referred to the (non-existent) N=0 level in 3Π states; the N=1 levels of c 3Π (+ and -) lie 60.7 cm-1 above N=0. |
5 | t and q are designated 3F and 3G, respectively, in Richardson, Yarrow, et al., 1934, 2, Richardson, Yarrow, et al., 1934. |
6 | The states g 3Σg+(3dσ), p 3Σg+(4dσ), q 3Σg+(5dσ), m 3Σu+(4fσ) and t 3Σu+(5fσ) are strongly affected by l-uncoupling. The N=1 levels lie below N=0 for v=0 and 1; meaningful B values cannot be given until the whole d and f complexes have been fully analyzed, see Ginter, 1967. |
7 | Represents B0 and B1 of 3Π- only; B2 = 26.26 Richardson, Yarrow, et al., 1934, B3 = 24.54 Richardson, Yarrow, et al., 1934. |
8 | 3E of Richardson, Yarrow, et al., 1934. |
9 | Refers to N'=0 which lies above N'=4 because of strong l-uncoupling. |
10 | Constants refer to N=2; from v= 0,1,2. |
11 | Because of strong l-uncoupling no meaningful B values can be given; see 6. |
12 | Refers to the N=2 level of s 3Δg- above the hypothetical level N=0 of c 3Πu; see 4. |
13 | The constants refer to N=1 of r 3Πg-; ν00 is the energy above the hypothetical level N=0 of c(v=0), see 4. |
14 | Anticrossings and microwave transitions. The energy difference between k 3Πu(v=1,N=3) and p 3Σg+(v=1,N=5) is +0.2785 cm-1. Fine structure parameters. |
15 | 3A of Richardson, Yarrow, et al., 1934, 2; probably a doubly excited state. The possibility (1sσ)(4fπ) mentioned by Richardson, Yarrow, et al., 1934, 2 and quoted in MOLSPEC 1 can be ruled out since it does not give rise to an even state. |
16 | A0(ortho)= -0.00937 Freund, Miller, et al., 1973, Miller, Freund, et al., 1974, Miller and Freund, 1975, A0(para)= -0.00710 cm-1 Freund, Miller, et al., 1973, Miller, Freund, et al., 1974, Miller and Freund, 1975; also hyperfine structure investigated by these authors. |
17 | ωeye= +0.99 Cunningham and Dieke, 1950. |
18 | From B0 and B1 of Π- only Richardson, 1934. |
19 | Calculated from the data in Richardson, 1934 and Dieke, 1958. ΔG(1/2) and ν00 refer to actual N=0 level which is strongly perturbed. |
20 | 3D of Richardson, Yarrow, et al., 1934. Probably a doubly excited state: (2pσ)(3dσ). |
21 | 3Y of Richardson, Yarrow, et al., 1934. Probably a doubly excited state: (2pσ)(3dπ). |
22 | These constants [from Ginter, 1967] refer to the 3Π- and 3Δ- components and are based on "Approximation 2" of Ginter, 1966 for the evaluation of the l-uncoupling. The observed levels are given by Dieke, 1958. |
23 | Observed in absorption in flash discharges Herzberg, 1967. |
24 | Lower component of N'=l (i 3Π) or 2 (J 3Δ) relative to the (non-existent) N"=0 level of c 3Π. |
25 | Ab initio calculations Browne, 1965, Wright and Davidson, 1965 give a pronounced potential maximum near 2.5 Å for this state. |
26 | Anticrossings and microwave transitions; i 3Πg(v=3,N=2) is 1.9244 cm-1 above d 3Πg(v=3,N=1). |
27 | Refers to Π-(N=1). Π+(N=1) is at 5471.70 cm-1 above e 3Σu+(v=0,N=0). The rotational levels are very irregular, only partly on account of l-uncoupling. |
28 | From Dieke, 1958. ωe = 2395.2 Richardson, Yarrow, et al., 1934, 3, ωexe = 64.2 Richardson, Yarrow, et al., 1934, 3, B0 = 30.0 Richardson, Yarrow, et al., 1934, 3. According to Dieke, 1958 the v=0 levels may be spurious. If so, only v=1 remains with B1 = 28.72. |
29 | Referred to the (non-existent) N=0 level in 3Π states; the N=1 levels of c 3Π (+ and -) lie 60.7 cm-1 above N=0. |
30 | Calculated from the N=0 levels of Dieke, 1958. |
31 | The states g 3Σg+ (3dσ), p 3Σg+ (4dσ), q 3Σg+ (5dσ), m 3Σu+ (4fσ) and t 3Σu+ (5fσ) are strongly affected by l-uncoupling. The N=1 levels lie below N=0 for v=0 and 1; meaningful B values cannot be given until the whole d and f complexes have been fully analyzed, see Ginter, 1967. |
32 | The fine structure in the N=1 levels of both ortho- and para-H2 has been observed in microwave-optical double resonance by Freund and Miller, 1973 who give Ae = 0.0281 Freund and Miller, 1973 as well as spin-spin coupling constants. For para-H2, v=0, N=1, the three component levels J=1,2, and 0 are at -0.01241, -0.00695, and +0.07197 cm-1, respectively. For ortho-H2 the hyperfine structure has also been studied. |
33 | Constants refer to 3Π-. 3Π+ is strongly perturbed, i.e. the Λ - type doubling is fairly large and irregular Dieke, 1935, 2. |
34 | Breaking-off of P and R branches (3Π+) above v'=3 on account of predissociation. Breaking-off of Q branches (3Π-) for v'=7,8 above N=1 on account of preionization Beutler and Junger, 1936. |
35 | Lifetime τ=63 ns Cahill, 1969; see, however, Marechal, Jost, et al., 1972 who give τ= 31 ns Marechal, Jost, et al., 1972. |
36 | The T0(ν00) value is derived from singlet-triplet anti-crossings in a magnetic field Miller and Freund, 1974, Jost and Lombardi, 1974 and corresponds to v=0, N=0. It agrees fairly well with 95073.2 obtained from the energy of a 3Σu+(v=0,N=0) below the ionization limit, 29344 ± 2 cm-1 Beutler and Junger, 1936, combined with the new value of I.P.(H2). Dieke, 1958 gives T0 = 95226 without explanation; the most recent theoretical value is T0= 95077.3 Kolos, 1975. The Te value in the table takes account of Y00 in both upper (Y'00= 4.92) and lower state. |
37 | ωeye= +0.92. Precise ab initio potential function (including diagonal corrections) and predicted vibrational levels in Kolos and Wolniewicz, 1968. Except for a constant shift, the latter agree well with the observed levels Dieke, 1958. |
38 | Lifetime τ(v=0,1) = 10.45 ns Smith and Chevalier, 1972, King, Read, et al., 1975. |
39 | Reproduction in MOLSPEC 1, Fig.l2. |
40 | A = -0.1249 cm-1 Jette, 1974, Jette and Miller, 1974. Te takes account of Y00 in both upper (Y'00= 4.18) and lower state. |
41 | The Λ-type doubling is quite small (~ 0.5 cm-1 for N=6); the constants refer to the average. The triplet splitting in N=2 of para-H2 has been fully resolved in molecular beam experiments of Lichten, 1960 yielding Δν(J=2-1) = 0.16438 Lichten, 1960, Δν(J=2-3) = 0.19674 cm-1 Lichten, 1960 with J=2 at the top. The hyperfine structure in N=1,J=2 of ortho-H2 is Δν(F=3-2) = 0.0236 Frey and Mizushima, 1962, Δν(F=2-1) = 0.0154 cm-1 Frey and Mizushima, 1962 as quoted by Frey and Mizushima, 1962. Foster and Richardson, 1953 give spin splittings for N = 1,2,3,4,5 without resolving J=N+l from J=N-1. |
42 | The levels of c 3Πu+ are strongly predissociated by the b 3Σu+ state Herzberg, 1967; the levels of c 3Πu- are either very weakly affected by a forbidden predissociation to b 3Σu+ Lichten, 1962, Chiu, 1964 or decay radiatively (by magnetic dipole radiation) to the b 3Σu+ state as suggested by the lifetime measurements of Johnson, 1972, τ(v=0)= 1.02 ms Johnson, 1972 independent of spin component and isotope. Johnson, 1974 observed quenching of c 3Πu- in an electric field. The Stark effect is large (~ E+4 times greater than for the ground state) and has been studied experimentally by Kagann and English, 1976 and compared with the theoretical values of English and Albritton, 1975. |
43 | This number, obtained from ν00(a-X) + ν00(e-a) + ν00(g-e) - ν00(g-c), is 87 cm-1 higher than given in MOLSPEC 1, a change made necessary by the work of Gloersen and Dieke, 1965. See also 36. |
44 | Theoretical and experimental values for the ionization probability into the various vibrational levels of H2+ are given by Dunn, 1966, Villarejo, 1968, Nicholls, 1968, Ford, Docken, et al., 1975 and Villarejo, 1968, 2, Turner, 1968, respectively. The ionization cross section near the ionization limit has been studied at high resolution by Chupka and Berkowitz, 1968, Comes and Wellern, 1968. See also Backx, Wight, et al., 1976. |
45 | For high n there is strong l-uncoupling and the two series of 1Σu+ and 1Πu+ levels of para-H2 should be called np0 and np2, respectively, corresponding to the fact that the first converges to N=0, the second to N=2 of H2+ There are strong systematic perturbations between the J=1 levels of these two series (because of l- uncoupling) so that the formulae as given do not represent the series very well. An accurate representation can be obtained by Fano's quantum defect theory; see Herzberg and Jungen, 1972. Levels of npπ, 1Πu+ above N=0 of H2+ are preionized resulting in asymmetrically broadened absorption lines with apparent emission wings. |
46 | Limits of Rydberg series above v"=0, J"=0. |
47 | Chupka, Dehmer, et al., 1975 have observed Rydberg levels with v = 9,10,11 in the study of ion-pair formation. |
48 | These two series of ortho levels are essentially unperturbed. |
49 | Average of Π+ and Π-. ν00 referred to (N'=0). |
50 | Refers to Π-; Π+ is perturbed; B0(Π+) = 30.178, B1(Π+) = 31.370. |
51 | RKR potential function in Monfils, 1968, 2. |
