hydrogen fluoride

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Reaction thermochemistry data

Go To: Top, Constants of diatomic molecules, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

Fluorine anion + Hydrogen cation = hydrogen fluoride

By formula: F- + H+ = HF

Quantity Value Units Method Reference Comment
Δr372. ± 1.kcal/molAVGN/AAverage of 6 out of 7 values; Individual data points
Quantity Value Units Method Reference Comment
Δr365.67 ± 0.18kcal/molH-TSBlondel, Delsart, et al., 2001gas phase; Given: 3.4011895(25) eV, or 27432.446(19) cm-1, or 78.433266(577) kcal/mol; B
Δr365.53kcal/molH-TSMartin and Hepburn, 2000gas phase; Given: 371.334±0.003 kcal/mol (corr to 298K with data from Wagman, Evans, et al., 1982).H(0K)=370.422±0.003; B
Δr365.67 ± 0.18kcal/molH-TSBlondel, Cacciani, et al., 1989gas phase; Reported: 3.401190±0.000004 eV. acidity includes 0.9 kcal 0 to 298 K correction.; B
Δr365.5 ± 2.0kcal/molIMREBierbaum, Schmidt, et al., 1981gas phase; B
Δr359.40kcal/molN/ACheck, Faust, et al., 2001gas phase; FeCl3-; ; ΔS(EA)=5.0; B

Fluorine anion + hydrogen fluoride = (Fluorine anion • hydrogen fluoride)

By formula: F- + HF = (F- • HF)

Bond type: Hydrogen bond (negative ion to hydride)

Quantity Value Units Method Reference Comment
Δr45.8 ± 1.6kcal/molCIDCWenthold and Squires, 1995gas phase; B
Δr38.6 ± 2.0kcal/molIMRELarson and McMahon, 1983gas phase; These relative affinities are ca. 10 kcal/mol weaker than threshold values (see Wenthold and Squires, 1995) for donors greater than ca. 27 kcal/mol in free energy. This discrepancy has not yet been resolved, though the stronger value appears preferable.; B,M
Δr>34.6 ± 4.6kcal/molTherHeni and Illenberger, 1985gas phase; From CHF=CHF. Outdataed HC2. thermo used. Current value ( Berkowitz, Ellison, et al., 1994) implies Haff>57.; B
Quantity Value Units Method Reference Comment
Δr21.9cal/mol*KN/ALarson and McMahon, 1983gas phase; switching reaction,Thermochemical ladder(F-)H2O, Entropy change calculated or estimated; Arshadi, Yamdagni, et al., 1970; M
Quantity Value Units Method Reference Comment
Δr32.0 ± 2.0kcal/molIMRELarson and McMahon, 1983gas phase; These relative affinities are ca. 10 kcal/mol weaker than threshold values (see Wenthold and Squires, 1995) for donors greater than ca. 27 kcal/mol in free energy. This discrepancy has not yet been resolved, though the stronger value appears preferable.; B

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
32.0289.ICRLarson and McMahon, 1983gas phase; switching reaction,Thermochemical ladder(F-)H2O, Entropy change calculated or estimated; Arshadi, Yamdagni, et al., 1970; M

Chlorine anion + hydrogen fluoride = (Chlorine anion • hydrogen fluoride)

By formula: Cl- + HF = (Cl- • HF)

Bond type: Hydrogen bond (negative ion to hydride)

Quantity Value Units Method Reference Comment
Δr21.8 ± 2.0kcal/molIMRELarson and McMahon, 1984gas phase; B,M
Quantity Value Units Method Reference Comment
Δr22.5cal/mol*KN/ALarson and McMahon, 1984gas phase; switching reaction(Cl-)SO2, Entropy change calculated or estimated; Larson and McMahon, 1984, 2; M
Quantity Value Units Method Reference Comment
Δr15.1 ± 2.0kcal/molIMRELarson and McMahon, 1984gas phase; B,M

Bromine anion + hydrogen fluoride = (Bromine anion • hydrogen fluoride)

By formula: Br- + HF = (Br- • HF)

Bond type: Hydrogen bond (negative ion to hydride)

Quantity Value Units Method Reference Comment
Δr17.0 ± 2.0kcal/molEstLarson and McMahon, 1984, 3gas phase; Extrapolated from other bihalide data; B
Δr17.0kcal/molHPMSCaldwell, Masucci, et al., 1989gas phase; M

Iodide + hydrogen fluoride = (Iodide • hydrogen fluoride)