52 | Refers to Π-; γe = -0.53. Π+ is perturbed, B0(Π+) = 31.095, B1(Π+) = 29.165. |
53 | 4F of Dieke, 1958, 41χ of Richardson, 1934. |
54 | The states P,R,S form a d complex with strong uncoupling. As a result the constants given have only limited meaning. |
55 | 41O of Richardson, 1934, not given by Dieke, 1958. |
56 | From R(0) and P(1) according to the data of Richardson, 1934. |
57 | 41B of Richardson, 1934, 4E of Dieke, 1958. |
58 | Refers to 1Π-. |
59 | 41C of Richardson, 1934, 4D of Dieke, 1958. |
60 | The J=1 level is observed at 27207.62 cm-1 above J=0, v=0 of B 1Σu+. The value given for J=0 is extrapolated and, because of the uncoupling, is rather uncertain. |
61 | 41K of Richardson, 1934, doubly excited state. |
62 | Representing only B0 and B1. The Bv curve has a positive curvature for low v and a strong negative curvature for high v. Bv = 27.13 - 2.35(v+1/2) + 0.665(v+1/2)2 - 0.0729(v+1/2)3 Monfils, 1965. |
63 | RKR potential function Monfils, 1968, 2. Ab initio potential function Kolos, 1976. |
64 | Deperturbed value from Namioka, 1964. The observed value for J=0 [perturbed by B'(v=4)] is 116885.6 according to Namioka, 1964 and 116885.3 according to Monfils, 1965, while in the more recent paper Monfils, 1968 gives 116882.00. |
65 | All these states are considered as doubly excited states by Dieke, 1958. They may well form one or two double-minimum states (similar to E, F) together with H 1Σg+. |
66 | Only v=0. |
67 | This is the λ4142.8 progression of Richardson, 1934 as revised by Dieke, 1958. |
68 | These values agree with Dieke, 1958; Richardson, 1934 gives 23057.22 and 23191.66 for L and M, respectively. |
69 | 310 of Richardson, 1934. |
70 | From R(0) of the 0-0 band and F(1)-F(0) as given by Richardson, 1934. The basis for 22751.6 in Richardson, 1934 is not clear. |
71 | ωexe= +1.0274(v+1/2)3 - 0.04202(v+1/2)4; the vibrational constants Monfils, 1968 refer to the average of Π+ and Π-. See also 73. |
72 | The rotational constants Namioka, 1964 represent only the levels v= 0, 1, 2 of Π-. The Π+ levels are strongly perturbed by the B' state which also causes the predissociation of 1Π+ for v'≥ 3; see 73. Monfils, 1965 gives for the deperturbed values: Bv(Π+)= 32.51- 2.00(v+1/2) + 0.071(v+1/2)2 - 0.0040(v+1/2)3 ; Bv(Π-)= 30.81 - 1.96(v+1/2) + 0.102(v+1/2)2 - 0.0053(v+1/2)3 . |
73 | Strong predissociation for v'≥3; no bands with v'≥3 have ever been observed in emission. In absorption strongly broadened lines with apparent emission wings (Beutler- Fano shapes) in D 1Πu- ← X 1Σg- Herzberg, 1971; line widths of 4 and 11.5 cm-1 for J=1 and 2, respectively, have been observed Comes and Schumpe, 1971 and accounted for by interaction with the continuum of B' 1Σu- Fiquet-Fayard and Gallais, 1971, Julienne, 1971, Fiquet-Fayard and Gallais, 1972. Widths for D 1Πu- ← X 1Σg- (Q) lines are much smaller. Lyα fluorescence as a result of predissociation Comes and Wellern, 1968, Comes and Wenning, 1969, Mentall and Gentieu, 1970. Electric field induced component of predissociation Comes and Wenning, 1970. |
74 | From Namioka, 1964; Monfils, 1965 gives Dv(Π+) = 0.033+0.0010(v+1/2) Monfils, 1965, Dv(Π-) =0.0283 - 0.0012(v+1/2) Monfils, 1965. |
75 | RKR Franck-Condon factors Spindler, 1969. Absorption coefficients of D←X bands Cook and Metzger, 1964. 0scillator strengths f00 = 0.00614 Lewis, 1974, f20 = 0.0109 Lewis, 1974. |
76 | Average of Π+ and Π- extrapolated to J=0. The Λ-type doubling for v=0, J=1 is 4.2 cm-1 with Π+ above Π-. |
77 | These constants Ginter, 1967 refer to Π- and Δ- and take into account the effects of l- uncoupling in the d-complex according to the formulae of Ginter, 1966. They cannot be used to derive energy levels without the use of these formulae. The observed levels are given in Dieke, 1958. |
78 | The forbidden 1Δg → 1Σu- transition occurs because of strong uncoupling in the upper state. Only Q branches are observed in these bands. |
79 | Refers to J=2 of Δ- at 10.8 cm-1 below J=2 of Δ+. |
80 | 31B of Richardson, 1934, 3E of Dieke, 1958. Mulliken, 1964 and Browne, 1965 predict a fairly high (0.4 eV) maximum in the potential function of this state. |
81 | Zeeman effect studies Dieke, Cunningham, et al., 1953 yield g(v=0,J=1) = 0.498 Dieke, Cunningham, et al., 1953, g(v=0,J=2) = 0.412 Dieke, Cunningham, et al., 1953, etc.; lifetime τ(v=0,J=2) = 38 ns van der Linde and Dalby, 1972, see 85. |
82 | Referred to J'=1 of I 1Π-; J=1 of I 1Π+ is 62.32 cm-1 higher. |
83 | 31C of Richardson, 1934, 3D of Dieke, 1958. |
84 | No levels higher than v=3 have been observed which suggests that the dissociation limit is 12S + 22S,2P at 118377.6 cm-1. The constants represent only v=0,1,2. |
85 | This value Richardson, 1934 does not represent the low rotational levels because of l-uncoupling, e.g. the J=1 level is below J=0. The actual levels are given in Dieke, 1958. Hyperfine structure for v=1,J=1; A = 1.0 ± 0.17 MHz Melieres-Marechal and Lombardi, 1974. Large Zeeman splittings corresponding to the strong l-uncoupling Dieke, Cunningham, et al., 1953, g(v=0,J=1) = 0.901 Dieke, Cunningham, et al., 1953, g(v=0,J=2) = 0.571 Dieke, Cunningham, et al., 1953, etc.; see also Freund and Miller, 1972. Lifetimes from Hanle effect observations van der Linde and Dalby, 1972; τ(v=0,J=1) = 27 ns van der Linde and Dalby, 1972, τ(v=0,J=2,3) = 39 ns van der Linde and Dalby, 1972. |
86 | The G→B system gives rise to the strongest lines in the visible region. |
87 | Referred to J'=0 which, because of l-uncoupling, has an anomalous position. |
88 | 31K of Richardson, 1934, probably due to (2sσ)2. |
89 | Fragmentary, possibly (2pσ)(2pπ). |
90 | Takes account of Y00 in both upper and lower state. Y'00 = 15.3 cm-1 is rather uncertain and depends strongly on the number of levels included. See 93. |
91 | ωexe= +3.533(v+1/2)3 - 0.93750(v+1/2)4; these are the constants of Namioka, 1964 [except Te which is taken from Dabrowski and Herzberg, 1974], they apply only to v=0,...,4. Monfils, 1968 gives a very different set of constants based on seven levels v=0,...,6. The ΔG curve (in H2, HD, and D2) has a characteristic tail which makes representation of the higher vibrational levels by a conventional formula meaningless Namioka, 1964, Dabrowski and Herzberg, 1974. |
92 | RKR potential functions Namioka, 1965, Monfils, 1968, 2. A very slight maximum of the potential function at 2.9 Angstroms has been predicted by Ford, Browne, et al., 1975 but not confirmed in the calculations of Kolos, 1976; see also Wolniewicz, 1975. The experimental data, while suggesting an anomalous form of the potential function, do not indicate a maximum Dabrowski and Herzberg, 1974. |
93 | av= +0.540(v+1/2)2 - 0.0917(v+1/2)3; these constants Namioka, 1964 represent only the first five (deperturbed) Bv values. If only three levels are used Bv= 26.371- 1.9000(v+1/2)-0.0050(v+1/2)2 leading to a very different Y00 value (3.6) from the one used here (see 90). |
94 | The higher Dv values are quite irregular. |
95 | The Te values for B and C include the effects of Y00 on the zero point energies in both upper and lower states; Y'00(B) = 8.7, Y'00(C) = 5.0 cm-1. On the other hand, the Te value of C 1Πu and ν00(C-X) exclude the term - BΛ2 in the energy formula, a term that is usually included to form part of the effective potential energy. With this inclusion and disregarding Y00 Namioka, 1965 gives Te = 100063.42 and ν00 = 99090.35 on the basis of older data for v=0...4 and his own precise data for v=5....13. |
96 | From the 0-1 band of Porto and Jannuzzi, 1963; from T0(B')-T0(E) one obtains 11313.62. |
97 | RKR Franck-Condon factors Spindler, 1969. Oscillator strengths f10 = 0.0028 Lewis, 1974, f30 = 0.0048 Lewis, 1974. |
98 | Because of strong interaction the two states E [21X of Richardson, 1934, 2A of Dieke, 1958] and F, in zero approximation lsσ2sσ and (2pσ)2, form a single state with two minima as first recognized by Davidson, 1961. The most detailed calculation of the potential function and the energy levels is that of Kolos and Wolniewicz, 1969 whose numbering and ΔG(1/2) value for the F 1Σg- component has been adopted in the table. According to Kolos and Wolniewicz, 1969 ν00(F-B) would be at 9146.8 cm-1 but v=0,1,2,3 of F have not been observed. The observed v=4 level lies just below the potential maximum. |
99 | From the observed ν40 and the energy of v=4 above the (outer) minimum as calculated by Kolos and Wolniewicz, 1969. |
100 | B4 = 6.24 129 |
101 | R4=2.315 129 |
102 | Franck-Condon factors Lin, 1974. Electronic transition moment Wolniewicz, 1969. |
103 | ν40 =13635.1 |
104 | These numbers represent only the lower vibrational levels near the inner minimum. Owing to the interaction of E and F (see 98) higher ΔG(v+1/2), Bv, Dv values are irregular. |