By formula: I- + HF = (I- • HF)

Bond type: Hydrogen bond (negative ion to hydride)

Quantity Value Units Method Reference Comment
Δr15.0 ± 2.0kcal/molEstLarson and McMahon, 1984, 3gas phase; Extrapolated from other bihalide data; B
Δr15.kcal/molPHPMSCaldwell, Masucci, et al., 1989gas phase; M

Tetrafluoromethane + 2Water = Carbon dioxide + 4hydrogen fluoride

By formula: CF4 + 2H2O = CO2 + 4HF

Quantity Value Units Method Reference Comment
Δr-41.5 ± 1.0kcal/molCmGood, Scott, et al., 1956gas phase; HF has 10 moles H2O, see Scott, Good, et al., 1955; ALS
Δr-41.5 ± 1.0kcal/molCmScott, Good, et al., 1955gas phase; Heat of hydrolysis; ALS

Hydrogen + Propane, 2-fluoro- = Propane + hydrogen fluoride

By formula: H2 + C3H7F = C3H8 + HF

Quantity Value Units Method Reference Comment
Δr-20.20 ± 0.30kcal/molChydLacher, Kianpour, et al., 1956gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -21.11 ± 0.69 kcal/mol; %hf298_gas[kcal/mol]=-66.97±0.71; Kolesov and Kozina, 1986; ALS

Hydrogen + n-Propyl fluoride = Propane + hydrogen fluoride

By formula: H2 + C3H7F = C3H8 + HF

Quantity Value Units Method Reference Comment
Δr-22.00 ± 0.50kcal/molChydLacher, Kianpour, et al., 1956gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -22.9 ± 1.6 kcal/mol; %hf298_gas[kcal/mol]=-66.71±0.62; Kolesov and Kozina, 1986; ALS

2-Fluoro-N-(2-fluoro-2,2-dinitroethyl)-N,2,2-trinitroethylamine + 6Oxygen + Ethanedioic acid, diethyl ester = 10Carbon dioxide + 2hydrogen fluoride + 3Nitrogen + 6Water

By formula: C4H4F2N6O10 + 6O2 + C6H10O4 = 10CO2 + 2HF + 3N2 + 6H2O

Quantity Value Units Method Reference Comment
Δr-1189.33 ± 0.56kcal/molCcrBaroody and Carpenter, 1973solid phase; Corrected for CODATA value of ΔfH; HF.100H2O; ALS

C4F9O- + hydrogen fluoride = (C4F9O- • hydrogen fluoride)

By formula: C4F9O- + HF = (C4F9O- • HF)

Bond type: Hydrogen bond (negative ion to hydride)

Quantity Value Units Method Reference Comment
Δr17.kcal/molICRLarson and McMahon, 1983gas phase; M

C3HF6O- + hydrogen fluoride = (C3HF6O- • hydrogen fluoride)

By formula: C3HF6O- + HF = (C3HF6O- • HF)

Bond type: Hydrogen bond (negative ion to hydride)

Quantity Value Units Method Reference Comment
Δr25.kcal/molICRLarson and McMahon, 1983gas phase; M

C4H3F6O- + hydrogen fluoride = (C4H3F6O- • hydrogen fluoride)

By formula: C4H3F6O- + HF = (C4H3F6O- • HF)

Bond type: Hydrogen bond (negative ion to hydride)

Quantity Value Units Method Reference Comment
Δr26.kcal/molICRLarson and McMahon, 1983gas phase; M

Carbonic difluoride + Water = Carbon dioxide + 2hydrogen fluoride

By formula: CF2O + H2O = CO2 + 2HF

Quantity Value Units Method Reference Comment
Δr-26.73 ± 0.25kcal/molCcrWartenberg, 1949gas phase; solvent: Gas phase;; Corrected for CODATA value of ΔfH; ALS

Ethane, 2-chloro-1,1,1,2-tetrafluoro- + hydrogen fluoride = Ethane, pentafluoro- + Hydrogen chloride

By formula: C2HClF4 + HF = C2HF5 + HCl

Quantity Value Units Method Reference Comment
Δr-2.5 ± 1.5kcal/molKinCoulson, 1993gas phase; solvent: On solid catalyst; ALS

Ethane, 2-chloro-1,1,1,2-tetrafluoro- + Hydrogen chloride = Ethane, 2,2-dichloro-1,1,1-trifluoro- + hydrogen fluoride

By formula: C2HClF4 + HCl = C2HCl2F3 + HF

Quantity Value Units Method Reference Comment
Δr-0.4 ± 1.4kcal/molKinCoulson, 1993gas phase; solvent: On solid catalyst; ALS

(H2F+ • hydrogen fluoride) + hydrogen fluoride = (H2F+ • 2hydrogen fluoride)

By formula: (H2F+ • HF) + HF = (H2F+ • 2HF)

Quantity Value Units Method Reference Comment
Δr14.8 ± 4.2kcal/molPITiedemann, Anderson, et al., 1979gas phase; M

Ethene, tetrafluoro- + 2Hydrogen = 2carbon + 4hydrogen fluoride

By formula: C2F4 + 2H2 = 2C + 4HF

Quantity Value Units Method Reference Comment
Δr-147.8 ± 1.1kcal/molChydNeugebauer and Margrave, 1956gas phase; ALS

Hydrogen fluoride, positive ion + hydrogen fluoride = (Hydrogen fluoride, positive ion • hydrogen fluoride)

By formula: HF+ + HF = (HF+ • HF)

Quantity Value Units Method Reference Comment
Δr33.kcal/molPITiedemann, Anderson, et al., 1979gas phase; ΔrH>; M

Tetrafluoromethane + 4hydrogen fluoride = Methane + 4fluorine

By formula: CF4 + 4HF = CH4 + 4F2

Quantity Value Units Method Reference Comment
Δr-459.3 ± 3.0kcal/molCmJessup, McCoskey, et al., 1955gas phase; ALS

H2F+ + hydrogen fluoride = (H2F+ • hydrogen fluoride)

By formula: H2F+ + HF = (H2F+ • HF)

Quantity Value Units Method Reference Comment
Δr25.1 ± 2.5kcal/molPITiedemann, Anderson, et al., 1979gas phase; M

Ethene, fluoro- + hydrogen fluoride = Ethane, 1,1-difluoro-

By formula: C2H3F + HF = C2H4F2

Quantity Value Units Method Reference Comment
Δr-12.kcal/molEqkMoore, 1971gas phase; ALS

Constants of diatomic molecules

Go To: Top, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Klaus P. Huber and Gerhard H. Herzberg

Data collected through January, 1977

Symbols used in the table of constants
SymbolMeaning
State electronic state and / or symmetry symbol
Te minimum electronic energy (cm-1)
ωe vibrational constant – first term (cm-1)
ωexe vibrational constant – second term (cm-1)
ωeye vibrational constant – third term (cm-1)
Be rotational constant in equilibrium position (cm-1)
αe rotational constant – first term (cm-1)
γe rotation-vibration interaction constant (cm-1)
De centrifugal distortion constant (cm-1)
βe rotational constant – first term, centrifugal force (cm-1)
re internuclear distance (Å)
Trans. observed transition(s) corresponding to electronic state
ν00 position of 0-0 band (units noted in table)
Diatomic constants for H19F
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
Rydberg 1Rydberg levels converging to the ground state of HF+ have been observed in the electronic energy loss spectrum.
D 1Σ+ 1           D ← X 
di Londardo and Douglas, 1973
C 1Π (105820) [2636]   [16.0]     [1.049] C ← X R 105090.8
di Lonardo and Douglas, 1972; di Londardo and Douglas, 1973
b 3Π 2           b ← X 
di Lonardo and Douglas, 1972
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
B 1Σ+ 84776.65 1159.18 Z 18.005 3 0.184 4.0291 4 0.0177 5  1.932E-4 6  2.09086 B ↔ X 7 R 83304.96 Z
Johns and Barrow, 1959; missing citation
AContinuous absorption starting at 60600 cm-1. 8
Safari, 1954
X 1Σ+ 0 4138.32 9 Z 89.88 10  20.9557 9 11 12 0.798 13  21.51E-4 14  0.916808 15  
Mann, Thrush, et al., 1961; Herget, Deeds, et al., 1962; Fishburne and Rao, 1966; Webb and Rao, 1968
Rotation sp. 16 17
Rothschild, 1964; Revich and Stankevich, 1966; Mason and Nielsen, 1967
Mol. Beam el. Reson. 18
Weiss, 1963; Muenter and Klemperer, 1970; Muenter, 1972; de Leeuw and Dymanus, 1973
Mol. Beam magn. Reson. 19
Baker, Nelson, et al., 1961