105 | ωexe= +0.73l2(v+1/2)3 - 0.04l5(v+1/2)4. These constants refer to the (unperturbed) Π- component and are based on an 8-level fit to the data of Dabrowski and Herzberg, 1974 [v=0-4] and Namioka, 1964, 2 [v=5-7]. Somewhat different constants are given by Namioka, 1965. Note, that the Te values in Dieke, 1958 are too low by 8.4 cm-1 Namioka, 1965. The constants of Monfils, 1968 are affected by not recognizing this error. |
106 | Theoretical work King and Van Vleck, 1939, Mulliken, 1960, Kolos and Wolniewicz, 1965, Rothenberg and Davidson, 1966, Kolos, 1967 has predicted, and the analysis of the spectrum Namioka, 1964, Dabrowski and Herzberg, 1974 has confirmed, that the potential curve of C 1Πu has a van der Waals maximum of ~ 105 cm-1 above the asymptote near r=4.8 Angstroms. ab initio potential function (without diagonal corrections) and predicted vibrational levels Kolos and Wolniewicz, 1968. RKR potential functions Namioka, 1965 Monfils, 1968, 2; see, however, Julienne, 1973. |
107 | αv= +0.0296(v+1/2)2 - 0.00296(v+1/2)3. These constants refer to the Π- component (Π+ is strongly perturbed by B 1Σu-) and are from an 8-level least- squares fit of the data of Dabrowski and Herzberg, 1974 [v = 0-4] and Namioka, 1964, 2 [v=5-7]. Somewhat discordant Bv values for both Π- and Π+ (the latter after deperturbation) are given by Namioka, 1964, 2, Monfils, 1965, Dabrowski and Herzberg, 1974. The Λ-type doubling for v=0, J-l is 1.17 cm-1; for other v, J as well as theoretical values see Julienne, 1973, Ford, 1974. |
108 | Lifetime τ(v=0,1,2,3) = 0.6 ns Hesser, 1968. |
109 | RKR Franck-Condon factors calculated by missing citation,89 and "measured" by Geiger and Schmoranzer, 1969, Schmoranzer and Geiger, 1973, Fabian and Lewis, 1974 who have also determined the dependence of the transition moment on r. Ab initio calculation of the latter by Wolniewicz, 1969. Theoretical transition probabilities and f values Wolniewicz, 1969, Allison and Dalgarno, 1970, Allison and Dalgarno, 1970, 2, Dalgarno and Stephens, 1970, experimental values Hesser, 1968, Fabian and Lewis, 1974, Lewis, 1974: f10 = 0.059, f20 = 0.060, f30 = 0.044,... Calculated transitions to the continuum of X 1Σg- Stephens and Dalgarno, 1972. Selective enhancements of v=0 and 2 of C 1Πu in Ar-H2 mixtures have been studied by Takezawa, Innes, et al., 1966; similar enhancements have also been observed in Kr-H2 mixtures. For stimulated emission in the Q(1) and P(3) lines of the 1-4, 2-5, 2-6, 3-7 Werner bands see Hodson and Dreyfus, 1972, Waynant, 1972. |
110 | The Te values for B and C include the effects of Y00 on the zero point energies in both upper and lower states; Y'00(B) = 8.7, Y'00(C) = 5.0 cm-1. On the other hand, the Te value of C 1Πu and ν00(C-X) exclude the term - BΛ2 in the energy formula, a term that is usually included to form part of the effective potential energy. With this inclusion and disregarding Y00 Namioka, 1965 gives Te = 100063.42 and ν00 = 99090.35 on the basis of older data for v=0...4 and his own precise data for v=5....13. |
111 | ωexe= +0.7196(v+1/2)3 - 0.0598(v+1/2)4 +0.002l6(v+1/2)5, Y00 = 8.7; from a least squares fit Dabrowski and Herzberg, 1974 to the first eight levels as given by Herzberg and Howe, 1959. Wilkinson, 1968 gives slightly different constants based on the first five levels only. Monfils, 1968 and Namioka, 1964, 2 have observed levels up to v= 35 and 37, respectively, very close to the dissociation limit at 118377.6 cm-1 Herzberg, 1970. The dissociation energy of the B 1Σu- state is 28174.2 cm-1. |
112 | RKR potential functions Tobias and Vanderslice, 1961, Namioka, 1965,$ 72, Spindler, 1969; see also Stwalley, 1973. Precise ab initio potential function (including diagonal corrections) and predicted vibrational levels Kolos and Wolniewicz, 1968, Kolos and Wolniewicz, 1975. |
113 | αv= +0.1214(v+1/2)2 - 0.0117(v+1/2)3 + 0.00046(v+1/2)4, from a least squares fit Dabrowski and Herzberg, 1974 to the first eight levels. Wilkinson, 1968 gives slightly different constants based on the first five levels only. For v≥8 there are strong rotational perturbations caused by interaction with C 1Πu. Only after deperturbation can meaningful Bv values for these levels be obtained [see Dabrowski and Herzberg, 1974]. For a theoretical discussion of the intensities in the perturbed region see Ford, 1974. |
114 | Dv= -2.165E-3(v+1/2) + 2.289E-4(v+1/2)2 - 1.185E-5(v+1/2)3. For individual Bv and Dv values see Herzberg and Howe, 1959, Namioka, 1964, 2, Dabrowski and Herzberg, 1974. |
115 | Lifetime τ(v=3...7) = 0.8 ns Hesser, 1968; τ(v=8...11) = 1.0 ns Smith and Chevalier, 1972. |
116 | Franck-Condon factors from RKR potentials Halmann and Laulicht, 1966, Spindler, 1969; from ab initio potential functions Dalgarno and Allison, 1968, Allison and Dalgarno, 1970, Allison and Dalgarno, 1970, 2, including theoretical oscillator strengths; see also Lin, 1975. J dependence of Franck-Condon factors and transition probabilities Villarejo, Stockbauer, et al., 1969, Wolniewicz, 1969, Becker and Fink, 1971. Experimental Franck-Condon factors and oscillator strengths Geiger and Topschowsky, 1966, Haddad, Lokan, et al., 1968, Hesser, Brooks, et al., 1968, Geiger and Schmoranzer, 1969, Fabian and Lewis, 1974, Lewis, 1974, Schmoranzer, 1975; Σfv'0 = 0.29. Variation of transition moment with r Hesser, Brooks, et al., 1968, Geiger and Schmoranzer, 1969, Schmoranzer, 1975 and, ab initio, Dalgarno and Allison, 1968, Wolniewicz, 1969. Selective enhancements of v=3 and 10 of B 1Σu- in an Ar-H2 mixture, first observed by Lyman, have recently been studied by Takezawa, Innes, et al., 1966; similar enhancements were also observed in Kr-H2 mixtures. Stimulated emission in the P branches of the 3-10, 4-11, 5-12, 6-13, 7-13 Lyman bands Hodgson, 1970, Waynant, Shipman, et al., 1970. |
117 | A continuous spectrum corresponding to transitions to the continuum of X 1Σg- has been observed Dalgarno, Herzberg, et al., 1970 and the intensity distribution found to be in agreement with calculations. Dalgarno and Stephens, 1970, Stephens and Dalgarno, 1972 have calculated transition probabilities and the fractions that go to the continuum for v' = 0.... 36. Allison and Dalgarno, 1969 calculated the continuous spectrum corresponding to absorption from the ground state to the continuum of B 1σu-. |
118 | ωexe= +0.8129(v+1/2)3; these constants Foltz, Rank, et al., 1966 represent only the levels v=0,1,2,3. Herzberg and Howe, 1959 has less accurate constants representing higher G(v) values. "True" ωe= 4403.2 Fink, Wiggins, et al., 1965 (including Dunham corrections) Fink, Wiggins, et al., 1965. The zero-point energy (Y00 = 8.93 included) is 2179.27 cm-1. Herzberg and Monfils, 1960. |
119 | RKR potential functions Tobias and Vanderslice, 1961, Weissman, Vanderslice, et al., 1963, Ginter and Battino, 1965, see also Zhirnov and Vasilevskii, 1970; ab initio potential functions Kolos and Wolniewicz, 1974, Kolos and Wolniewicz, 1975, 2. Rotational and vibrational levels calculated from the latter are given in Kolos and Wolniewicz, 1975, 2; see also Waech and Bernstein, 1967, Kolos and Wolniewicz, 1968, 2. Waech and Bernstein, 1967 include some of the quasi-bound levels above the dissociation limit [see also Allison, 1969]; for their experimental observation see Herzberg and Howe, 1959, Herzberg and Mckenzie, 1979. Recent comparisons between ab initio calculated and observed energy levels Bunker, 1972, Orlikowski and Wolniewicz, 1974, Dabrowski and Herzberg, 1976, Bishop and Shih, 1976. |
120 | αv= +0.0577(v+1/2)2 - 0.0051(v+1/2)3; these constants Foltz, Rank, et al., 1966 represent only B0...3 which are the best known Bv values. Brannon, Church, et al., 1968 from the field-induced spectrum give a very slightly different B0 (59.3343 versus 59.3362); see also Buijs and Gush, 1971. The formula Bv= 60.8635 - 3.07638(v+1/2) + 0.06017(v+1/2)2 - 0.0048l(v+1/2)3 (v≤8) of Herzberg and Howe, 1959 holds up to v=8. Higher Bv values Herzberg and Howe, 1959 require higher and higher terms in the formula. All the constants given are Y01,...Y31 values; Fink, Wiggins, et al., 1965 have introduced Dunham corrections and give the "true" Be = 60.8679 Fink, Wiggins, et al., 1965. According to Ramsey, 1952 the hyperfine levels F=1 and 2 for J=1,v=0 are 1.823E-5 and 2.005E-5 cm-1 below the F=0 component. |
121 | Dv= -0.00274(v+1/2) + 0.00040(v+1/2)2; Hv = [4.9-0.5(v+1/2)]E-5 Fink, Wiggins, et al., 1965; see also Foltz, Rank, et al., 1966. |
122 | Quadrupole 130 and field-induced sp..131 |
123 | Raman cross sections Harney, Randolph, et al., 1975. |
124 | Rotational g factor gJ = 0.88291. |