Notes

1Two strong bands between 104000 and 116000 cm-1, not yet analysed.
2Absorption bands above 100000 cm-1, not yet analysed.
3The vibrational and rotational constants, were obtained from a fit to the seven lowest vibrational levels di Londardo and Douglas, 1973. See 7.
4RKR potential curves Fallon, Vanderslice, et al., 1960, di Londardo and Douglas, 1973.
5-0.000950(v+1/2)2 + 0.000060l(v+1/2)3; see 3.
6+0.182E-4(v+1/2) + 0.00551E-4(v+1/2)2; see 3.
7Very extensive band system (also called V-X) extending in absorption from 96000 to 117000, in emission from 36000 to 70000 cm-1. Strong perturbations above v'=27, but bands have been identified to v'=73. The B (or V) state was also observed in the electron energy loss spectrum Salama and Hasted, 1976.
8HF is quite transparent to 1650 Safari, 1954. Theoretical potential curves for three repulsive states (3Π, 1Π, 3Σ+) arising from ground state atomic products were given by Dunning, 1976.
9Introduction of the Dunham correction Webb and Rao, 1968 gives ωe = 4138.767 Webb and Rao, 1968 and Be = 20.9561.
10+0.90(v+1/2)3 - 0.0ll0(v+1/2)4 - 0.00067(v+1/2)5, v≤9 Webb and Rao, 1968. A different formula for higher vibrational levels (v≤19) was derived by Johns and Barrow, 1959. All levels up to the last (v=19) are tabulated in di Londardo and Douglas, 1973).
11For v=14,...19 the rotational levels break off at decreasing J on account of predissociation by rotation. A few broadened lines near these limits have been observed di Londardo and Douglas, 1973. From the limiting curve the dissociation energy 47333 ± 60 cm-1 has been determined di Londardo and Douglas, 1973.
12RKR potential curves Fallon, Vanderslice, et al., 1960, di Londardo and Douglas, 1973, Dunham potential coefficients Webb and Rao, 1968, Ogilvie and Koo, 1976. Ab initio calculations of molecular constants Bondybey, Pearson, et al., 1972, Krauss and Neumann, 1974, Meyer and Rosmus, 1975, Dunning, 1976.
13+0.0127(v+1/2)2 - 0.00044(v+1/2)3 , from Webb and Rao, 1968.
14-0.68E-4(v+1/2)+0.029E-4(v+1/2)2, He = 1.59E-7; from Webb and Rao, 1968; see also Mann, Thrush, et al., 1961.
15Rot.-vibr. Sp. 22 23 17
16Laser emission in the pure rotation spectrum Deutsch, 1967.
17Rotation and rotation-vibration spectra in rare-gas matrices Mason, von Holle, et al., 1971.
18μel(v=0,J=1) = 1.82618 D Muenter and Klemperer, 1970, Muenter, 1972; gJ = 0.7410, quadrupole moment Θm= 2.36E-26 esu cm2 de Leeuw and Dymanus, 1973; also nuclear spin - rotation and other hyperfine structure constants.
19Nuclear reorientation spectrum.
20From the limiting curve of dissociation for the ground state di Londardo and Douglas, 1973; see 11.
21From photoelectron spectra Walker, Dehmer, et al., 1973, Guyon, Spohr, et al., 1976. Earlier photoionization studies yielded 16.007 eV Berkowitz, Chupka, et al., 1971, a value strongly affected by the presence of autoionizing Rydberg levels in the threshold region Guyon, Spohr, et al., 1976. The second ionization potential (removal of a 3σ electron) from the photoelectron spectrum Berkowitz, 1971, Guyon, Spohr, et al., 1976 is 19.118 eV in agreement with the value derived from the spectrum of HF+. The third and fourth ionization potentials (removal of a 2σ and 1σ electron, respectively) are 39.61 Banna and Shirley, 1975, Shaw and Thomas, 1975 and 694.25 eV Shaw and Thomas, 1975; these are vertical potentials from X-ray photoelectron spectra.
221-0, 2-0 bands studied in absorption under high resolution by Herget, Deeds, et al., 1962, Webb and Rao, 1968, 3-0, 4-0, 5-0 in the photographic infrared by Naude and Verleger, 1950, Fishburne and Rao, 1966. In emission, rotation-vibration bands have been studied by Mann, Thrush, et al., 1961 and Sileo and Cool, 1976, the latter extending the chemical laser emission, first observed in the 2-1 band by Kompa and Pimentel, 1967, to v=9 and Δv=6. Electric discharge induced laser emission in the 3-2, 2-1, 1-0 bands, see Deutsch, 1967, 2, Coldhar, Osgood, et al., 1971.
23Line strengths, collision-broadened widths, dipole moment function Meredith, 1972, Spellicy, Meredith, et al., 1972, Lie, 1974, Rimpel, 1974, Sileo and Cool, 1976, Yardley and Balint-Kurti, 1976. The radiative lifetime of v=1 [P(4) line] is 6.16 ms Hinchen, 1974. Sileo and Cool, 1976 give a vibrational dipole moment matrix for v ≤ 9 based on intensity measurements in chemical laser emission.

References

Go To: Top, Reaction thermochemistry data, Constants of diatomic molecules, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Blondel, Delsart, et al., 2001
Blondel, C.; Delsart, C.; Goldfarb, F., Electron spectrometry at the mu eV level and the electron affinities of Si and F, J. Phys. B: Atom. Mol. Opt. Phys., 2001, 34, 9, L281-L288, https://doi.org/10.1088/0953-4075/34/9/101 . [all data]

Martin and Hepburn, 2000
Martin, J.D.D.; Hepburn, J.W., Faraday Disc. Chem. Soc., 2000, 115, 416. [all data]

Wagman, Evans, et al., 1982
Wagman, D.D.; Evans, W.H.; Parker, V.B.; Schumm, R.H.; Halow, I.; Bailey, S.M.; Churney, K.L.; Nuttall, R.L., The NBS Tables of Chemical Thermodynamic Properties (NBS Tech Note 270), J. Phys. Chem. Ref. Data, Supl. 1, 1982, 11. [all data]

Blondel, Cacciani, et al., 1989
Blondel, C.; Cacciani, P.; Delsart, C.; Trainham, R., High Resolution Determination of the Electron Affinity of Fluorine and Bromine using Crossed Ion and Laser Beams, Phys. Rev. A, 1989, 40, 7, 3698, https://doi.org/10.1103/PhysRevA.40.3698 . [all data]

Bierbaum, Schmidt, et al., 1981
Bierbaum, V.M.; Schmidt, R.J.; DePuy, C.H.; Mead, R.H.; Schulz, P.A.; Lineberger, W.C., Reactions of carbanions with triplet and singlet molecular oxygen, J. Am. Chem. Soc., 1981, 103, 6262. [all data]

Check, Faust, et al., 2001
Check, C.E.; Faust, T.O.; Bailey, J.M.; Wright, B.J.; Gilbert, T.M.; Sunderlin, L.S., Addition of Polarization and Diffuse Functions to the LANL2DZ Basis Set for P-Block Elements, J. Phys. Chem. A,, 2001, 105, 34, 8111, https://doi.org/10.1021/jp011945l . [all data]

Wenthold and Squires, 1995
Wenthold, P.G.; Squires, R.R., Bond dissociation energies of F2(-) and HF2(-). A gas-phase experimental and G2 theoretical study, J. Phys. Chem., 1995, 99, 7, 2002, https://doi.org/10.1021/j100007a034 . [all data]

Larson and McMahon, 1983
Larson, J.W.; McMahon, T.B., Strong hydrogen bonding in gas-phase anions. An ion cyclotron resonance determination of fluoride binding energetics to bronsted acids from gas-phase fluoride exchange equilibria measurements, J. Am. Chem. Soc., 1983, 105, 2944. [all data]

Heni and Illenberger, 1985
Heni, M.; Illenberger, E., The stability of the bifluoride ion (HF2-) in the gas phase, J. Chem. Phys., 1985, 83, 6056. [all data]

Berkowitz, Ellison, et al., 1994
Berkowitz, J.; Ellison, G.B.; Gutman, D., Three methods to measure RH bond energies, J. Phys. Chem., 1994, 98, 2744. [all data]

Arshadi, Yamdagni, et al., 1970
Arshadi, M.; Yamdagni, R.; Kebarle, P., Hydration of Halide Negative Ions in the Gas Phase. II. Comparison of Hydration Energies for the Alkali Positive and Halide Negative Ions, J. Phys. Chem., 1970, 74, 7, 1475, https://doi.org/10.1021/j100702a014 . [all data]

Larson and McMahon, 1984
Larson, J.W.; McMahon, T.B., Hydrogen bonding in gas phase anions. An experimental investigation of the interaction between chloride ion and bronsted acids from ICR chloride exchange equilibria, J. Am. Chem. Soc., 1984, 106, 517. [all data]