125 | This is an upper limit (36118.3 ± 0.5 cm-1), the lower limit being 4.4779 eV. According to Herzberg, 1970 the true value is probably close to the upper limit; see also Stwalley, 1970 who gives D00 = 36118.6 cm-1 Stwalley, 1970 on the basis of a reassignment of the last vibrational levels of the B state. The most recent theoretical value of Kolos and Wolniewicz, 1968, 2 - including a small non-adiabatic correction of Bunker, 1979 - is D00= 36117.9 cm-1 Kolos and Wolniewicz, 1968, 2, Bunker, 1979. An earlier independent calculation Hunter, 1966 (not including the non-adiabatic correction) gave D00= 36118.1 cm-1 Hunter, 1966. |
126 | From the limit of the npσ, 1Σu+ Rydberg series (124417.2 cm-1) taking account of perturbations and pressure shift of high n lines Herzberg and Jungen, 1972. The earlier value of Takezawa, 1970 was higher by 1.2 cm-1 because it was not corrected for pressure shift. The latest theoretical (ab initio) value Jeziorski and Kolos, 1969 including relativistic, Lamb shift, and non-adiabatic corrections is 15.42590 eV; see Herzberg and Jungen, 1972. |
127 | The two J=2 levels are observed at 27631.3 and 27732.9 cm-1 above J=0, v=0 of B 1Σu+ Dieke, 1958. The ν00 value given is an extrapolated average for J=0 and, because of the uncoupling, is rather uncertain. |
128 | The two J=1 levels are observed at 27385.8 and 27487.1 cm-1 above J=0, v=0 of B 1Σu+ Dieke, 1958. The ν00 value given is an extrapolated average for J=0 and, because of the uncoupling, is rather uncertain. |
129 | Vibrational numbering of Kolos and Wolniewicz, 1969. See 98. |
130 | Fink, Wiggins, et al., 1965 give absolute intensity measurements of the quadrupole rotation-vibration spectrum (1-0, 2-0, 3-0) as well as corrections for pressure shifts; see also Margolis, 1973, McKellar, 1974, Chackerian and Giver, 1975. Dependence of quadrupole moment on r Kolos and Wolniewicz, 1965. Predicted intensities in the rotation-vibration spectrum James, 1969, in the rotation spectrum Dalgarno and Wright, 1972. Predicted lifetimes of rotation-vibration levels Black and Dalgarno, 1976, e.g. τ(v=1,J=1)= 1.17E+6 s Black and Dalgarno, 1976. |
131 | The rotation and rotation-vibration spectrum has been observed in pressure- induced absorption, see the review by Welsh, 1972. |
References
Go To: Top, Reaction thermochemistry data, Constants of diatomic molecules, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Rathke, Klingler, et al., 1992
Rathke, J.W.; Klingler, R.J.; Krause, T.R.,
Organometallics, 1992, 11, 585. [all data]
Bor, 1986
Bor, G.,
Pure & Appl. Chem., 1986, 58, 543. [all data]
Alemdaroglu, Penninger, et al., 1976
Alemdaroglu, N.H.; Penninger, J.M.L.; Oltay, E.,
Monatsh. Chem., 1976, 107, 1043. [all data]
Ungváry, 1972
Ungváry, F.,
J. Organometal. Chem., 1972, 36, 363. [all data]
Poë, Sampson, et al., 1993
Poë, A.J.; Sampson, C.N.; Smith, R.T.; Zheng, Y.,
J. Am. Chem. Soc., 1993, 115, 3174. [all data]
Landrum and Hoff, 1985
Landrum, J.T.; Hoff, C.D.,
J. Organometal. Chem., 1985, 282, 215. [all data]
Pedley, 1994
Pedley, J.B.,
Thermodynamic Data and Structures of Organic Compounds; Thermodynamics Research Center Data Series, Vol I, Thermodynamics Research Center, College Station, 1994. [all data]
Hiraoka, 1987
Hiraoka, K.,
A Determination of the Stabilities of H3+(H2)n with n=1-9 from Measurements of the gas-Phase Ion Equilibria H3+(H2)n-1 + H2 = H3+(H2)n,
J. Chem. Phys., 1987, 87, 7, 4048, https://doi.org/10.1063/1.452909
. [all data]
Beuhler, Ehrenson, et al., 1983
Beuhler, R.J.; Ehrenson, S.; Friedman, L.,
Hydrogen Cluster Ion Equilibria,
J. Chem. Phys., 1983, 79, 12, 5982, https://doi.org/10.1063/1.445781
. [all data]
Hiraoka and Kebarle, 1975
Hiraoka, K.; Kebarle, P.,
A Determination of the Stabilities of H5+, H7+, H9+, and H11+ from Measurement of the Gas Phase Ion Equilibria Hn+ + H2 = H(n + 2)+ (n = 3, 5, 7, 9),
J. Chem. Phys., 1975, 62, 6, 2267, https://doi.org/10.1063/1.430751
. [all data]
Bennett and Field, 1972
Bennett, S.L.; Field, F.H.,
Reversible Reactions of Gaseous Ions. VII. The Hydrogen System,
J. Am. Chem. Soc., 1972, 94, 25, 8669, https://doi.org/10.1021/ja00780a003
. [all data]
Shiell, Hu, et al., 2000
Shiell, R.C.; Hu, X.K.; Hu, Q.C.J.; Hepburn, J.W.,
Threshold Ion-pair Production spectroscopy (TIPPS) of H2 and D2,
Faraday Disc. Chem. Soc., 2000, 115, 331, https://doi.org/10.1039/a909428h
. [all data]
Pratt, McCormack, et al., 1992
Pratt, S.T.; McCormack, E.F.; Dehmer, J.L.; Dehmer, P.M.,
Field-Induced Ion-Pair Formation in Molecular Hydrogen,
Phys. Rev. Lett., 1992, 68, 5, 584, https://doi.org/10.1103/PhysRevLett.68.584
. [all data]
Gurvich, Veyts, et al.
Gurvich, L.V.; Veyts, I.V.; Alcock, C.B.,
Hemisphere Publishing, NY, 1989, V. 1 2, Thermodynamic Properties of Individual Substances, 4th Ed. [all data]
Lykke, Murray, et al., 1991
Lykke, K.R.; Murray, K.K.; Lineberger, W.C.,
Threshold Photodetachment of H-,
Phys. Rev. A, 1991, 43, 11, 6104, https://doi.org/10.1103/PhysRevA.43.6104
. [all data]
Allinger, Dodziuk, et al., 1982
Allinger, N.L.; Dodziuk, H.; Rogers, D.W.; Naik, S.N.,
Heats of hydrogenation and formation of some 5-membered ring compounds by molecular mechanics calculations and direct measurements,
Tetrahedron, 1982, 38, 1593-1597. [all data]
Roth and Lennartz, 1980
Roth, W.R.; Lennartz, H.W.,
Heats of hydrogenation. I. Determination of heats of hydrogenation with an isothermal titration calorimeter,
Chem. Ber., 1980, 113, 1806-1817. [all data]
Turner, Jarrett, et al., 1973
Turner, R.B.; Jarrett, A.D.; Goebel, P.; Mallon, B.J.,
Heats of hydrogenation. 9. Cyclic acetylenes and some miscellaneous olefins,
J. Am. Chem. Soc., 1973, 95, 790-792. [all data]
Rogers and McLafferty, 1971
Rogers, D.W.; McLafferty, F.J.,
A new hydrogen calorimeter. Heats of hydrogenation of allyl and vinyl unsaturation adjacent to a ring,
Tetrahedron, 1971, 27, 3765-3775. [all data]
Dolliver, Gresham, et al., 1937
Dolliver, M.a.; Gresham, T.L.; Kistiakowsky, G.B.; Vaughan, W.E.,
Heats of organic reactions. V. Heats of hydrogenation of various hydrocarbons,
J. Am. Chem. Soc., 1937, 59, 831-841. [all data]
Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G.,
Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]
Doering, Roth, et al., 1989
Doering, W.E.; Roth, W.R.; Bauer, F.; Breuckmann, R.; Ebbrecht, T.; Herbold, M.; Schmidt, R.; Lennartz, H-W.; Lenoir, D.; Boese, R.,
Rotational barriers of strained olefines,
Chem. Ber., 1989, 122, 1263-1266. [all data]
Rogers, Von Voithenberg, et al., 1978
Rogers, D.W.; Von Voithenberg, H.; Allinger, N.L.,
Heats of hydrogenation of the cis and trans isomers of cyclooctene,
J. Org. Chem., 1978, 43, 360-361. [all data]
Turner and Meador, 1957
Turner, R.B.; Meador, W.R.,
Heats of hydrogenation. IV. Hydrogenation of some cis- and trans-cycloolefins,
J. Am. Chem. Soc., 1957, 79, 4133-4136. [all data]
Conn, Kistiakowsky, et al., 1939
Conn, J.B.; Kistiakowsky, G.B.; Smith, E.A.,
Heats of organic reactions. VIII. Some further hydrogenations, including those of some acetylenes,
J. Am. Chem. Soc., 1939, 61, 1868-1876. [all data]
Wang, Rosini, et al., 1995
Wang, K.; Rosini, G.P.; Nolan, S.P.; Goldman, A.S.,
J. Am. Chem. Soc., 1995, 117, 5082. [all data]
Rogers, Crooks, et al., 1987
Rogers, D.W.; Crooks, E.; Dejroongruang, K.,
Enthalpies of hydrogenation of the hexenes,
J. Chem. Thermodyn., 1987, 19, 1209-1215. [all data]
Turner and Garner, 1958
Turner, R.B.; Garner, R.H.,
Heats of hydrogenation. V. Relative stabilities in certain exocyclic-endocyclic olefin pairs,
J. Am. Chem. Soc., 1958, 80, 1424-1430. [all data]
Turner and Garner, 1957
Turner, R.B.; Garner, R.H.,
Heats of hydrogenation. V. Relative stabilities in certain exocyclic-endocyclic olefin pairs,
J. Am. Chem. Soc., 1957, 80, 1424-1430. [all data]
Turner and Garner, 1957, 2
Turner, R.B.; Garner, R.H.,
The stability relationship of 1-methyl-cyclopentene and methylenecyclopentane,
J. Am. Chem. Soc., 1957, 79, 253. [all data]
Fang and Rogers, 1992
Fang, W.; Rogers, D.W.,
Enthalpy of hydrogenation of the hexadienes and cis- and trans-1,3,5-hexatriene,
J. Org. Chem., 1992, 57, 2294-2297. [all data]
Molnar, Rachford, et al., 1984
Molnar, A.; Rachford, R.; Smith, G.V.; Liu, R.,
Heats of hydrogenation by a simple and rapid flow calorimetric method,
Appl. Catal., 1984, 9, 219-223. [all data]
Turner, Mallon, et al., 1973
Turner, R.B.; Mallon, B.J.; Tichy, M.; Doering, W.v.E.; Roth, W.R.; Schroder, G.,
Heats of hydrogenation. X. Conjugative interaction in cyclic dienes and trienes,
J. Am. Chem. Soc., 1973, 95, 8605-8610. [all data]
Kistiakowsky, Ruhoff, et al., 1936
Kistiakowsky, G.B.; Ruhoff, J.R.; Smith, H.A.; Vaughan, W.E.,
Heats of organic reactions. IV. Hydrogenation of some dienes and of benzene,