Larson and McMahon, 1984, 2
Larson, J.W.; McMahon, T.B., Gas phase negative ion chemistry of alkylchloroformates, Can. J. Chem., 1984, 62, 675. [all data]

Larson and McMahon, 1984, 3
Larson, J.W.; McMahon, T.B., Gas phase bihalide and pseudohalide ions. An ICR determination of hydrogen bond energies in XHY- species (X,Y = F, Cl, Br, CN), Inorg. Chem., 1984, 23, 2029. [all data]

Caldwell, Masucci, et al., 1989
Caldwell, G.W.; Masucci, J.A.; Ikonomou, M.G., Negative Ion Chemical Ionization Mass Spectrometry - Binding of Molecules to Bromide and Iodide Anions, Org. Mass Spectrom., 1989, 24, 1, 8, https://doi.org/10.1002/oms.1210240103 . [all data]

Good, Scott, et al., 1956
Good, W.D.; Scott, D.W.; Waddington, G., Combustion calorimetry of organic fluorine compounds by a rotating-bomb method, J. Phys. Chem., 1956, 60, 1080-1089. [all data]

Scott, Good, et al., 1955
Scott, D.W.; Good, W.D.; Waddington, G., Heat of formation of tetrafluoromethane from combustion calorimetry of polytetrafluoroethylene, J. Am. Chem. Soc., 1955, 77, 245-246. [all data]

Lacher, Kianpour, et al., 1956
Lacher, J.R.; Kianpour, A.; Park, J.D., Reaction heats of organic halogen compounds. VI. The catalytic hydrogenation of some alkyl fluorides, J. Phys. Chem., 1956, 60, 1454-1455. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Kolesov and Kozina, 1986
Kolesov, V.P.; Kozina, M.P., Thermochemistry of organic and organohalogen compounds, Russ. Chem. Rev., 1986, 55, 912. [all data]

Baroody and Carpenter, 1973
Baroody, E.E.; Carpenter, G.A., Enthalpies of formation of some fluorodinitroethyl derivatives and 2,2',4,4',6,6'-hexanitroazobenzene, J. Chem. Eng. Data, 1973, 18, 28-36. [all data]

Wartenberg, 1949
Wartenberg, H.V., Die bildungswarme einiger fluorid, Z. Anorg. Chem., 1949, 258, 354-360. [all data]

Coulson, 1993
Coulson, D.R., Kinetics of the fluorination/chlorination of 1-chloro-1,2,2,2-tetrafluoroethane, J. Catal., 1993, 142, 289-302. [all data]

Tiedemann, Anderson, et al., 1979
Tiedemann, P.W.; Anderson, S.L.; Ceyer, S.T.; Hirooka, T.; Ng, C.Y.; Mahan, B.H.; Lee, Y.T., Proton affinities of hydrogen halides determined by the molecular beam photoionization method, J. Chem. Phys., 1979, 71, 605. [all data]

Neugebauer and Margrave, 1956
Neugebauer, C.A.; Margrave, J.L., The heats of formation of tetrafluoroethylene, tetrafluoromethane and 1,1-difluoroethylene, J. Phys. Chem., 1956, 60, 1318-1321. [all data]

Jessup, McCoskey, et al., 1955
Jessup, R.S.; McCoskey, R.E.; Nelson, R.A., The heat of formation of tetrafluoromethane, J. Am. Chem. Soc., 1955, 77, 244-245. [all data]

Moore, 1971
Moore, L.O., Kinetics and thermodynamic data for the hydrogen fluoride addition to vinyl fluoride, Can. J. Chem., 1971, 49, 2471-2475. [all data]

di Londardo and Douglas, 1973
di Londardo, G.; Douglas, A.E., The electronic spectrum of HF. I. The B1Σ+-X1Σ+ 1 band system, Can. J. Phys., 1973, 51, 434. [all data]

di Lonardo and Douglas, 1972
di Lonardo, G.; Douglas, A.E., Electronic spectra of HF and F2, J. Chem. Phys., 1972, 56, 5185. [all data]

Johns and Barrow, 1959
Johns, J.W.C.; Barrow, R.F., The ultra-violet spectra of HF and DF, Proc. R. Soc. London A, 1959, 251, 504. [all data]

Safari, 1954
Safari, E., Contribution a l'etude spectrale de l'acide fluorhydrique, Ann. Phys. (Paris), 1954, 9, 203. [all data]

Mann, Thrush, et al., 1961
Mann, D.E.; Thrush, B.A.; Lide, D.R., Jr.; Ball, J.J.; Acquista, N., Spectroscopy of fluorine flames. I. Hydrogen-fluorine flame and the vibration-rotation emission spectrum of HF, J. Chem. Phys., 1961, 34, 420. [all data]

Herget, Deeds, et al., 1962
Herget, W.F.; Deeds, W.E.; Gailar, N.M.; Lovell, R.J.; Nielsen, A.H., Infrared spectrum of hydrogen fluoride: line positions and line shapes. Part II. Treatment of data and results, J. Opt. Soc. Am., 1962, 52, 1113. [all data]

Fishburne and Rao, 1966
Fishburne, E.S.; Rao, K.N., Vibration rotation bands of HF, J. Mol. Spectrosc., 1966, 19, 290. [all data]

Webb and Rao, 1968
Webb, D.U.; Rao, K.N., Vibration rotation bands of heated hydrogen halides, J. Mol. Spectrosc., 1968, 28, 121. [all data]

Rothschild, 1964
Rothschild, W.G., Pure rotational absorption spectrum of hydrogen fluoride vapor between 22 and 250 μ, J. Opt. Soc. Am., 1964, 54, 20. [all data]

Revich and Stankevich, 1966
Revich, V.E.; Stankevich, S.A., The rotational spectra of HF and DF molecules, Dokl. Phys. Chem. Engl. Transl., 1966, 170, 699, In original 1376. [all data]

Mason and Nielsen, 1967
Mason, A.A.; Nielsen, A.H., Rotational spectrum of hydrogen fluoride: frequencies and linewidths, J. Opt. Soc. Am., 1967, 57, 1464. [all data]

Weiss, 1963
Weiss, R., Stark effect and hyperfine structure of hydrogen fluoride, Phys. Rev., 1963, 131, 659. [all data]

Muenter and Klemperer, 1970
Muenter, J.S.; Klemperer, W., Hyperfine structure constants of HF and DF, J. Chem. Phys., 1970, 52, 6033. [all data]

Muenter, 1972
Muenter, J.S., Polarizability anisotropy of hydrogen fluoride, J. Chem. Phys., 1972, 56, 5409. [all data]

de Leeuw and Dymanus, 1973
de Leeuw, F.H.; Dymanus, A., Magnetic properties and molecular quadrupole moment of HF and HCl by molecular-beam electric-resonance spectroscopy, J. Mol. Spectrosc., 1973, 48, 427. [all data]

Baker, Nelson, et al., 1961
Baker, M.R.; Nelson, H.M.; Leavitt, J.A.; Ramsey, N.F., Nuclear magnetic interactions in hydrogen fluoride, Phys. Rev., 1961, 121, 807. [all data]

Fallon, Vanderslice, et al., 1960
Fallon, R.J.; Vanderslice, J.T.; Mason, E.A., Potential energy curves of hydrogen fluoride, J. Chem. Phys., 1960, 32, 698. [all data]

Salama and Hasted, 1976
Salama, A.; Hasted, J.B., Electron energy loss spectrum of hydrogen fluoride, J. Phys. B:, 1976, 9, 333. [all data]

Dunning, 1976
Dunning, T.H., Jr., The low-lying states of hydrogen fluoride: potential energy curves for the X1Σ+, 3Σ+, 3Π, and 1Π states, J. Chem. Phys., 1976, 65, 3854. [all data]

Ogilvie and Koo, 1976
Ogilvie, J.F.; Koo, D., Dunham potential energy coefficients of the hydrogen halides and carbon monoxide, J. Mol. Spectrosc., 1976, 61, 332-336. [all data]

Bondybey, Pearson, et al., 1972
Bondybey, V.; Pearson, P.K.; Schaefer, H.F., III, Theoretical potential energy curves for OH, HF+, HF, HF-, NeH+, and NeH, J. Chem. Phys., 1972, 57, 1123. [all data]

Krauss and Neumann, 1974
Krauss, M.; Neumann, D., Multi-configuration self-consistent-field calculation of the dissociation energy and electronic structure of hydrogen fluoride, Mol. Phys., 1974, 27, 917. [all data]

Meyer and Rosmus, 1975
Meyer, W.; Rosmus, P., PNO-Cl and CEPA studies of electron correlation effects. III. Spectroscopic constants and dipole moment functions for the ground states of the first-row and second-row diatomic hydrides, J. Chem. Phys., 1975, 63, 2356. [all data]