J. Am. Chem. Soc., 1936, 58, 146-153. [all data]
Hiraoka and Kebarle, 1976
Hiraoka, K.; Kebarle, P.,
Stabilities and Energetics of Pentacoordinated Carbonium Ions. The Isomeric C2H7+ Ions and Some Higher Analogues: C3H9+ and C4H11+,
J. Am. Chem. Soc., 1976, 98, 20, 6119, https://doi.org/10.1021/ja00436a009
. [all data]
Kemper, Bushnell, et al., 1993
Kemper, P.R.; Bushnell, J.; Von Helden, G.; Bowers, M.T.,
Co+(H2)n Clusters: Binding Energies and Molecular Parameters,
J. Chem Phys., 1993, 97, 1, 52, https://doi.org/10.1021/j100103a012
. [all data]
Haynes and Armentrout, 1996
Haynes, C.L.; Armentrout, P.B.,
Guided Ion Beam Determination of the Co+ - H2 Bond Dissociation energy,
Chem Phys. Let., 1996, 249, 1-2, 64, https://doi.org/10.1016/0009-2614(95)01337-7
. [all data]
Rogers and Skanupong, 1974
Rogers, D.W.; Skanupong, S.,
Heats of hydrogenation of sixteen terminal monoolefins. The alternating effect,
J. Phys. Chem., 1974, 78, 2569-2572. [all data]
Turner, Meador, et al., 1957
Turner, R.B.; Meador, W.R.; Winkler, R.E.,
Heats of hydrogenation. I. Apparatus and the heats of hydrogenation of bicyclo[2,2,1]heptene, bicyclo[2,2,1]heptadiene, bicyclo[2,2,2]octene and bicyclo[2,2,2]octadiene,
J. Am. Chem. Soc., 1957, 79, 4116-4121. [all data]
Roth, Klaerner, et al., 1983
Roth, W.R.; Klaerner, F.G.; Gerit, F.; Grimme, W.; Koeser, H.G.; Busch, R.; Muskulus, B.; Breuckmann, R.; Scholz, B.P.; Lennartz, H.W.,
Stereochemistry of the bicyclo[2.1.0]pentane ring opening: thermolysis of tricyclo[3.2.0.0(,)]heptane derivatives,
Chem. Ber., 1983, 116, 2717-2737. [all data]
Hales and Herington, 1957
Hales, J.L.; Herington, E.F.G.,
Equilibrium between pyridine and piperidine,
Trans. Faraday Soc., 1957, 53, 616-622. [all data]
Burrows and King, 1935
Burrows, G.H.; King, L.A., Jr.,
The free energy change that accompanies hydrogenation of pyridine to piperidine,
J. Am. Chem. Soc., 1935, 57, 1789-1791. [all data]
Turner, Nettleton, et al., 1958
Turner, R.B.; Nettleton, J.E.; Perelman,
Heats of Hydrogenation. VI. Heats of hydrogenation of some substituted ethylenes,
J. Am. Chem. Soc., 1958, 80, 1430-1433. [all data]
Crawford and Parks, 1936
Crawford, B.L., Jr.; Parks, G.S.,
The heat of hydrogenation of diisobutylene,
J. Am. Chem. Soc., 1936, 58, 373. [all data]
Kistiakowsky and Nickle, 1951
Kistiakowsky, G.B.; Nickle, A.G.,
Ethane-ethylene and propane-propylene equilibria,
Faraday Discuss. Chem. Soc., 1951, 10, 175-187. [all data]
Kistiakowsky, Ruhoff, et al., 1935
Kistiakowsky, G.B.; Ruhoff, J.R.; Smith, H.A.; Vaughan, W.E.,
Heats of organic reactions. II. Hydrogenation of some simpler olefinic hydrocarbons,
J. Am. Chem. Soc., 1935, 57, 876-882. [all data]
Kemper, Bushnell, et al., 1993, 2
Kemper, P.R.; Bushnell, J.; Von Koppen, P.; Bowers, M.T.,
Binding Energies of Co+(H2/CH4/C2H6)1,2,3 Clusters,
J. Phys. Chem., 1993, 97, 9, 1810, https://doi.org/10.1021/j100111a016
. [all data]
Wiberg, Crocker, et al., 1991
Wiberg, K.B.; Crocker, L.S.; Morgan, K.M.,
Thermochemical studies of carbonyl compounds. 5. Enthalpies of reduction of carbonyl groups,
J. Am. Chem. Soc., 1991, 113, 3447-3450. [all data]
Buckley and Herington, 1965
Buckley, E.; Herington, E.F.G.,
Equilibria in some secondary alcohol + hydrogen + ketone systems,
Trans. Faraday Soc., 1965, 61, 1618-1625. [all data]
Dolliver, Gresham, et al., 1938
Dolliver, M.A.; Gresham, T.L.; Kistiakowsky, G.B.; Smith, E.A.; Vaughan, W.E.,
Heats of organic reactions. VI. Heats of hydrogenation of some oxygen-containing compounds,
J. Am. Chem. Soc., 1938, 60, 440-450. [all data]
Roth, Adamczak, et al., 1991
Roth, W.R.; Adamczak, O.; Breuckmann, R.; Lennartz, H.-W.; Boese, R.,
Die Berechnung von Resonanzenergien; das MM2ERW-Kraftfeld,
Chem. Ber., 1991, 124, 2499-2521. [all data]
Rogers, Dejroongruang, et al., 1992
Rogers, D.W.; Dejroongruang, K.; Samuel, S.D.; Fang, W.; Zhao, Y.,
Enthalpies of hydrogenation of the octenes and the methylheptenes,
J. Chem. Thermodyn., 1992, 24, 561-565. [all data]
Rogers and Siddiqui, 1975
Rogers, D.W.; Siddiqui, N.A.,
Heats of hydrogenation of large molecules. I. Esters of unsaturated fatty acids,
J. Phys. Chem., 1975, 79, 574-577. [all data]
Rogers, Dagdagan, et al., 1979
Rogers, D.W.; Dagdagan, O.A.; Allinger, N.L.,
Heats of hydrogenation and formation of linear alkynes and a molecular mechanics interpretation,
J. Am. Chem. Soc., 1979, 101, 671-676. [all data]
Sicher, Svoboda, et al., 1966
Sicher, J.; Svoboda, M.; Zavada, J.; Turner, R.B.; Goebel, P.,
Sterochemical studies - XXXVI. An approach to conformational analysis of medium ring compounds. Unsaturated ten-membered ring derivates,
Tetrahedron, 1966, 22, 659-671. [all data]
Doering, Roth, et al., 1988
Doering, W.E.; Roth, W.R.; Breuckmann, R.; Figge, L.; Lennartz, H.-W.; Fessner, W.-D.; Prinzbach, F.H.,
Verbotene Reaktionen. - [2 + 2]-Cycloreversion starrer Cyclobutane,
Chem. Ber., 1988, 121, 1-9. [all data]
Rogers, Choi, et al., 1980
Rogers, D.W.; Choi, L.S.; Girellini, R.S.,
Heats of hydrogenation and formation of quadricyclene, norbornadiene, norbornene, and nortricyclene,
J. Phys. Chem., 1980, 84, 1810-1814. [all data]
Connett, 1972
Connett, J.E.,
Chemical equilibria. 5. Measurement of equilibrium constants for the dehydrogenation of propanol by a vapour flow technique,
J. Chem. Thermodyn., 1972, 4, 233-237. [all data]
Buckley and Cox, 1967
Buckley, E.; Cox, J.D.,
Chemical equilibria. Part 2.-Dehydrogenation of propanol and butanol,
Trans. Faraday Soc., 1967, 63, 895-901. [all data]
Klingler R.J. and Rathke, 1992
Klingler R.J.; Rathke, J.W.,
Inorg. Chem., 1992, 31, 804. [all data]
Crosswhite, 1972
Crosswhite, H.M.,
The hydrogen molecule wavelength tables of Gerhard Heinrich Dieke, Wiley-Interscience, Division of John Wiley & Sons, Inc., New York, 1972, 616. [all data]
Dieke, 1958
Dieke, G.H.,
The molecular spectrum of hydrogen and its isotopes,
J. Mol. Spectrosc., 1958, 2, 494. [all data]
Sharp, 1971
Sharp, T.E.,
Potential-energy curves for molecular hydrogen and its ions,
At. Data, 1971, 2, 119. [all data]
Richardson, 1934
Richardson, O.W.,
Molecular Hydrogen and Its Spectrum, Yale University Press, New Haven, 1934, 343. [all data]
Richardson, Yarrow, et al., 1934
Richardson, O.W.; Yarrow, F.R.S.; Rymer, T.B.,
The spectrum of H2. Part III. New bands and band systems ending on 2s 3Σ and an extension of the singlet system 1Q → 2p 1Σ,
Proc. R. Soc. London A, 1934, 147, 272. [all data]
Richardson, Yarrow, et al., 1934, 2
Richardson, O.W.; Yarrow, F.R.S.; Rymer, T.B.,
The spectrum of H2. Part II - The band systems due to transitions from four new triplet states to 2p 3Π,
Proc. R. Soc. London A, 1934, 147, 251. [all data]
Foster and Richardson, 1953
Foster, E.W.; Richardson, O.,
The fine structure of the 4d3Σ, 3Πcd, 3Δd → 2p 3Πcd transitions of the H2 spectrum,
Proc. R. Soc. London A, 1953, 217, 433. [all data]
Miller and Freund, 1975
Miller, T.A.; Freund, R.S.,
Anticrossings and microwave transitions between the k(4p) 3Πu, v = 1, N = 3 and the p(4d) 3Σg+, v = 1, N = 5 levels of H2,
J. Chem. Phys., 1975, 62, 2240. [all data]
Cunningham and Dieke, 1950
Cunningham; Dieke,
Johns Hopkins University, Department of Physics, Rpt. NYO-692, 1950, 1. [all data]
Freund and Miller, 1974
Freund, R.S.; Miller, T.A.,
Anticrossings and microwave transitions between electronic states of H2,
J. Chem. Phys., 1974, 60, 4900. [all data]
Gloersen and Dieke, 1965
Gloersen, P.; Dieke, G.H.,
Molecular spectra of hydrogen and helium in the infrared,
J. Mol. Spectrosc., 1965, 16, 191. [all data]
Richardson, Yarrow, et al., 1934, 3
Richardson, O.W.; Yarrow, F.R.S.; Rymer, T.B.,
The spectrum of H2 (the ordinary hydrogen molecule). Part I - The 3, 4d 3Σ, Π, Δ → 2p 3Π and 3s 3Σ → 2p 3Π systems,
Proc. R. Soc. London A, 1934, 147, 24. [all data]
Dieke and Blue, 1935
Dieke, G.H.; Blue, R.W.,
The Fulcher bands of HD and D2,
Phys. Rev., 1935, 47, 261. [all data]
Dieke, 1935
Dieke, G.H.,
The 3p3Σ→2s3Σ bands of HD and D2,
Phys. Rev., 1935, 48, 606. [all data]
Kolos and Wolniewicz, 1965
Kolos, W.; Wolniewicz, L.,
Potential-energy curves for the X1Σg+, b3Σu+, and C1Πu states of the hydrogen molecule,
J. Chem. Phys., 1965, 43, 2429. [all data]
Herzberg, 1969
Herzberg, G.,
Dissociation energy and ionization potential of molecular hydrogen,
Phys. Rev. Letters, 1969, 23, 1081. [all data]
Takezawa, 1970
Takezawa, S.,
Absorption spectrum of H2 in the vacuum-uv region. I. Rydberg states and ionization energies,
J. Chem. Phys., 1970, 52, 2575. [all data]
Dabrowski and Herzberg, 1974
Dabrowski, I.; Herzberg, G.,
The absorption spectrum of D2 from 1100 to 840 Å,
Can. J. Phys., 1974, 52, 1110. [all data]
Chupka, Dehmer, et al., 1975
Chupka, W.A.; Dehmer, P.M.; Jivery, W.T.,