Deutsch, 1967
Deutsch, T.F., Laser emission from HF rotational transitions, Appl. Phys. Lett., 1967, 11, 18. [all data]

Mason, von Holle, et al., 1971
Mason, M.G.; von Holle, W.G.; Robinson, D.W., Mid- and far-infrared spectra of HF and DF in rare-gas matrices, J. Chem. Phys., 1971, 54, 3491. [all data]

Walker, Dehmer, et al., 1973
Walker, T.E.H.; Dehmer, P.M.; Berkowitz, J., Rotational band shapes in photoelectron spectroscopy: HF DF, J. Chem. Phys., 1973, 59, 4292. [all data]

Guyon, Spohr, et al., 1976
Guyon, P.-M.; Spohr, R.; Chupka, W.A.; Berkowitz, J., Threshold photoelectron spectra of HF, DF, and F2, J. Chem. Phys., 1976, 65, 1650-1658. [all data]

Berkowitz, Chupka, et al., 1971
Berkowitz, J.; Chupka, W.A.; Guyon, P.M.; Holloway, J.H.; Spohr, R., Photoionization mass spectrometric study of F2, HF, and DF, J. Chem. Phys., 1971, 54, 5165. [all data]

Berkowitz, 1971
Berkowitz, J., Experimental potential energy curves for X2{PI} and 2Σ+ states of HF+, Chem. Phys. Lett., 1971, 11, 21. [all data]

Banna and Shirley, 1975
Banna, M.S.; Shirley, D.A., Molecular photoelectron spectroscopy at 132.3 eV. The second-row hydrides, J. Chem. Phys., 1975, 63, 4759. [all data]

Shaw and Thomas, 1975
Shaw, R.W., Jr.; Thomas, T.D., Auger electron spectrum and ionization potentials of the HF molecule, Phys. Rev. A:, 1975, 11, 1491. [all data]

Naude and Verleger, 1950
Naude, S.M.; Verleger, H., The vibration-rotation bands of the hydrogen halides HF, H35Cl, H37Cl, H79Br, H81Br and H127I, Proc. Phys. Soc. London Sect. A, 1950, 63, 470. [all data]

Sileo and Cool, 1976
Sileo, R.N.; Cool, T.A., Overtone emission spectroscopy of HF and DF: vibrational matrix elements and dipole moment function, J. Chem. Phys., 1976, 65, 117. [all data]

Kompa and Pimentel, 1967
Kompa, K.L.; Pimentel, G.C., Hydrofluoric acid chemical laser, J. Chem. Phys., 1967, 47, 857. [all data]

Deutsch, 1967, 2
Deutsch, T.F., Molecular laser action in hydrogen and deuterium halides, Appl. Phys. Lett., 1967, 10, 234. [all data]

Coldhar, Osgood, et al., 1971
Coldhar, J.; Osgood, R.M., Jr.; Javan, A., Observation of intense superradiant emission in the high-gain infrared transitions of HF and DF molecules, Appl. Phys. Lett., 1971, 18, 167. [all data]

Meredith, 1972
Meredith, R.E., Strengths and widths in the first overtone band of hydrogen fluoride, J. Quant. Spectrosc. Radiat. Transfer, 1972, 12, 485. [all data]

Spellicy, Meredith, et al., 1972
Spellicy, R.L.; Meredith, R.E.; Smith, F.G., Strengths and collision broadened widths in the second overtone band of hydrogen fluoride, J. Chem. Phys., 1972, 57, 5119. [all data]

Lie, 1974
Lie, G.C., Study of the theoretical dipole moment function and infrared transition matrix for the X1Σ+ state of the HF molecule, J. Chem. Phys., 1974, 60, 2991. [all data]

Rimpel, 1974
Rimpel, G., Linienstarken in der 4-0- und 5-0-Rotationsschwingungsbande von Fluorwasserstoff, Z. Naturforsch. A, 1974, 29, 588. [all data]

Yardley and Balint-Kurti, 1976
Yardley, R.N.; Balint-Kurti, G.G., Ab initio valence-bond calculations on HF, LiH, LiH+ and LiF, Mol. Phys., 1976, 31, 921. [all data]

Hinchen, 1974
Hinchen, J.J., Determination of vibration-rotation line strengths for HF and DF by use of an HF/DF cw laser, J. Opt. Soc. Am., 1974, 64, 1162. [all data]


Notes

Go To: Top, Reaction thermochemistry data, Constants of diatomic molecules, References