High resolution photoionization study of ion-pair formation in H2, HD, and D2,
J. Chem. Phys., 1975, 63, 3929. [all data]
Kolos, 1976
Kolos, W.,
Ab initio potential energy curves and vibrational levels for the B", B«macron», and B'1Σu+ states of the hydrogen molecule,
J. Mol. Spectrosc., 1976, 62, 429. [all data]
Monfils, 1965
Monfils, A.,
The absorption spectra of the molecules H2, HD, and D2. Part VI. Rotational analysis of the B', B", D, D', and D" states,
J. Mol. Spectrosc., 1965, 15, 265. [all data]
Monfils, 1968
Monfils, A.,
Absorption spectra of molecules H2, HD, and D2. VII. Vibrational constants of the B, B', B", C, D, D', and D" states,
J. Mol. Spectrosc., 1968, 25, 513. [all data]
Namioka, 1964
Namioka, T.,
Absorption spectra of H2 in the vacuum ultraviolet region. II. The B'-X, B"-X, D-X, and D'-X bands,
J. Chem. Phys., 1964, 41, 2141. [all data]
Richardson, 1937
Richardson, O.W.,
The band systems ending on the 1sσ 2sσ1Σg(1Xg) state of H2. Part I.,
Proc. R. Soc. London A, 1937, 160, 487-507. [all data]
Dieke and Lewis, 1937
Dieke, G.H.; Lewis, M.N.,
Bands of HD and D2 ending on the 2p1Σ state,
Phys. Rev., 1937, 52, 100. [all data]
Porto and Jannuzzi, 1963
Porto, S.P.S.; Jannuzzi, N.,
New singlet transitions in the near infrared spectrum of molecular hydrogen,
J. Mol. Spectrosc., 1963, 11, 378. [all data]
Namioka, 1965
Namioka, T.,
Absorption spectra of H2 in the vacuum-ultraviolet region. III. Potential-energy curves for the B1Σu+, C1Πu, B'1Σu+, and D1Πu states,
J. Chem. Phys., 1965, 43, 1636. [all data]
Dieke, 1949
Dieke, G.H.,
Bands from doubly excited levels of the hydrogen molecule,
Phys. Rev., 1949, 76, 50. [all data]
Dieke, 1936
Dieke, G.H.,
The 2s1Σ→2p1Σ bands of the hydrogen molecule,
Phys. Rev., 1936, 50, 797. [all data]
Porto and Dieke, 1955
Porto, S.P.S.; Dieke, G.H.,
Infrared spectrum of hydrogen and deuterium between one and two microns,
J. Opt. Soc. Am., 1955, 45, 447. [all data]
Dieke, 1938
Dieke, G.H.,
Bands of H2 ending on the 2p1Π level,
Phys. Rev., 1938, 54, 439. [all data]
Namioka, 1964, 2
Namioka, T.,
Absorption spectra of H2 in the vacuum-ultraviolet region. I. The Lyman and the Werner bands,
J. Chem. Phys., 1964, 40, 3154. [all data]
Herzberg and Howe, 1959
Herzberg, G.; Howe, L.L.,
The Lyman bands of molecular hydrogen,
Can. J. Phys., 1959, 37, 636. [all data]
Wilkinson, 1968
Wilkinson, P.G.,
The electronic isotope shift in the Lyman bands of H2, HD, and D2,
Can. J. Phys., 1968, 46, 1225. [all data]
Herzberg, 1950
Herzberg, G.,
Forbidden transitions in diatomic molecules. I. The quadrupole rotation-vibration spectrum of H2,
Can. J. Res. Sect. A, 1950, 28, 144. [all data]
Fink, Wiggins, et al., 1965
Fink, U.; Wiggins, T.A.; Rank, D.H.,
Frequency and intensity measurements on the quadrupole spectrum of molecule hydrogen,
J. Mol. Spectrosc., 1965, 18, 384. [all data]
Terhune and Peters, 1959
Terhune, R.W.; Peters, C.W.,
Electric field induced vibration rotation spectrum of H2 and D2,
J. Mol. Spectrosc., 1959, 3, 138. [all data]
Foltz, Rank, et al., 1966
Foltz, J.V.; Rank, D.H.; Wiggins, T.A.,
Determinations of some hydrogen molecular constants,
J. Mol. Spectrosc., 1966, 21, 203. [all data]
Brannon, Church, et al., 1968
Brannon, P.J.; Church, C.H.; Peters, C.W.,
Electric field induced spectra of molecular hydrogen, deuterium and deuterium hydride,
J. Mol. Spectrosc., 1968, 27, 44. [all data]
Stoicheff, 1957
Stoicheff, B.P.,
High resolution Raman spectroscopy of gases. IX. Spectra of H2, HD, and D2,
Can. J. Phys., 1957, 35, 730. [all data]
Harrick and Ramsey, 1952
Harrick, N.J.; Ramsey, N.F.,
Rotational magnetic moment, magnetic susceptibilities, and electron distribution in the hydrogen molecule,
Phys. Rev., 1952, 88, 228. [all data]
Barnes, Bray, et al., 1954
Barnes, R.G.; Bray, P.J.; Ramsey, N.F.,
Variations of hydrogen rotational magnetic moments with rotational quantum number and with isotopic mass,
Phys. Rev., 1954, 94, 893. [all data]
Kolsky, Phipps, et al., 1952
Kolsky, H.G.; Phipps, T.E., Jr.; Ramsey, N.F.; Silsbee, H.B.,
Nuclear radiofrequency spectra of H2 and D2 in high and low magnetic fields,
Phys. Rev., 1952, 87, 395. [all data]
Harrick, Barnes, et al., 1953
Harrick, N.J.; Barnes, R.G.; Bray, P.J.; Ramsey, N.F.,
Nuclear radiofrequency spectra of D2 and H2 in intermediate and strong magnetic fields,
Phys. Rev., 1953, 90, 260. [all data]
Ginter, 1967
Ginter, M.L.,
Molecular constants for the l-uncoupled electronic states 3d 1,3Δg and 3d 1,3Πg of the hydrogen molecule,
J. Chem. Phys., 1967, 46, 3687. [all data]
Freund, Miller, et al., 1973
Freund, R.S.; Miller, T.A.; Zegarski, B.R.,
Fine structure of para H2, k(4p)3Πu,
Chem. Phys. Lett., 1973, 23, 120. [all data]
Miller, Freund, et al., 1974
Miller, T.A.; Freund, R.S.; Zagarski, B.R.,
Fine and hyperfine structure of ortho-H2, k(4p) 3Πu,
J. Chem. Phys., 1974, 60, 3195. [all data]
Ginter, 1966
Ginter, M.L.,
Spectrum and structure of the He2 molecule. IV. Characterization of the singlet and triplet states associated with the UAO's 3dσ, 3dπ, and 3dδ,
J. Chem. Phys., 1966, 45, 248. [all data]
Herzberg, 1967
Herzberg, G.,
A new predissociation of the H2 molecule,
Sci. Light (Tokyo), 1967, 16, 14. [all data]
Browne, 1965
Browne, J.C.,
Quantum mechanical potential energy curves for the 1Πu and 3Πu states of He2 and the 1Πg and 3Πg states of H2,
Phys. Rev. A: Gen. Phys., 1965, 138, 9. [all data]
Wright and Davidson, 1965
Wright, W.M.; Davidson, E.R.,
1s3d 3Πg state of the hydrogen molecule,
J. Chem. Phys., 1965, 43, 840. [all data]
Freund and Miller, 1973
Freund, R.S.; Miller, T.A.,
Fine structure of para-H2 d(3p) 3Πu (ν=0-3) via microwave optical magnetic resonance induced by electrons,
J. Chem. Phys., 1973, 58, 3565. [all data]
Dieke, 1935, 2
Dieke, G.H.,
The triplet 3p complex of the hydrogen molecule,
Phys. Rev., 1935, 48, 610. [all data]
Beutler and Junger, 1936
Beutler, H.; Junger, H.-O.,
Pradissoziation und autoionisierung in den termfolgen des Wasserstoff-(H2-) spektrums,
Z. Phys., 1936, 101, 285. [all data]
Cahill, 1969
Cahill, P.,
Determination of the lifetime of the d3Πu state of H2,
J. Opt. Soc. Am., 1969, 59, 875. [all data]
Marechal, Jost, et al., 1972
Marechal, M.A.; Jost, R.; Lombardi, M.,
Lifetimes, g factors, and collision cross sections of hydrogen molecules in the (1s3p) 3Πu level,
Phys. Rev. A: Gen. Phys., 1972, 5, 732. [all data]
Miller and Freund, 1974
Miller, T.A.; Freund, R.S.,
Singlet-triplet anticrossings in H2,
J. Chem. Phys., 1974, 61, 2160. [all data]
Jost and Lombardi, 1974
Jost, R.; Lombardi, M.,
Determination of the singlet-triplet separation of H2 by a "level-anticrossing" technique,
Phys. Rev. Lett., 1974, 33, 53. [all data]
Kolos, 1975
Kolos, W.,
Revised theoretical energy for the a3Σg+ state of H2,
Chem. Phys. Lett., 1975, 31, 43. [all data]
Kolos and Wolniewicz, 1968
Kolos, W.; Wolniewicz, L.,
Vibrational and rotational energies of the B1Σu+, C1Πu, C1Πu, and a3Σg+ states of the hydrogen molecule,
J. Chem. Phys., 1968, 48, 3672. [all data]
Smith and Chevalier, 1972
Smith, W.H.; Chevalier, R.,
Radiative-lifetime studies of the emission continua of the hydrogen and deuterium molecules,
Astrophys. J., 1972, 177, 835. [all data]
King, Read, et al., 1975
King, G.C.; Read, F.H.; Imhof, R.E.,
The measurement of molecular lifetimes by the photon-photon delayed coincidence method,
J. Phys. B:, 1975, 8, 665. [all data]
Jette, 1974
Jette, A.N.,
Spin-other-orbit and spin-spin interactions in the metastable, C3Πu(1s,2p) state of H2,
J. Chem. Phys., 1974, 61, 816. [all data]
Jette and Miller, 1974
Jette, A.N.; Miller, T.A.,
Fine structure in Rydberg states of the H2 molecule,
Chem. Phys. Lett., 1974, 29, 547. [all data]
Lichten, 1960
Lichten, W.,
Metastable hydrogen molecules,
Phys. Rev., 1960, 120, 848. [all data]
Frey and Mizushima, 1962
Frey, D.A.; Mizushima, M.,
Hyperfine structure of the hydrogen molecule in its metastable 3Πu state,
Phys. Rev., 1962, 128, 2683. [all data]
Lichten, 1962
Lichten, W.,
Measurements of lifetimes of metastable hydrogen molecules: a forbidden predissociation in H2,
Bull. Am. Phys. Soc., 1962, 7, 43. [all data]
Chiu, 1964
Chiu, L.-Y.C.,
Electron magnetic perturbation in diatomic molecules of Hund's case b,
J. Chem. Phys., 1964, 40, 2276. [all data]
Johnson, 1972
Johnson, C.E.,
Lifetime of the c3Πu metastable state of H2, D2, and HD,
Phys. Rev. A: Gen. Phys., 1972, 5, 1026. [all data]
Johnson, 1974
Johnson, C.E.,
Quenching of the c3Πu metastable state of H2 and D2 by an electric field,
Phys. Rev. A: Gen. Phys., 1974, 9, 576. [all data]
Kagann and English, 1976
Kagann, R.H.; English, T.C.,
Stark-Zeeman effect of metastable orthohydrogen and parahydrogen,
Phys. Rev. A: Gen. Phys., 1976, 13, 1451. [all data]
English and Albritton, 1975
English, T.C.; Albritton, D.L.,
Theory of the Stark effect of metastable parahydrogen,
J. Phys. B:, 1975, 8, 2123. [all data]
Dunn, 1966
Dunn, G.H.,
Franck-Condon factors for the ionization of H2 and D2,
J. Chem. Phys., 1966, 44, 2592. [all data]
Villarejo, 1968
Villarejo, D.,
Vibration-rotation interaction effects in calculated Franck-Condon factors. I. The ionization of H2 and D2,
J. Chem. Phys., 1968, 49, 2523. [all data]
Nicholls, 1968
Nicholls, R.W.,
Franck-Condon factors for ionizing transitions of O2, CO, NO and H2 and for the NO+(A1-Σx1Σ) band system,
J. Phys. B:, 1968, 1, 1192. [all data]
Ford, Docken, et al., 1975
Ford, A.L.; Docken, K.K.; Dalgarno, A.,
Cross sections for photoionization of vibrationally excited molecular hydrogen,
Astrophys. J., 1975, 200, 788. [all data]
Villarejo, 1968, 2
Villarejo, D.,
Measurement of threshold electrons in the photoionization of H2 and D2,
J. Chem. Phys., 1968, 48, 4014. [all data]
Turner, 1968
Turner, D.W.,
High resolution molecular photoelectron spectroscopy. I. Fine structure in the spectra of hydrogen and oxygen,
Proc. Roy. Soc. (London), 1968, A307, 15. [all data]
Chupka and Berkowitz, 1968
Chupka, W.A.; Berkowitz, J.,
Photoionization of the H2 molecule near threshold,
J. Chem. Phys., 1968, 48, 5726. [all data]
Comes and Wellern, 1968
Comes, F.J.; Wellern, H.O.,
Die Spektroskopie des Wasserstoffmolekuls in der Nahe seiner Ionisierungs-grenze.,
Z. Naturforsch., 1968, 23a, 881. [all data]
Backx, Wight, et al., 1976
Backx, C.; Wight, G.R.; van der Wiel, M.J.,
Oscillator strengths (10-70 eV) for absorption, ionization and dissociation in H2, HD and D2, obtained by an electron-ion coincidence method,
J. Phys. B:, 1976, 9, 315. [all data]
Herzberg and Jungen, 1972
Herzberg, G.; Jungen, Ch.,
Rydberg series and ionization potential of the H2 molecule,
J. Mol. Spectrosc., 1972, 41, 425. [all data]
Monfils, 1968, 2
Monfils, A.,
Calcul des fonctions potentielles de divers etats signulets excites des molecules H2, HD et D2,
Bull. Cl. Sci. Acad. R. Belg., 1968, 54, 44. [all data]
Herzberg, 1971
Herzberg, G.,
Beutler-Fano shape in the predissociation of H2
in Topics in Modern Physics, W.E. Brittin; Odabasi,H., ed(s)., Colorado Associated University Press, Boulder, Colorado, 1971, 191-197. [all data]
Comes and Schumpe, 1971
Comes, F.J.; Schumpe, G.,
Einfluss der Rotation auf die Lebensdauer pradissoziierender Molekule,
Z. Naturforsch. A, 1971, 26, 538. [all data]
Fiquet-Fayard and Gallais, 1971
Fiquet-Fayard, F.; Gallais, O.,
Calculs numeriques de facteurs de Franck-Condon et effets isotopiques: perturbation de H2 C1Πu et predissociation de H2 D1Πu,
Mol. Phys., 1971, 20, 527. [all data]
Julienne, 1971
Julienne, P.S.,
Predissociation of the H2 D1Πu state,
Chem. Phys. Lett., 1971, 8, 27. [all data]
Fiquet-Fayard and Gallais, 1972
Fiquet-Fayard, F.; Gallais, O.,
Predissociation of H2 and D2 (D1Πu): comparison of calculated and experimental line-widths,
Chem. Phys. Lett., 1972, 16, 18. [all data]
Comes and Wenning, 1969
Comes, F.J.; Wenning, U.,
Photoinduzierte Stossprozesse metastabiler Wasserstoffatome mit H2 im Energiebereich von 0,05 - 0,47 eV,
Z. Naturforsch. A, 1969, 24, 587. [all data]
Mentall and Gentieu, 1970
Mentall, J.E.; Gentieu, E.P.,
Lyman-α fluorescence from the photodissociation of H2,
J. Chem. Phys., 1970, 52, 5641. [all data]
Comes and Wenning, 1970
Comes, F.J.; Wenning, U.,
Pradissoziation im elektrischen Feld - ein neues Phanomen in der Molekulspektroskopie,
Z. Naturforsch. A, 1970, 25, 406. [all data]
Spindler, 1969
Spindler, R.J., Jr.,
Franck-Condon factors for band systems of molecular hydrogen. I. The (B1Σu+ - X1Σg+), (I1Πg - B1Σu+) and (d3Πu - a3Σg+) systems,
J. Quant. Spectrosc. Radiat. Transfer, 1969, 9, 597. [all data]
Cook and Metzger, 1964
Cook, G.R.; Metzger, P.H.,
Photoionization and absorption cross sections of H2 and D2 in the vacuum ultraviolet region,
J. Opt. Soc. Am., 1964, 54, 968. [all data]
Lewis, 1974
Lewis, B.R.,
Experimentally-determined oscillator strengths for molecular hydrogen. II. The Lyman and Werner bands below 900 Å, the B'-X and the D-X bands,
J. Quant. Spectrosc. Radiat. Transfer, 1974, 14, 537. [all data]
Mulliken, 1964
Mulliken, R.S.,
Rare-gas and hydrogen molecule electronic states, noncrossing rule, and recombination of electrons with rare-gas and hydrogen ions,
Phys. Rev., 1964, 136, 962. [all data]
Dieke, Cunningham, et al., 1953
Dieke, G.H.; Cunningham, S.P.; Byrne, F.T.,
The Zeeman effect in the molecular spectra of hydrogen,
Phys. Rev., 1953, 92, 81. [all data]
van der Linde and Dalby, 1972
van der Linde, J.; Dalby, F.W.,
Zero field level crossing in excited states of molecular hydrogen,
Can. J. Phys., 1972, 50, 287. [all data]
Melieres-Marechal and Lombardi, 1974
Melieres-Marechal, M.-A.; Lombardi, M.,
Weak hyperfine structure measurement using the magnetic repolarization effect: application to N = 1 v = 1 (1s3d)1Σ,
J. Chem. Phys., 1974, 61, 2600. [all data]
Freund and Miller, 1972
Freund, R.S.; Miller, T.A.,
Microwave optical magnetic resonance induced by electrons (MOMRIE) in H2 G(3d 1Σg+),
J. Chem. Phys., 1972, 56, 2211. [all data]
Ford, Browne, et al., 1975
Ford, A.L.; Browne, J.C.; Shipsey, E.J.; DeVries, P.,
Adiabatic ab initio potential curves for the B' 1Σu+ state of H2,
J. Chem. Phys., 1975, 63, 362. [all data]
Wolniewicz, 1975
Wolniewicz, L.,
Theoretical investigation of the B'1Σu+ state of the hydrogen molecule,
Chem. Phys. Lett., 1975, 31, 248. [all data]
Davidson, 1961
Davidson, E.R.,
First excited 1Σg+ state of the hydrogen molecule,
J. Chem. Phys., 1961, 35, 1189. [all data]
Kolos and Wolniewicz, 1969
Kolos, W.; Wolniewicz, L.,
Theoretical investigation of the lowest double-minimum state E, F1Σg+ of the hydrogen molecule,
J. Chem. Phys., 1969, 50, 3228. [all data]
Lin, 1974
Lin, C.S.,
Theoretical analysis of the vibrational structure of the electronic transitions involving a state with double minimum: E,F 1Σg+ of H2,
J. Chem. Phys., 1974, 60, 4660. [all data]
Wolniewicz, 1969
Wolniewicz, L.,
Theoretical investigation of the transition probabilities in the hydrogen molecule,
J. Chem. Phys., 1969, 51, 5002. [all data]
King and Van Vleck, 1939
King, G.W.; Van Vleck, J.H.,
Dipole-dipole resonance forces,
Phys. Rev., 1939, 55, 1165. [all data]
Mulliken, 1960
Mulliken, R.S.,
The interaction of differently excited like atoms at large distances,
Phys. Rev., 1960, 120, 1674. [all data]
Rothenberg and Davidson, 1966
Rothenberg, S.; Davidson, E.R.,
Hydrogen-molecule excited states: 1Πu,
J. Chem. Phys., 1966, 44, 730. [all data]
Kolos, 1967
Kolos, W.,
Long-range interaction between 1s and 2s or 2p hydrogen atoms,
Int. J. Quantum Chem., 1967, 1, 169. [all data]
Julienne, 1973
Julienne, P.S.,
Nonadiabatic effects in the B, C, B', and D states of H2,
J. Mol. Spectrosc., 1973, 48, 508. [all data]
Ford, 1974
Ford, A.L.,
Lambda-Doubling in the C1Πu state of H2,
J. Mol. Spectrosc., 1974, 53, 364. [all data]
Hesser, 1968
Hesser, J.E.,
Absolute Transition Probabilities in Ultraviolet Molecular Spectra,
J. Chem. Phys., 1968, 48, 6, 2518, https://doi.org/10.1063/1.1669477
. [all data]
Geiger and Schmoranzer, 1969
Geiger, J.; Schmoranzer, H.,
Electronic and vibrational transition probabilities of isotopic hydrogen molecules H2, HD, and D2 based on electron energy loss spectra,
J. Mol. Spectrosc., 1969, 32, 39. [all data]
Schmoranzer and Geiger, 1973
Schmoranzer, H.; Geiger, J.,
Light emission of electron impact excited hydrogen molecules and the dependence of electronic transition moment on internuclear distance,
J. Chem. Phys., 1973, 59, 6153. [all data]
Fabian and Lewis, 1974
Fabian, W.; Lewis, B.R.,
Experimentally determined oscillator strengths for molecular hydrogen. I. The Lyman and Werner bands above 900 Å,
J. Quant. Spectrosc. Radiat. Transfer, 1974, 14, 523. [all data]
Allison and Dalgarno, 1970
Allison, A.C.; Dalgarno, A.,
Band oscillator strengths and transition probabilities for the Lyman and Werner systems of H2, HD, and D2,
At. Data, 1970, 1, 289. [all data]
Allison and Dalgarno, 1970, 2
Allison, A.C.; Dalgarno, A.,
Isotope effects in the Lyman and Werner systems of molecular hydrogen,
Mol. Phys., 1970, 19, 567. [all data]
Dalgarno and Stephens, 1970
Dalgarno, A.; Stephens, T.L.,
Discrete absorption and photodissociation of molecular hydrogen,
Astrophys. J., 1970, 160, 107. [all data]
Stephens and Dalgarno, 1972
Stephens, T.L.; Dalgarno, A.,
Spontaneous radiative dissociation in molecular hydrogen,
J. Quant. Spectrosc. Radiat. Transfer, 1972, 12, 569. [all data]
Takezawa, Innes, et al., 1966
Takezawa, S.; Innes, F.R.; Tanaka, Y.,
Selective enhancement in hydrogenlike molecules with the rare gases. I. H2 with Ar and Kr,
J. Chem. Phys., 1966, 45, 2000. [all data]
Hodson and Dreyfus, 1972
Hodson, R.T.; Dreyfus, R.W.,
Vacuum-UV laser action observed in H2 Werner bands: 1161-1240 Å,
Phys. Rev. Lett., 1972, 28, 536. [all data]
Waynant, 1972
Waynant, R.W.,
Observations of gain by stimulated emission in the Werner band of molecular hydrogen,
Phys. Rev. Lett., 1972, 28, 533. [all data]
Herzberg, 1970
Herzberg, G.,
The dissociation energy of the hydrogen molecule,
J.Mol. Spectry., 1970, 33, 147. [all data]
Tobias and Vanderslice, 1961
Tobias, I.; Vanderslice, J.T.,
Potential energy curves for the X1Σg+ and B1Σu+ states of hydrogen,
J. Chem. Phys., 1961, 35, 1852. [all data]
Stwalley, 1973
Stwalley, W.C.,
Potential energy curve of the B1Σu+ state of H2,
J. Chem. Phys., 1973, 58, 536. [all data]
Kolos and Wolniewicz, 1975
Kolos, W.; Wolniewicz, L.,
New ab initio potential energy curve and vibrational levels for the B1Σu+ state of the hydrogen molecule,
Can. J. Phys., 1975, 53, 2189. [all data]
Halmann and Laulicht, 1966
Halmann, M.; Laulicht, I.,
Isotope effects on Franck-Condon factors. V. Electronic transitions of isotopic O2, N2, C2, and H2 molecules,
J. Chem. Phys., 1966, 44, 2398. [all data]
Dalgarno and Allison, 1968
Dalgarno, A.; Allison, A.C.,
Band oscillator strengths of the Lyman system of molecular hydrogen,
Astrophys. J., 1968, 154, 95. [all data]
Lin, 1975
Lin, C.S.,
Calculation of the Franck-Condon factors: single-α approximation method,
Can. J. Phys., 1975, 53, 310. [all data]
Villarejo, Stockbauer, et al., 1969
Villarejo, D.; Stockbauer, R.; Inghram, M.G.,
Vibration-rotation interaction effects in calculated Franck-Condon factors. II. Hydrogen Lyman and Fulcher bands,
J. Chem. Phys., 1969, 50, 1754. [all data]
Becker and Fink, 1971
Becker, K.H.; Fink, E.H.,
Relative line intensities in the Lyman bands of HD and H2,
Z. Naturforsch. A, 1971, 26, 319. [all data]
Geiger and Topschowsky, 1966
Geiger, J.; Topschowsky, M.,
Ubergangswahrscheinlichkeiten im Elektronen- und Schwingungsspektrum des Wasserstoffmolekuls,
Z. Naturforsch. A, 1966, 21, 626. [all data]
Haddad, Lokan, et al., 1968
Haddad, G.N.; Lokan, K.H.; Farmer, A.J.D.; Carver, J.H.,
An experimental determination of the oscillator strengths for some transitions in the Lyman bands of molecular hydrogen,
J. Quant. Spectrosc. Radiat. Transfer, 1968, 8, 1193. [all data]
Hesser, Brooks, et al., 1968
Hesser, J.E.; Brooks, N.H.; Lawrence, G.M.,
H2 Lyman-band oscillator strengths,
J. Chem. Phys., 1968, 49, 5388. [all data]
Schmoranzer, 1975
Schmoranzer, H.,
Electronic transition moment in the B1Σu+ -X1Σg+ Lyman band system of H2 based on keV electron impact excited vacuum UV emission intensities,
J. Phys. B:, 1975, 8, 1139. [all data]
Hodgson, 1970
Hodgson, R.T.,
Vacuum-ultraviolet laser action observed in the Lyman bands of molecular hydrogen,
Phys. Rev. Lett., 1970, 25, 494. [all data]
Waynant, Shipman, et al., 1970
Waynant, R.W.; Shipman, J.D., Jr.; Elton, R.C.; Ali, A.W.,
Vacuum ultraviolet laser emission from molecular hydrogen,
Appl. Phys. Lett., 1970, 17, 383. [all data]
Dalgarno, Herzberg, et al., 1970
Dalgarno, A.; Herzberg, G.; Stephens, T.L.,
A new continuous emission spectrum of the hydrogen molecule,
Astrophys. J., 1970, 162, 49. [all data]
Allison and Dalgarno, 1969
Allison, A.C.; Dalgarno, A.,
Photodissociation of vibrationally excited H2, HD, and D2 by absorption into the continua of the Lyman and Werner systems,
At. Data, 1969, 1, 91. [all data]
Herzberg and Monfils, 1960
Herzberg, G.; Monfils, A.,
The dissociation energies of the H2, HD, and D2 molecules,
J. Mol. Spectrosc., 1960, 5, 482. [all data]
Weissman, Vanderslice, et al., 1963
Weissman, S.; Vanderslice, J.T.; Battino, R.,
On the recalculation of the potential curves for the ground states of I2 and H2,
J. Chem. Phys., 1963, 39, 2226. [all data]
Ginter and Battino, 1965
Ginter, M.L.; Battino, R.,
On the calculation of potential curves by the Rydberg-Klein-Rees method. I. Experimental limitations, extrapolation procedures, and applications to the third-group hydrides,
J. Chem. Phys., 1965, 42, 3222. [all data]
Zhirnov and Vasilevskii, 1970
Zhirnov, N.I.; Vasilevskii, A.S.,
A new method for constructing the potential curves of diatomic molecules on the basis of spectroscopic data. IV. The potential curve of the ground electronic state of the H2 molecule,
Opt. Spectrosc. Engl. Transl., 1970, 29, 352, In original 658. [all data]
Kolos and Wolniewicz, 1974
Kolos, W.; Wolniewicz, L.,
Variational calculation of the long-range interaction between two ground-state hydrogen atoms,
Chem. Phys. Lett., 1974, 24, 457. [all data]
Kolos and Wolniewicz, 1975, 2
Kolos, W.; Wolniewicz, L.,
Improved potential energy curve and vibrational energies for the electronic ground state of the hydrogen molecule,
J. Mol. Spectrosc., 1975, 54, 303. [all data]
Waech and Bernstein, 1967
Waech, T.G.; Bernstein, R.B.,
Calculated spectrum of quasibound states for H2(1Σg+) and resonances in H + H scattering,
J. Chem. Phys., 1967, 46, 4905. [all data]
Kolos and Wolniewicz, 1968, 2
Kolos, W.; Wolniewicz, L.,
Improved theoretical ground-state energy of the hydrogen molecule,
J. Chem. Phys., 1968, 49, 404. [all data]
Allison, 1969
Allison, A.C.,
Quasi-bound states in H2,
Chem. Phys. Lett., 1969, 3, 371. [all data]
Herzberg and Mckenzie, 1979
Herzberg; Mckenzie,
To be Published cited in Huber and Herzberg, 1979, 1979, 255. [all data]
Bunker, 1972
Bunker, P.R.,
On the breakdown of the Born-Oppenheimer approximation for a diatomic molecule,
J. Mol. Spectrosc., 1972, 5, 478. [all data]
Orlikowski and Wolniewicz, 1974
Orlikowski, T.; Wolniewicz, L.,
Nonadiabatic corrections to the vibrational energies of the hydrogen molecule,
Chem. Phys. Lett., 1974, 24, 461. [all data]
Dabrowski and Herzberg, 1976
Dabrowski, I.; Herzberg, G.,
The absorption and emission spectra of HD in the vacuum ultraviolet,
Can. J. Phys., 1976, 54, 525. [all data]
Bishop and Shih, 1976
Bishop, D.M.; Shih, S.-K.,
An effective Schrodinger equation for the rovibronic energies of H2 and D2,
J. Chem. Phys., 1976, 64, 162. [all data]
Buijs and Gush, 1971
Buijs, H.L.; Gush, H.P.,
Statis field induced spectrum of hydrogen,
Can. J. Phys., 1971, 49, 2366. [all data]
Ramsey, 1952
Ramsey, N.F.,
Theory of molecular hydrogen and deuterium in magnetic fields,
Phys. Rev., 1952, 85, 60. [all data]
Harney, Randolph, et al., 1975
Harney, R.C.; Randolph, J.E.; Milanovich, F.P.,
Relative Raman cross sections for the S(0) through S(4) rotational transitions in hydrogen,
Astrophys. J., 1975, 200, 179. [all data]
Stwalley, 1970
Stwalley, W.C.,
The dissociation energy of the hydrogen molecule using long-range forces,
Chem. Phys. Lett., 1970, 6, 241. [all data]
Bunker, 1979
Bunker,
Unpublished cited in Huber and Herzberg, 1979, 1979, 255. [all data]
Hunter, 1966
Hunter, G.,
Adiabatic dissociation energies for the ground states of the H2, HD, and D2 molecules,
J. Chem. Phys., 1966, 45, 3022. [all data]
Jeziorski and Kolos, 1969
Jeziorski, B.; Kolos, W.,
On the ionization potential of H2,
Chem. Phys. Lett., 1969, 3, 677. [all data]
Margolis, 1973
Margolis, J.S.,
Measurement of some 1-0 H2 quadrupole transition strengths,
J. Mol. Spectrosc., 1973, 48, 409. [all data]
McKellar, 1974
McKellar, A.R.W.,
The significance of pressure shifts for the interpretation of H2 quadrupole lines in planetary spectra,
Icarus, 1974, 22, 212. [all data]
Chackerian and Giver, 1975
Chackerian, C., Jr.; Giver, L.P.,
Density-dependent frequency shift of the hydrogen S2(1) quadrupole line,
J. Mol. Spectrosc., 1975, 58, 339. [all data]
James, 1969
James, T.C.,
Intensity of the quadrupole rotation-vibration spectrum of molecular hydrogen,
J. Mol. Spectrosc., 1969, 32, 512. [all data]
Dalgarno and Wright, 1972
Dalgarno, A.; Wright, E.L.,
Infrared emissivities of H2 and HD,
Astrophys. J., 1972, 174, 49. [all data]
Black and Dalgarno, 1976
Black, J.H.; Dalgarno, A.,
Interstellar H2: the population of excited rotational states and the infrared response to ultraviolet radiation,
Astrophys. J., 1976, 203, 132. [all data]
Welsh, 1972
Welsh, H.L.,
Pressure-induced absorption spectra of hydrogen
in MTP International Review of Science; Physical Chemistry, Series 1, Vol. 3, London, Butterworths, Baltimore, University Park Press, 1972, 33-71. [all data]
Huber and Herzberg, 1979
Huber, K.P.; Herzberg, G.,
Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules, Van Nostrand Reinhold Company, New York, 1979, 716. [all data]
Notes
Go To: Top, Reaction thermochemistry data, Constants of diatomic molecules, References
- Symbols used in this document:
T Temperature ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.